[go: up one dir, main page]

JPH04362553A - Light separation element and light-receiving optical device using same - Google Patents

Light separation element and light-receiving optical device using same

Info

Publication number
JPH04362553A
JPH04362553A JP3166410A JP16641091A JPH04362553A JP H04362553 A JPH04362553 A JP H04362553A JP 3166410 A JP3166410 A JP 3166410A JP 16641091 A JP16641091 A JP 16641091A JP H04362553 A JPH04362553 A JP H04362553A
Authority
JP
Japan
Prior art keywords
light
wave component
separation element
reflected
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3166410A
Other languages
Japanese (ja)
Other versions
JP2704684B2 (en
Inventor
Kazuhiko Kuroki
一彦 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP3166410A priority Critical patent/JP2704684B2/en
Priority to GB9211607A priority patent/GB2256725B/en
Priority to US07/893,134 priority patent/US5309422A/en
Priority to DE4218642A priority patent/DE4218642C2/en
Publication of JPH04362553A publication Critical patent/JPH04362553A/en
Application granted granted Critical
Publication of JP2704684B2 publication Critical patent/JP2704684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To obtain a light separation element and a light-receiving optical device using the element with simple constitution. CONSTITUTION:40% of the S-wave component of incident light is reflected by a polarization film 12a, and 60% of the S-wave component and 100% of a P-wave component are transmitted. The transmission light becomes 100% of the S-wave component and 60% of the P-wave component by a phase difference plate 60% of the S-wave component and 60% of the P-wave component transmit a polarization film 12b, and light is received by a pin photo diode 24 of four division. 40% of the S-wave component reflected by the polarization film 12b becomes 40% of the P-wave component by the phase difference plate 13, and it transmits the polarization film 12a. Light-receiving parts 21 and 22 receive 40% of the S-wave component and 40% of the P-wave component.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光磁気ディスク装置な
どに使用されて回転方向に90度の偏光成分を有する光
を3つの光成分に分離する光分離素子ならびにこの光分
離素子を使用した受光光学装置に関する。
[Industrial Application Field] The present invention relates to a light separation element used in a magneto-optical disk device, etc., which separates light having a polarization component of 90 degrees in the rotational direction into three light components, and a light separation element using this light separation element. The present invention relates to a light receiving optical device.

【0002】0002

【従来の技術】光磁気ディスク装置では、その再生出力
を得るために、偏光分離が行われ、ディスクからの戻り
光を、カー回転角による偏光成分の差の出力(MO信号
)と、フォーカスなどのエラー信号を検出するためのエ
ラー信号検出成分とに分離する必要がある。
[Prior Art] In order to obtain reproduction output in a magneto-optical disk device, polarization separation is performed, and the return light from the disk is divided into an output of the difference in polarization components due to the Kerr rotation angle (MO signal), a focusing signal, etc. It is necessary to separate the error signal into an error signal detection component and an error signal detection component for detecting the error signal.

【0003】図6は、従来の偏光分離手段を使用した光
磁気ディスク装置の光学系の構成を示している。半導体
レーザ1から発せられたレーザ光はコリメートレンズ2
により平行光となり、ビームスプリッタ3により反射さ
れ、全反射プリズム4にて反射されて対物レンズ5によ
りディスクDの記録面に集光される。ディスクDの記録
面からの反射戻り光は、ビームスプリッタ3を透過し、
ウォラストンプリズム6にて3つの成分に分離され、受
光レンズ7aと7bを経て6分割のピンホトダイオード
8により受光される。ウォラストンプリズム6にて異な
る偏光成分に分離された2つの光束B1とB2はピンホ
トダイオード8の2つの受光部8aと8bとにより受光
され、両受光光量の差からMO信号が検出される。また
偏光状態に依存しない光束B3は4分割の受光部8cに
受光され、これによりフォーカスとトラッキングのエラ
ー信号が得られる。
FIG. 6 shows the configuration of an optical system of a magneto-optical disk device using a conventional polarization separation means. The laser light emitted from the semiconductor laser 1 passes through the collimating lens 2
The light becomes parallel light, is reflected by the beam splitter 3, is reflected by the total reflection prism 4, and is focused onto the recording surface of the disk D by the objective lens 5. The reflected return light from the recording surface of the disk D passes through the beam splitter 3,
The light is separated into three components by a Wollaston prism 6, passes through light receiving lenses 7a and 7b, and is received by a six-divided pin photodiode 8. The two light beams B1 and B2 separated into different polarization components by the Wollaston prism 6 are received by the two light receiving sections 8a and 8b of the pin photodiode 8, and an MO signal is detected from the difference in the amounts of the two received light beams. Furthermore, the light beam B3, which does not depend on the polarization state, is received by the four-divided light receiving section 8c, thereby obtaining focus and tracking error signals.

