JPH0436234Y2 - - Google Patents
Info
- Publication number
- JPH0436234Y2 JPH0436234Y2 JP19547383U JP19547383U JPH0436234Y2 JP H0436234 Y2 JPH0436234 Y2 JP H0436234Y2 JP 19547383 U JP19547383 U JP 19547383U JP 19547383 U JP19547383 U JP 19547383U JP H0436234 Y2 JPH0436234 Y2 JP H0436234Y2
- Authority
- JP
- Japan
- Prior art keywords
- shape memory
- memory alloy
- alloy member
- shape
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Surface Heating Bodies (AREA)
- Laminated Bodies (AREA)
Description
【考案の詳細な説明】
〔技術分野〕
本考案は、形状記憶合金を用いた駆動素子に係
り、特に形状記憶合金部材を加熱して記憶形状に
回復させるための加熱手段の改良に関するもので
ある。[Detailed Description of the Invention] [Technical Field] The present invention relates to a drive element using a shape memory alloy, and particularly relates to an improvement in a heating means for heating a shape memory alloy member to restore it to a memorized shape. .
形状記憶合金を用いた駆動素子は、形状記憶合
金部材を変態点以下の温度で記憶形状以外の形に
変形させ、それを変態点以上の温度に加熱して、
形状記憶合金部材が記憶形状に回復するときに発
生する力を利用するものである。
A drive element using a shape memory alloy deforms a shape memory alloy member into a shape other than the memory shape at a temperature below the transformation point, and then heats it to a temperature above the transformation point.
It utilizes the force generated when the shape memory alloy member recovers to its memorized shape.
従来、この種の駆動素子における形状記憶合金
部材の加熱は、同部材への直接通電による加熱が
一般的である。しかしながら、形状記憶合金部材
の電気抵抗値は比較的小さく、例えば直径0.2mm
のNi−Ti線を通電加熱するには約2Aという大き
な電流を流さなければならない。 Conventionally, the shape memory alloy member in this type of drive element has generally been heated by directly applying electricity to the member. However, the electrical resistance value of shape memory alloy members is relatively small, for example, 0.2 mm in diameter.
To heat a Ni-Ti wire, a large current of approximately 2A must be passed through it.
形状記憶合金部材を加熱するための電流を小さ
くするには、形状記憶合金部材の断面積を小さく
して(線径を細くするか、板厚を薄くする)、電
気抵抗値を大きくすることが必要であるが、この
ようにすると形状記憶合金部材が記憶形状に回復
するときの力が小さくなつてしまうという問題が
ある。 In order to reduce the current used to heat the shape memory alloy member, it is possible to increase the electrical resistance value by reducing the cross-sectional area of the shape memory alloy member (reducing the wire diameter or thinning the plate thickness). Although this is necessary, there is a problem in that the force required to restore the shape memory alloy member to its memorized shape becomes smaller.
本考案の目的は、上記のような問題点に鑑み、
形状記憶合金部材の記憶形状回復力を低下させる
ことなく(断面積を小さくすることなく)、形状
記憶合金部材をより小さな電流で変態点以上の温
度に加熱できる形状記憶合金を用いた駆動素子を
提供することにある。
In view of the above problems, the purpose of this invention is to
A drive element using a shape memory alloy that can heat a shape memory alloy member to a temperature above its transformation point with a smaller current without reducing the shape memory recovery force of the shape memory alloy member (without reducing the cross-sectional area). It is about providing.
上記目的を達成するため本考案は、所定の形状
を記憶させた形状記憶合金部材の表面に、耐熱性
電気絶縁膜を介して、その形状記憶合金部材より
電気抵抗値の大きい面状発熱体を張り付けたこと
を特徴とするものである。
In order to achieve the above object, the present invention provides a planar heating element having a higher electrical resistance than the shape memory alloy member on the surface of the shape memory alloy member, which has a predetermined shape memorized, via a heat-resistant electrical insulating film. It is characterized by being attached.
