[go: up one dir, main page]

JPH04362067A - Carbon-containing basic refractories - Google Patents

Carbon-containing basic refractories

Info

Publication number
JPH04362067A
JPH04362067A JP3166485A JP16648591A JPH04362067A JP H04362067 A JPH04362067 A JP H04362067A JP 3166485 A JP3166485 A JP 3166485A JP 16648591 A JP16648591 A JP 16648591A JP H04362067 A JPH04362067 A JP H04362067A
Authority
JP
Japan
Prior art keywords
weight
parts
calcium hexaboride
carbon
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3166485A
Other languages
Japanese (ja)
Other versions
JPH0764651B2 (en
Inventor
Seiji Hanagiri
誠司 花桐
Seiji Aso
誠二 麻生
Koichi Nakano
耕一 中野
Toshiaki Ito
敏明 伊藤
Akira Watanabe
明 渡辺
Hirokuni Takahashi
高橋 宏邦
Shigeyuki Takanaga
茂幸 高長
Hiroshi Yasui
宏 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd, Nippon Steel Corp filed Critical Kyushu Refractories Co Ltd
Priority to JP3166485A priority Critical patent/JPH0764651B2/en
Publication of JPH04362067A publication Critical patent/JPH04362067A/en
Publication of JPH0764651B2 publication Critical patent/JPH0764651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は転炉、取鍋、タンディ
ッシュ、RHなどの各種製鋼用容器に使用される耐酸化
性および熱間強度を向上させた炭素含有塩基性耐火物に
関するものである。
[Industrial Application Field] This invention relates to carbon-containing basic refractories with improved oxidation resistance and hot strength used in various steelmaking containers such as converters, ladles, tundishes, and RH. be.

【0002】0002

【従来の技術】近年、製鋼技術の進歩に伴って製鋼用容
器に使用される耐火物としては、MgO−Cれんがが広
く使用されている。しかし、最近はこれら容器で各種の
溶鋼処理を行うようになったため、超高温下における一
層の耐食性、耐スポ−リング性および耐摩耗性が要求さ
れている。
BACKGROUND OF THE INVENTION In recent years, with advances in steelmaking technology, MgO--C bricks have been widely used as refractories for steelmaking containers. However, recently, various types of molten steel processing have come to be carried out in these containers, and therefore, even higher corrosion resistance, spalling resistance, and wear resistance under extremely high temperatures are required.

【0003】従来から、MgO−Cれんがの炭素材料の
耐酸化性を付与する手段としては種々の方法が提案され
てはいるが、アルミニウムやマグネシウムなどの金属粉
末を添加する方法が広く一般に採用されている(例えば
特開昭55−107749号公報など)。
[0003] Various methods have been proposed in the past as means for imparting oxidation resistance to the carbon material of MgO-C bricks, but the method of adding metal powder such as aluminum or magnesium has been widely and generally adopted. (For example, Japanese Patent Application Laid-open No. 107749/1983).

【0004】最近になって、上記金属粉末に変えて六硼
化カルシウムを添加し、その酸化によって生成した酸化
硼素が炭素材料を被覆することにより酸化を防止する方
法が提唱された(特開平3−45553号公報)。
[0004] Recently, a method has been proposed in which oxidation is prevented by adding calcium hexaboride instead of the above-mentioned metal powder and coating the carbon material with boron oxide produced by the oxidation (Japanese Unexamined Patent Application Publication No. 1999-3) -45553).

【0005】[0005]

【発明が解決しようとする課題】ところが、上記金属粉
末を添加する方法では、耐酸化性、熱間強度、組織安定
性は向上したが、応力緩和機能が減少するため耐スポ−
リング性に問題が生じている。さらに高温下における耐
酸化性のいま一層の向上が望まれている。
[Problems to be Solved by the Invention] However, although the method of adding metal powder improves oxidation resistance, hot strength, and structural stability, the stress relaxation function decreases, resulting in poor corrosion resistance.
There is a problem with ringability. Furthermore, further improvement in oxidation resistance at high temperatures is desired.

【0006】また、六硼化カルシウムを添加する方法に
ついて詳細に検討したところ、確かに耐酸化性はあるけ
れども、耐食性がかなり低下することが判明した。従っ
て、六硼化カルシウムの添加ではれんがの耐食性を損な
うことなく耐酸化性を得る方法が要求される。
Further, when a method of adding calcium hexaboride was studied in detail, it was found that although it does provide oxidation resistance, it significantly lowers corrosion resistance. Therefore, a method is required to obtain oxidation resistance without impairing the corrosion resistance of bricks by adding calcium hexaboride.