【0004】0004

【発明が解決しようとする課題】上記従来の受光光学装
置では、偏光分離のための素子として、ウォラストンプ
リズム6を使用している。しかしながら、ウォラストン
プリズム6は、水晶などの異方性結晶を2つ使用し、こ
れを貼り合わせて制作しているため製造コストが高いも
のとなっている。さらに、ピンホトダイオード8の4分
割の受光部8cにおいてフォーカスエラー信号を得るた
めに、非点隔差を生じさせるシリンドリカルレンズを受
光レンズ7bとして設ける必要があり、構成する光学部
品の点数が多くなる。
SUMMARY OF THE INVENTION The conventional light-receiving optical device described above uses a Wollaston prism 6 as an element for polarization separation. However, since the Wollaston prism 6 is manufactured by using two anisotropic crystals such as quartz crystals and bonding them together, the manufacturing cost is high. Furthermore, in order to obtain a focus error signal in the four-divided light receiving section 8c of the focus photodiode 8, it is necessary to provide a cylindrical lens that produces an astigmatism difference as the light receiving lens 7b, which increases the number of optical components.

【0005】本発明は上記従来の課題を解決するもので
あり、簡単な構成により光の偏光分離ができ且つ非点隔
差を生じさせることも可能な光分離素子ならびにこれを
使用した受光光学装置を提供することを目的としている
The present invention solves the above-mentioned conventional problems, and provides an optical separation element that can perform polarization separation of light with a simple configuration and also generate an astigmatism difference, and a light receiving optical device using the same. is intended to provide.

【0006】[0006]

【課題を解決するための手段】本発明は、光軸に対する
回転方向に90度の第1と第2の偏光成分を有する光の
経路に位置する光分離素子であって、第1の偏光成分を
所定の割合で透過させ、第2の偏光成分を所定の割合で
透過させる偏光膜を、互いに平行で且つ光軸に対して角
度をもたせて配置し、両偏光膜の間に偏光面を90度回
転させる光学部材を配置したことを特徴とするものであ
る。
Means for Solving the Problems The present invention provides a light separation element located in a path of light having first and second polarization components at 90 degrees in the direction of rotation with respect to the optical axis, the first polarization component being Polarizing films that transmit the second polarized light component at a predetermined rate and transmit the second polarized light component at a predetermined rate are arranged parallel to each other and at an angle to the optical axis, and the polarizing plane is set at 90° between the two polarizing films. It is characterized by disposing an optical member that can be rotated by a certain degree.

【0007】さらに本発明による受光光学装置は、光軸
に対する回転方向に90度の第1と第2の偏光成分を有
する光の経路に前記光分離素子を配置し、この光分離素
子の両偏光膜を透過する光を受光する受光部と、両偏光
膜からの反射成分をそれぞれ受光する受光部とを設けた
ものである。
Further, in the light receiving optical device according to the present invention, the light separating element is disposed in the path of light having first and second polarized light components at 90 degrees in the rotation direction with respect to the optical axis, and both polarized light of the light separating element is arranged. It is provided with a light receiving section that receives light transmitted through the film, and a light receiving section that receives reflected components from both polarizing films.