この形状記憶合金を用いた駆動素子は、形状記
憶合金部材を通電加熱するのではなく、面状発熱
体の通電加熱により発生する熱で形状記憶合金部
材を加熱するものである。面状発熱体は形状記憶
合金部材と薄い耐熱性電気絶縁膜を介して張り合
わされており、面接触とほぼ同じ状態にあるため
形状記憶合金部材への伝熱効率が極めて高く、し
かも面状発熱体は形状記憶合金部材より電気抵抗
値を大きくしてあるため、形状記憶合金部材を直
接通電加熱するより小さな電流で形状記憶合金部
材を記憶形状回復温度まで加熱することが可能と
なる。
This driving element using a shape memory alloy heats the shape memory alloy member with heat generated by heating the sheet heating element with electricity, rather than heating the shape memory alloy member with electricity. The sheet heating element is bonded to the shape memory alloy member via a thin heat-resistant electrical insulating film, and the state is almost the same as surface contact, so the heat transfer efficiency to the shape memory alloy member is extremely high. Since the electrical resistance value of the shape memory alloy member is made larger than that of the shape memory alloy member, it is possible to heat the shape memory alloy member to the memorized shape recovery temperature with a smaller current than when heating the shape memory alloy member directly.
なお形状記憶合金部材に記憶させる形状は、そ
の用途により定められる。例えば直線運動を得る
のであれば、形状記憶合金部材に直線形状を記憶
させておき、それを変態点以下の温度で屈曲し、
加熱により直線形状に回復させればよいし、回転
運動を得るのであれば、形状記憶合金部材に渦巻
き形状を記憶させておき、それを変態点以下の温
度で巻き締め、加熱により記憶させた渦巻き形状
に回復させればよい。 Note that the shape to be memorized by the shape memory alloy member is determined depending on its use. For example, if you want to obtain linear motion, you can memorize a linear shape in a shape memory alloy member, bend it at a temperature below the transformation point,
It is sufficient to recover the linear shape by heating, or if rotational motion is to be obtained, the spiral shape is memorized in the shape memory alloy member, and the spiral shape is memorized by winding it at a temperature below the transformation point and by heating. All you have to do is restore it to its shape.
第1図および第2図は本考案の一実施例を示
す。この駆動素子は、例えば直線形状を記憶させ
た形状記憶合金板1の両面に耐熱性電気絶縁膜2
を介して面状発熱体3を張り付け、さらにその両
面に耐熱性電気絶縁膜4を張り付けたものであ
る。形状記憶合金板1の両端部1aは駆動装置を
構成する場合に他の部材との接続部分として露出
させてある。5は張り付けに用いた耐熱性接着剤
である。
1 and 2 show an embodiment of the present invention. This drive element includes, for example, a heat-resistant electrical insulating film 2 on both sides of a shape memory alloy plate 1 that has a linear shape memorized.
A planar heating element 3 is attached through the heating element 3, and a heat-resistant electrical insulating film 4 is attached to both sides of the heating element 3. Both ends 1a of the shape memory alloy plate 1 are exposed as connection parts with other members when constructing a drive device. 5 is a heat-resistant adhesive used for pasting.
耐熱性電気絶縁膜2,4としてはポリエステル
フイルム等を使用することができる。また面状発
熱体3はアルミ箔などの金属箔を蛇行パターンに
形成したものである。このような面状発熱体3を
形成するには、耐熱性電気絶縁膜2または4に金
属箔を張り付け、この金属箔にエツチングレジス
トを蛇行パターンに印刷し、金属箔の露出部分を
エツチングにより溶解して除去すればよい。 A polyester film or the like can be used as the heat-resistant electrical insulating films 2 and 4. Further, the planar heating element 3 is formed by forming a metal foil such as aluminum foil into a meandering pattern. To form such a planar heating element 3, a metal foil is attached to the heat-resistant electrical insulating film 2 or 4, an etching resist is printed on the metal foil in a meandering pattern, and the exposed portion of the metal foil is dissolved by etching. and remove it.