【0008】[0008]

【作用】上記手段では、例えば光磁気ディスクにおいて
偏光面にカー回転角が与えられた戻り光が光分離素子に
入射すると、偏光膜によりその一部の成分が反射され、
他の成分が透過する。さらに途中に位置する偏光面を9
0度回転させる光学部材により偏光成分が90度回転さ
せられ、次の偏光膜に至る。次の偏光膜では、一部が反
射し他の成分が透過する。透過した光を受光部に受ける
ことにより、例えばフォーカスなどのエラー検出が行わ
れる。また両偏光膜から反射された光は互いに偏光方向
の異なる成分となるため、その出力の差を求めることに
よりMO信号などを得ることができるようになる。
[Operation] In the above means, when return light whose polarization plane is given a Kerr rotation angle in a magneto-optical disk is incident on the light separation element, a part of the component is reflected by the polarizing film,
Other components pass through. Furthermore, the polarization plane located in the middle is 9
The polarized light component is rotated by 90 degrees by the optical member that rotates it by 0 degrees, and reaches the next polarizing film. In the next polarizing film, part of the light is reflected and other components are transmitted. By receiving the transmitted light at the light receiving section, error detection such as focusing is performed. Furthermore, since the light reflected from both polarizing films has components with different polarization directions, an MO signal or the like can be obtained by determining the difference in output.

【0009】[0009]

【実施例】以下本発明の実施例を図面により説明する。 図1は本発明による光分離素子10の第1実施例を示す
断面図である。図1において、符号11aと11bは厚
さが同じ寸法tの平板ガラスである。両平板ガラス11
aと11bの表面には偏光膜12aと12bがコーティ
ングされている。両平板ガラス11aと11bの間には
通過する光に対しλ/2の位相差(ただしλは光の波長
)を発生させる位相差板13が介装されている。
[Embodiments] Examples of the present invention will be explained below with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of a light separation element 10 according to the present invention. In FIG. 1, reference numerals 11a and 11b are flat glasses having the same thickness and dimension t. Both flat glass 11
The surfaces of a and 11b are coated with polarizing films 12a and 12b. A retardation plate 13 is interposed between the flat glasses 11a and 11b to generate a phase difference of λ/2 (where λ is the wavelength of the light) for the light passing therethrough.

【0010】図1において紙面上下方向をα軸、紙面に
直交する方向をβ軸としてα−βの直交座標をとり、偏
光面がα方向となる光の成分をP波成分、偏光面がβ方
向となる光の成分をS波成分とする。また入射光軸Bの
光分離素子10に対する入射角をθとする。
[0010] In FIG. 1, α-β orthogonal coordinates are taken with the α axis in the vertical direction of the paper and the β axis in the direction perpendicular to the paper, and the component of light whose polarization plane is in the α direction is the P wave component, and the polarization plane is β. The component of light that corresponds to the direction is assumed to be the S-wave component. Further, the incident angle of the incident optical axis B with respect to the light separation element 10 is assumed to be θ.

【0011】前記入射角θはほぼブリュスター角とし、
例えば平板11aと11bの屈折率が1.51のときに
約60度に設定される。このブリュスター角θならびに
偏光膜12a,12bの設計により、各偏光膜12aと
12bの部分では、P波は100%透過し、S波は60
%透過し、S波の40%が反射されるように設定されて
いる。なおこの比率は任意に設定可能である。
The incident angle θ is approximately the Brewster angle,
For example, when the refractive index of the flat plates 11a and 11b is 1.51, the angle is set to about 60 degrees. Due to this Brewster angle θ and the design of the polarizing films 12a and 12b, 100% of P waves are transmitted through each polarizing film 12a and 12b, and 60% of S waves are transmitted through each polarizing film 12a and 12b.
It is set so that 40% of the S wave is transmitted and 40% of the S wave is reflected. Note that this ratio can be set arbitrarily.

【0012】また前記λ/2の位相差を発生させる位相
差板13を通過した光はその偏光面が90度回転させら
れるため、P波成分はS波成分となり、S波成分はP波
成分となる。
[0012] Furthermore, since the polarization plane of the light passing through the retardation plate 13 that generates the phase difference of λ/2 is rotated by 90 degrees, the P-wave component becomes an S-wave component, and the S-wave component becomes a P-wave component. becomes.

【0013】上記光分離素子10の機能を説明する。入
射角θにより入射する入射光は、偏光膜12aによりS
波成分が40%反射され、60%が透過する。またこの
偏光膜12aにおいてP波成分は100%透過する。す
なわち偏光膜12aでは、入射光のうち40%のS波成
分のみが反射する。図1ではこの反射光をR1で示して
いる。
The function of the light separation element 10 will be explained. The incident light incident at the incident angle θ is converted into S by the polarizing film 12a.
40% of the wave components are reflected and 60% are transmitted. Furthermore, 100% of the P wave component is transmitted through this polarizing film 12a. That is, the polarizing film 12a reflects only 40% of the S wave component of the incident light. In FIG. 1, this reflected light is indicated by R1.

【0014】偏光膜12aを透過した60%のS波成分
と100%のP波成分は、平板ガラス11aを透過しさ
らに位相差板13を透過する。この位相差板13により
偏光面が90度回転させられるため、次の平板ガラス1
1bを透過する光は、100%のS波成分と60%のP
波成分である。
The 60% S-wave component and the 100% P-wave component that have passed through the polarizing film 12a pass through the flat glass 11a and further pass through the retardation plate 13. Since the plane of polarization is rotated by 90 degrees by this retardation plate 13, the next flat glass 1
The light transmitted through 1b has 100% S-wave component and 60% P-wave component.
It is a wave component.

【0015】次の偏光膜12bでは、S波成分のうち4
0%が反射され、60%が透過する。ただしP波成分は
反射されないため、この偏光膜12bにより反射されて
平板ガラス11b内を戻るのは40%のS波成分のみで
ある。このS波成分は再び位相差板13を透過するため
、偏光面が90度回転させられ、前記40%のS波成分
はP波成分になる。P波成分は偏光膜12aにて反射さ
れずその全てが通過するため、結果的に偏光膜12bに
より反射された成分はP波成分となって、前記反射光R
1と平行に出力する。このP波成分40%の反射光をR
2で示す。
In the next polarizing film 12b, 4 of the S wave components
0% is reflected and 60% is transmitted. However, since the P wave component is not reflected, only 40% of the S wave component is reflected by the polarizing film 12b and returns within the flat glass 11b. Since this S-wave component passes through the retardation plate 13 again, the plane of polarization is rotated by 90 degrees, and the 40% S-wave component becomes a P-wave component. Since the P wave component is not reflected by the polarizing film 12a and all of it passes through, the component reflected by the polarizing film 12b becomes the P wave component, and the reflected light R
Output parallel to 1. This reflected light with 40% P wave component is R
Shown as 2.

【0016】また前記偏光膜12bでは、S波成分の6
0%が透過し、さらに60%のP波成分はそのまま全て
透過する。よって符号Tで示す透過光は、共に60%の
S波成分とP波成分を有する光となる。
Further, in the polarizing film 12b, 6 of the S wave component
0% is transmitted, and 60% of the P wave component is completely transmitted as is. Therefore, the transmitted light indicated by the symbol T has both 60% S-wave components and 60% P-wave components.