金属箔製の面状発熱体の両面にポリエステルフ
イルムを貼り合わせたものは、100〜150℃の温度
まで加熱可能であり、一方、形状記憶合金の変態
点は一般に約100℃以下であるから、この両者の
組合せは実用上好適である。 A sheet heating element made of metal foil with polyester film attached to both sides can be heated to a temperature of 100 to 150°C, whereas the transformation point of a shape memory alloy is generally below about 100°C. A combination of the two is practically suitable.
面状発熱体3の両端部3aは通電端子として突
出させてあり、この両端部3aは補強のため耐熱
性電気絶縁膜2の突出部に張り付けられている。
面状発熱体3の両端部3aには圧着型の接続子6
を介してリード線7が接続されている。この駆動
素子は、このリード線7を電源に接続して、面状
発熱体3を通電発熱させ、その熱で形状記憶合金
板1を加熱するものである。 Both ends 3a of the planar heating element 3 are projected as current-carrying terminals, and these ends 3a are attached to the projections of the heat-resistant electrical insulating film 2 for reinforcement.
Crimp-type connectors 6 are provided at both ends 3a of the sheet heating element 3.
A lead wire 7 is connected via. This drive element connects this lead wire 7 to a power source, causes the planar heating element 3 to generate heat, and heats the shape memory alloy plate 1 with the heat.
面状発熱体3は、第1図に示したように、薄い
金属箔を蛇行パターンに形成することにより、断
面積を小さくし、長さを長くすることが可能であ
り、したがつて形状記憶合金板1より電気抵抗値
を十分大きくできるから、形状記憶合金板1を直
接通電加熱するより小さな電流で形状記憶合金板
1を加熱することができる。このため形状記憶合
金板1は、それ自体の電気抵抗値を考慮すること
なく、必要とする駆動力に応じて、板厚、板幅を
自由に選定することができる。 As shown in FIG. 1, the planar heating element 3 can have a small cross-sectional area and a long length by forming thin metal foil into a meandering pattern, and therefore has shape memory. Since the electrical resistance value can be made sufficiently larger than that of the alloy plate 1, the shape memory alloy plate 1 can be heated with a smaller current than when the shape memory alloy plate 1 is directly heated with electricity. Therefore, the thickness and width of the shape memory alloy plate 1 can be freely selected according to the required driving force without considering the electrical resistance value of the plate itself.
第3図は本考案の他の実施例を示す。この駆動
素子は、2枚の形状記憶合金板1と3枚の面状発
熱体3とを交互配置で複数層に重ね合わせたもの
である。もちろん形状記憶合金板1と面状発熱体
3の間には耐熱性電気絶縁膜2を介在させてあ
り、最外面にも耐熱性電気絶縁膜4を張り付けて
ある。このように複数枚の形状記憶合金板を使用
すると、大きな駆動力を得ることが可能である。 FIG. 3 shows another embodiment of the invention. This drive element is made up of two shape memory alloy plates 1 and three planar heating elements 3 stacked in a plurality of layers in an alternating arrangement. Of course, a heat-resistant electrical insulating film 2 is interposed between the shape memory alloy plate 1 and the planar heating element 3, and a heat-resistant electrical insulating film 4 is also pasted on the outermost surface. By using a plurality of shape memory alloy plates in this way, it is possible to obtain a large driving force.
第4図は本考案のさらに他の実施例を示す。こ
の駆動素子は、形状記憶合金部材を複数本の形状
記憶合金線8を平行に並べることにより構成した
ものである。その他の構成は第1図および第2図
の実施例と同じである。 FIG. 4 shows yet another embodiment of the present invention. This drive element is constructed by arranging a plurality of shape memory alloy wires 8 in parallel as a shape memory alloy member. The rest of the structure is the same as the embodiment shown in FIGS. 1 and 2.
第5図は本考案の駆動素子の使用状態を示す。
符号9が形状記憶合金部材に面状発熱体を張り付
けた本考案の駆動素子である。この駆動素子9の
両端は固定子10と可動子11に回動自在に取り
付けられている。またこれと平行して固定子10
と可動子11間にはコイルばね12が張設されて
いる。可動子11は固定子10にガイドされて矢
印S方向にスライド自在である。駆動素子9のリ
ード線7は固定子10の外へ引き出され、電源に
接続される。 FIG. 5 shows how the driving element of the present invention is used.