【0017】図1では、上記光分離素子10が光磁気デ
ィスク装置においてディスクの記録面からの戻り光(集
束光)の経路に配置した場合を示している。前述の40
%のS波成分の反射光R1の経路と、40%のP波成分
の反射光R2の経路にはそれぞれピンホトダイオードの
受光部21と22が配置されている。この両受光部(I
出力の受光とJ出力の受光)の受光光量の差を差動増幅
器23により得ることにより、I出力とJ出力の差すな
わちS波成分とP波成分の光量の差を知ることができ、
光磁気ディスクのMO信号を得ることができる。
FIG. 1 shows a case where the optical separation element 10 is arranged in a path of return light (focused light) from a recording surface of a disk in a magneto-optical disk device. 40 mentioned above
Light receiving sections 21 and 22 of pin photodiodes are arranged in the path of the reflected light R1 of the S-wave component of % and the path of the reflected light R2 of the P-wave component of 40%, respectively. Both light receiving parts (I
By obtaining the difference in the amount of light received by the differential amplifier 23 (received light of the output and light received of the J output), it is possible to know the difference between the I output and the J output, that is, the difference in the light amount of the S wave component and the P wave component,
The MO signal of the magneto-optical disk can be obtained.

【0018】さらに透過光Tの経路(集束点)には4分
割のピンホトダイオード24が配置されている。透過光
Tは戻り光の偏光状態に依存しない光であり、これを4
分割の受光部により検知することにより、フォーカスエ
ラー信号とトラッキングエラー信号を得ることができる
。なお、光分離素子10は全体が平板構造であるため、
これを透過した透過光(集束光)Tには非点隔差が生じ
ている。よってこの非点隔差を利用して4分割の受光部
によりフォーカスエラー信号を得ることができ、図6に
示す従来例のようなシリンドリカルレンズを受光レンズ
7bとして使用する必要はない。またトラッキングエラ
ー信号は4分割の受光部によりいわゆるプッシュプル法
により検出することができる。
Furthermore, a four-divided pin photodiode 24 is arranged on the path (focusing point) of the transmitted light T. The transmitted light T is light that does not depend on the polarization state of the returned light, and it can be expressed as 4
A focus error signal and a tracking error signal can be obtained by detecting with the divided light receiving sections. In addition, since the optical separation element 10 has a flat plate structure as a whole,
The transmitted light (focused light) T that passes through this has an astigmatism difference. Therefore, it is possible to obtain a focus error signal using the four-divided light receiving section by utilizing this astigmatism difference, and there is no need to use a cylindrical lens like the conventional example shown in FIG. 6 as the light receiving lens 7b. Further, the tracking error signal can be detected by a so-called push-pull method using a four-divided light receiving section.

【0019】図4は、上記光分離素子10を使用した光
磁気ディスク装置の光学系の構成をさらに詳しく示して
いる。半導体レーザ31から出射したレーザ光はコリメ
ートレンズ32により平行光とされる。偏光ビームスプ
リッタ33ではレーザ光の一部(主にS波成分)が反射
されて、トラッキング補正用の可動ミラー34により反
射され、さらに全反射プリズム35により反射されて対
物レンズ36によりディスクの記録面に集光される。デ
ィスクの記録面からの戻り光は、基の経路を戻り、偏光
ビームスプリッタ33を透過し、受光レンズ37により
集束させられて前記光分離素子10に入射する。
FIG. 4 shows in more detail the structure of the optical system of a magneto-optical disk device using the optical separation element 10 described above. Laser light emitted from the semiconductor laser 31 is made into parallel light by the collimator lens 32. A part of the laser beam (mainly the S wave component) is reflected by the polarizing beam splitter 33, reflected by a movable mirror 34 for tracking correction, further reflected by a total reflection prism 35, and then reflected by an objective lens 36 onto the recording surface of the disk. The light is focused on. The return light from the recording surface of the disk returns through the original path, passes through the polarizing beam splitter 33, is focused by the light receiving lens 37, and enters the light separation element 10.