Reference numeral 9 indicates a drive element of the present invention in which a sheet heating element is attached to a shape memory alloy member. Both ends of this drive element 9 are rotatably attached to a stator 10 and a movable element 11. Also, in parallel with this, the stator 10
A coil spring 12 is stretched between the movable element 11 and the movable element 11. The movable element 11 is guided by the stator 10 and is slidable in the direction of arrow S. The lead wire 7 of the drive element 9 is drawn out of the stator 10 and connected to a power source.
形状記憶合金部材が加熱されないときは図示の
ように駆動素子9はコイルばね12の張力により
弓形に変形しており、可動子11は後退位置にあ
る。形状記憶合金部材が面状発熱体によつて加熱
されると、同部材が記憶形状(直線形状)に回復
する力を発揮するため、駆動素子9はコイルばね
12の張力に打ち勝つて直線形状になり、可動子
11を前進させる。面状発熱体による加熱を停止
すると、形状記憶合金部材の形状記憶回復力が失
われ、コイルばね12の張力により可動子11は
もとの後退位置にもどる。 When the shape memory alloy member is not heated, the drive element 9 is deformed into an arcuate shape by the tension of the coil spring 12 as shown, and the movable element 11 is in the retracted position. When the shape memory alloy member is heated by the planar heating element, the member exerts a force to restore the memorized shape (linear shape), so the drive element 9 overcomes the tension of the coil spring 12 and returns to the linear shape. This moves the mover 11 forward. When heating by the planar heating element is stopped, the shape memory recovery force of the shape memory alloy member is lost, and the tension of the coil spring 12 causes the movable element 11 to return to its original retracted position.
上記実施例では面状発熱体として金属箔を用い
たが、本考案はこれ以外の面状発熱体、例えばカ
ーボン粉末を混入したゴムまたはプラスチツクシ
ートなどを用いることもできる。また面状発熱体
は形状記憶合金板の片面のみに張り付けるように
してもよい。 Although metal foil was used as the planar heating element in the above embodiment, the present invention may also use other planar heating elements such as rubber or plastic sheet mixed with carbon powder. Further, the planar heating element may be attached to only one side of the shape memory alloy plate.
以上説明したように本考案によれば、形状記憶
合金部材の加熱を、その形状記憶合金部材に張り
付けられた、その形状記憶合金部材より電気抵抗
値の大きい面状発熱体を通電加熱して、その熱を
形状記憶合金部材に伝達することにより行つてい
るので、形状記憶合金部材を通電加熱する場合よ
り小さい電流で形状記憶合金部材を変態点以上の
温度に加熱することができる。しかも形状記憶合
金部材自体を通電加熱しないので、電気抵抗値と
は無関係に形状記憶合金部材の断面積を選定する
ことができ、必要な大きさの駆動力(記憶形状回
復力)を容易に得ることができる。
As explained above, according to the present invention, a shape memory alloy member is heated by applying current to a planar heating element that is attached to the shape memory alloy member and has a higher electric resistance value than that of the shape memory alloy member. Since the heat is transferred to the shape memory alloy member, the shape memory alloy member can be heated to a temperature equal to or higher than the transformation point with a smaller current than when heating the shape memory alloy member with electricity. Moreover, since the shape memory alloy member itself is not heated by electricity, the cross-sectional area of the shape memory alloy member can be selected regardless of the electrical resistance value, and the required driving force (memory shape recovery force) can be easily obtained. be able to.
第1図は本考案の駆動素子の一実施例を示す部
分切開平面図、第2図は第1図の−線拡大断
面図、第3図および第4図はそれぞれ本考案の他
の実施例を示す断面図、第5図は本考案の駆動素
子の使用状態を示す断面図である。
1……形状記憶合金板、2……耐熱性電気絶縁
膜、3……面状発熱体、4……耐熱性電気絶縁
膜、8……形状記憶合金線。
FIG. 1 is a partially cutaway plan view showing one embodiment of the drive element of the present invention, FIG. 2 is an enlarged cross-sectional view taken along the line - - of FIG. 1, and FIGS. 3 and 4 are other embodiments of the present invention, respectively. FIG. 5 is a cross-sectional view showing the driving element of the present invention in use. DESCRIPTION OF SYMBOLS 1... Shape memory alloy plate, 2... Heat resistant electrical insulating film, 3... Planar heating element, 4... Heat resistant electrical insulating film, 8... Shape memory alloy wire.