【0020】図5は光分離素子10の入射方向(図4の
V方向)から光分離素子10の配置角度を示している。 図4の装置において水平方向をX、垂直方向をYとした
直交座標を設けると、図1に示すα軸とβ軸との直交座
標は、前記X−Yの直交座標に対し、光軸のまわりを4
5度回転した角度に配置されている。
FIG. 5 shows the arrangement angle of the light separation element 10 from the direction of incidence of the light separation element 10 (direction V in FIG. 4). In the apparatus of FIG. 4, if orthogonal coordinates are provided with X in the horizontal direction and Y in the vertical direction, the orthogonal coordinates of the α axis and β axis shown in FIG. around 4
It is arranged at an angle rotated by 5 degrees.

【0021】光磁気ディスクからの戻り光にカー回転角
が与えられ、図5に示すように偏光面がY軸に対しプラ
スまたはマイナス方向にθkだけ回転させられていたと
する。図1の光分離素子10では、θkだけ回転させら
れた偏光面の成分がα軸方向のP波成分とβ軸方向のS
波成分として分離され、受光部21と22によりS波成
分とP波成分の差が検出される。よって差動増幅器23
からの出力により、図5に示すプラスθkまたはマイナ
スθkの偏光面の回転方向が検知され、MO信号が再生
されることになる。
Assume that the return light from the magneto-optical disk is given a Kerr rotation angle, and the plane of polarization is rotated by θk in the plus or minus direction with respect to the Y axis, as shown in FIG. In the optical separation element 10 of FIG. 1, the component of the polarization plane rotated by θk is the P-wave component in the α-axis direction and the S-wave component in the β-axis direction.
The light is separated as wave components, and the difference between the S wave component and the P wave component is detected by the light receiving sections 21 and 22. Therefore, the differential amplifier 23
The rotation direction of the polarization plane of plus θk or minus θk shown in FIG. 5 is detected by the output from , and the MO signal is reproduced.

【0022】図2は本発明による光分離素子の第2実施
例を示している。この実施例は、図1において2枚使用
した平板ガラスを1枚にしたものである。すなわち図2
の光分離素子10Aの構造は、入射側から順に、偏光膜
12a、平板ガラス11、λ/2の位相差を与える位相
差板13、偏光膜12bとなっている。この光分離素子
10Aの機能は図1に示す光分離素子10と同じであり
、40%のS波成分となる反射光R1と40%のP波成
分となる反射光R2と、共に60%のS波成分とP波成
分を有する透過光Tとに分離される。
FIG. 2 shows a second embodiment of the optical separation element according to the present invention. In this embodiment, the two flat glasses used in FIG. 1 are reduced to one. In other words, Figure 2
The structure of the light separation element 10A includes, in order from the incident side, a polarizing film 12a, a flat glass 11, a retardation plate 13 that provides a phase difference of λ/2, and a polarizing film 12b. The function of this optical separation element 10A is the same as that of the optical separation element 10 shown in FIG. It is separated into transmitted light T having an S wave component and a P wave component.

【0023】図3に示す第3実施例は、構造をさらに簡
略化したものである。この実施例に示す光分離素子10
Bは、水晶などの異方性結晶を使用し、透過光にλ/2
の位相差を与えることができる厚さ寸法t1とした位相
差板13aの両面に、直接偏光膜12aと12bがコー
ティングされているものである。この実施例では、表面
の偏光膜12aにて100%のP波成分と60%のS波
成分が透過する。この透過光は、位相差板13aを透過
していくうちに偏光面が90度回転させられ、後面の偏
光膜12bに至った時点で、100%のS波成分と60
%のP波成分となる。偏光膜12bでは、共に60%の
S波成分とP波成分が透過して透過光Tが得られるが、
40%のS波成分が反射される。このS波成分は位相差
板13a内を透過するにしたがってP波成分となり偏光
膜12aを透過する。よって共に40%のP波成分とS
波成分がそれぞれ反射光R1とR2として得られる。
The third embodiment shown in FIG. 3 has a further simplified structure. Light separation element 10 shown in this example
For B, an anisotropic crystal such as quartz is used, and the transmitted light has a wavelength of λ/2.
Polarizing films 12a and 12b are directly coated on both sides of a retardation plate 13a having a thickness t1 that can provide a retardation of . In this embodiment, 100% of the P wave component and 60% of the S wave component are transmitted through the polarizing film 12a on the front surface. The polarization plane of this transmitted light is rotated 90 degrees as it passes through the retardation plate 13a, and when it reaches the polarizing film 12b on the rear surface, it has 100% S-wave component and 60% S-wave component.
% P wave component. In the polarizing film 12b, both 60% of the S wave component and the P wave component are transmitted, and transmitted light T is obtained.
40% of the S wave component is reflected. As this S-wave component passes through the phase difference plate 13a, it becomes a P-wave component and passes through the polarizing film 12a. Therefore, both 40% P wave component and S
The wave components are obtained as reflected lights R1 and R2, respectively.

【0024】なお本発明は上記各実施例に限られるもの
ではなく、例えば図2の第2実施例において、位相差板
13を表面の偏光膜12aの次に設け、その後に平板ガ
ラス11と偏光膜12bを設けてもよい。
Note that the present invention is not limited to the above embodiments; for example, in the second embodiment shown in FIG. A membrane 12b may also be provided.

【0025】[0025]

【発明の効果】以上詳述した本発明によれば、小寸法で
簡単な構成の光分離素子を得ることができる。またこの
光分離素子を使用することにより、小型の受光光学装置
を形成できる。さらに光分離素子は平板構成にできるた
め、これを透過した光は非点隔差を含むことになり、そ
のままフォーカスエラーの検出が可能になる。
According to the present invention described in detail above, it is possible to obtain a light separation element having a small size and a simple structure. Furthermore, by using this light separation element, a compact light receiving optical device can be formed. Furthermore, since the light separation element can be formed into a flat plate configuration, the light transmitted through it contains an astigmatism difference, making it possible to detect focus errors as is.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1実施例による光分離素子を示す断
面図、
FIG. 1 is a cross-sectional view showing a light separation element according to a first embodiment of the present invention;

【図2】本発明の第2実施例による光分離素子を示す断
面図、
FIG. 2 is a sectional view showing a light separation element according to a second embodiment of the present invention;

【図3】本発明の第3実施例による光分離素子を示す断
面図、
FIG. 3 is a sectional view showing a light separation element according to a third embodiment of the present invention;

【図4】本発明の光分離素子を使用した光磁気ディスク
装置の光学系の配置斜視図、
FIG. 4 is a perspective view of the arrangement of an optical system of a magneto-optical disk device using the optical separation element of the present invention;

【図5】図4の装置における光分離素子の配置角度を示
す説明図、
FIG. 5 is an explanatory diagram showing the arrangement angle of the light separation element in the apparatus of FIG. 4;

【図6】従来の光分離素子ならびにこれを使用した受光
光学装置を示す配置側面図、
FIG. 6 is an arrangement side view showing a conventional light separation element and a light receiving optical device using the same;

【符号の説明】[Explanation of symbols]

10,10A,10B  光分離素子 11,11a,11b  平板ガラス 12a,12b  偏光膜 13,13a  位相差板 21,22  ピンホトダイオード 24  4分割ピンホトダイオード 31  半導体レーザ 10, 10A, 10B Light separation element 11, 11a, 11b Flat glass 12a, 12b Polarizing film 13, 13a Retardation plate 21, 22 Pin photodiode 24 4-split pin photodiode 31 Semiconductor laser