Claims (1)
の表面に、耐熱性電気絶縁膜2を介して、その
形状記憶合金部材1より電気抵抗値の大きい面
状発熱体3を張り付けたことを特徴とする形状
記憶合金を用いた駆動素子。 (2) 実用新案登録請求の範囲第1項記載の駆動素
子であつて、形状記憶合金部材1と面状発熱体
3が交互に複数層に重ね合わされているもの。 (3) 実用新案登録請求の範囲第1項記載の駆動素
子であつて、形状記憶合金部材1が板状である
もの。 (4) 実用新案登録請求の範囲第1項記載の駆動素
子であつて、形状記憶合金部材が平行に並べら
れた複数本の形状記憶合金線からなるもの。[Claims for Utility Model Registration] (1) Shape memory alloy member 1 that memorizes a predetermined shape
A driving element using a shape memory alloy, characterized in that a sheet heating element 3 having a higher electrical resistance value than the shape memory alloy member 1 is pasted on the surface of the shape memory alloy member 1 via a heat-resistant electrical insulating film 2. (2) The drive element according to claim 1, in which the shape memory alloy member 1 and the planar heating element 3 are alternately stacked in a plurality of layers. (3) The driving element according to claim 1 of the utility model registration claim, in which the shape memory alloy member 1 is plate-shaped. (4) Utility model registration The drive element according to claim 1, which is composed of a plurality of shape memory alloy wires in which shape memory alloy members are arranged in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19547383U JPS60103288U (en) | 1983-12-21 | 1983-12-21 | Drive element using shape memory alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19547383U JPS60103288U (en) | 1983-12-21 | 1983-12-21 | Drive element using shape memory alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60103288U JPS60103288U (en) | 1985-07-13 |
JPH0436234Y2 true JPH0436234Y2 (en) | 1992-08-26 |
Family
ID=30419787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19547383U Granted JPS60103288U (en) | 1983-12-21 | 1983-12-21 | Drive element using shape memory alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60103288U (en) |
-
1983
- 1983-12-21 JP JP19547383U patent/JPS60103288U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60103288U (en) | 1985-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0436234Y2 (en) | ||
WO2005027165A1 (en) | Thin contactor | |
JPH02285978A (en) | Electrostatic actuator using film | |
JP2020017395A (en) | Laminated busbar, method of manufacturing the same, and battery pack | |
JP3976206B2 (en) | Method for producing electric heating sheet and product thereof | |
JP2003298127A (en) | Thermoelectric conversion device, its manufacturing method, and thermoelectric power generator | |
JP3020821B2 (en) | Seat heater | |
JP2004152691A (en) | Sheet heater | |
CN220456308U (en) | High-efficient heat dissipation resistance type bimetal element | |
CN106992244B (en) | Thermoelectric conversion device and thermoelectric converter | |
JP3074316B2 (en) | Sheet coil lamination or loading products | |
JPS644182Y2 (en) | ||
TW201216314A (en) | Solar module with bimetal breaker | |
JPS6010829Y2 (en) | heat shrinkable covering material | |
JPS60217710A (en) | Actuator | |
JPS5875486A (en) | Electric to dynamic energy converter | |
JPS61247255A (en) | Coil for motor | |
JP2006139330A (en) | Non-contact ic card and contact/non-contact ic card | |
JPH07235686A (en) | Solar cell | |
JPH077130U (en) | Capacitor | |
JP3360405B2 (en) | Armature winding fixing method for linear motor | |
USRE27877E (en) | Heating device for electrical actuation | |
JPH09232070A (en) | Flat heater body | |
RU25134U1 (en) | FLEXIBLE ELECTRIC HEATING ELEMENT | |
JP2020113617A (en) | Thermoelectric element |