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光軸に対する回転方向に90度の第1
と第2の偏光成分を有する光の経路に位置する光分離素
子であって、第1の偏光成分を所定の割合で透過させ、
第2の偏光成分を所定の割合で透過させる光膜を、互い
に平行で且つ光軸に対して角度をもたせて配置し、両偏
光膜の間に偏光面を90度回転させる光学部材を配置し
たことを特徴とする光分離素子。
Claim 1: A first angle of 90 degrees in the direction of rotation with respect to the optical axis.
and a second polarization component, the light separation element is located in a path of light having a second polarization component, and transmits the first polarization component at a predetermined ratio;
Optical films that transmit the second polarized light component at a predetermined rate are arranged parallel to each other and at an angle to the optical axis, and an optical member that rotates the plane of polarization by 90 degrees is arranged between both polarizing films. A light separation element characterized by:
【請求項2】  光軸に対する回転方向に90度の第1
と第2の偏光成分を有する光の経路に請求項1記載の光
分離素子を配置し、この光分離素子の両偏光膜を透過す
る光を受光する受光部と、両偏光膜からの反射成分をそ
れぞれ受光する受光部とを設けたことを特徴とする受光
光学装置。
Claim 2: A first angle of 90 degrees in the direction of rotation with respect to the optical axis.
and a light-receiving section for receiving light transmitted through both polarizing films of the light-separating element, wherein the light-separating element according to claim 1 is disposed in a path of light having a second polarization component, and a light-receiving section that receives light transmitted through both polarizing films of the light-separating element, and components reflected from both polarizing films. 1. A light-receiving optical device comprising: a light-receiving section that receives each light.
JP3166410A 1991-06-10 1991-06-10 Light separation element and light receiving optical device using the same Expired - Fee Related JP2704684B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3166410A JP2704684B2 (en) 1991-06-10 1991-06-10 Light separation element and light receiving optical device using the same
GB9211607A GB2256725B (en) 1991-06-10 1992-06-02 Polarising light separation element and light receiving optical device using same
US07/893,134 US5309422A (en) 1991-06-10 1992-06-02 Light separation element and light receiving optical device using same
DE4218642A DE4218642C2 (en) 1991-06-10 1992-06-05 Plate-shaped beam splitter and optical system for scanning an optomagnetic recording medium with this beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3166410A JP2704684B2 (en) 1991-06-10 1991-06-10 Light separation element and light receiving optical device using the same

Publications (2)

Publication Number Publication Date
JPH04362553A true JPH04362553A (en) 1992-12-15
JP2704684B2 JP2704684B2 (en) 1998-01-26

Family

ID=15830907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3166410A Expired - Fee Related JP2704684B2 (en) 1991-06-10 1991-06-10 Light separation element and light receiving optical device using the same

Country Status (1)

Country Link
JP (1) JP2704684B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058696A (en) * 2000-06-28 2002-02-26 Carl Zeiss Jena Gmbh Ray coalescence device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058696A (en) * 2000-06-28 2002-02-26 Carl Zeiss Jena Gmbh Ray coalescence device

Also Published As

Publication number Publication date
JP2704684B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US5309422A (en) Light separation element and light receiving optical device using same
EP0612068B1 (en) Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
US5726962A (en) Compact optical pickup device with beam splitter
US5189651A (en) Optical system in magneto-optical recording and reproducing device
JP3362912B2 (en) Beam shaping and beam separation equipment
JPH07294739A (en) Polarized light separating element
JP3545008B2 (en) Optical pickup device
JP2704684B2 (en) Light separation element and light receiving optical device using the same
JPH07121923A (en) Optical-pickup head device
JP2748052B2 (en) Light separation element and light receiving optical device using the same
JPH01253843A (en) Hologram head
JP2581779B2 (en) Device for detecting signal from magneto-optical recording medium
JP3167171B2 (en) Light head
JP2869556B2 (en) Compound prism
JP2878510B2 (en) Light head
KR0135859B1 (en) Optical head
JPS63187440A (en) Optical head
JP2636659B2 (en) Focusing error detector
JPH10112053A (en) Optical pickup system
JPH05151634A (en) Optical head for magneto-optical recording medium
JPH0391133A (en) Optical information recording and reproducing device
JPH04289541A (en) Magneto-optical pickup device
JPH05234173A (en) Optical disk device
JPS63222356A (en) Magneto-optical head device
JPH04141846A (en) Optical head

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970909

LAPS Cancellation because of no payment of annual fees