【0007】この発明は、上記従来の課題を解決するた
めになされたもので、超高温下において耐食性、熱間強
度、組織安定性、耐酸化性および耐スポーリング性に共
に優れた炭素含有塩基性耐火物を提供することを目的と
する。
The present invention has been made to solve the above-mentioned conventional problems, and provides a carbon-containing base that exhibits excellent corrosion resistance, hot strength, structural stability, oxidation resistance, and spalling resistance under ultrahigh temperatures. The purpose is to provide durable refractories.

【0008】[0008]

【課題を解決するための手段】この発明者らは製鋼容器
用のMgO−Cれんがの諸性能について検討し、鋭意研
究の末、金属粉末と六硼化カルシウムとを併用すること
によって、両添加物の単独添加では見られなかった相乗
的効果を見出して、この発明を完成したものである。
[Means for Solving the Problems] The inventors studied various performances of MgO-C bricks for steel making containers, and after intensive research, they found that by using metal powder and calcium hexaboride together, they added both. This invention was completed by discovering a synergistic effect that could not be seen with the addition of each substance alone.

【0009】即ち、この発明は、塩基性耐火材料60〜
97重量部、炭素材料3〜40重量部、アルミニウムま
たは/およびマグネシウム0.5〜5重量部、六硼化カ
ルシウム0.5〜5重量部よりなる炭素含有塩基性耐火
物である。
That is, the present invention provides basic refractory materials 60 to
It is a carbon-containing basic refractory consisting of 97 parts by weight, 3 to 40 parts by weight of carbon material, 0.5 to 5 parts by weight of aluminum or/and magnesium, and 0.5 to 5 parts by weight of calcium hexaboride.

【0010】この発明に用いられる塩基性耐火材料とし
ては、電融マグネシア、焼結マグネシア、カルシア、ド
ロマイト、マグカルシアなどのクリンカ−を主体として
使用する。また、必要に応じて他の耐火材料も併用可能
である。塩基性耐火材料の使用量は60〜97重量部で
ある。
The basic refractory material used in this invention is mainly clinker such as fused magnesia, sintered magnesia, calcia, dolomite, and magcalcia. Further, other refractory materials can be used in combination as necessary. The amount of basic refractory material used is 60 to 97 parts by weight.

【0011】また、炭素材料は、天然黒鉛、人造黒鉛、
電極屑、石油コ−クス、カ−ボンブラックなどの既知の
炭素材料が使用できるが、高温における耐食性の点から
黒鉛の高純度のものが適する。この炭素材料の使用量は
3〜40重量部である。塩基性耐火材料が60重量部未
満および炭素材料が40重量部を越えるとれんがの強度
が低下し、炭素材料が3重量部未満および塩基性耐火材
料が97重量部より多いと耐スポ−リング性に劣り、い
ずれも好ましくない。
[0011] Carbon materials include natural graphite, artificial graphite,
Known carbon materials such as electrode scraps, petroleum coke, and carbon black can be used, but high-purity graphite is suitable from the viewpoint of corrosion resistance at high temperatures. The amount of this carbon material used is 3 to 40 parts by weight. If the basic refractory material is less than 60 parts by weight and the carbon material exceeds 40 parts by weight, the strength of the brick will decrease, and if the carbon material is less than 3 parts by weight and the basic refractory material is more than 97 parts by weight, the spalling resistance will decrease. Both are unfavorable.

【0012】この発明の特徴の一つである金属粉末とし
ては、アルミニウムあるいはマグネシウムの単独粉末か
、両者の混合粉末または合金粉末を用いる。
As the metal powder, which is one of the characteristics of the present invention, a single powder of aluminum or magnesium, or a mixed powder or alloy powder of both is used.

【0013】さらに、この発明の他の特徴である六硼化
カルシウムは、粒径44μm以下の微粉末、好ましくは
粒径10μm以下の超微粉末を使用する。微粉末を使用
することにより、以下述べる熱間強度の向上に寄与する
Another feature of the present invention is that calcium hexaboride is a fine powder with a particle size of 44 μm or less, preferably an ultrafine powder with a particle size of 10 μm or less. The use of fine powder contributes to the improvement of hot strength as described below.

【0014】この発明における金属粉末の使用量は0.
5 〜5重量部とする。金属粉末が0.5重量部未満で
はその添加効果が発揮されず、5重量部を越えると応力
緩和機能の減少により耐スポーリング性が低下するため
である。
[0014] The amount of metal powder used in this invention is 0.
5 to 5 parts by weight. This is because if the amount of metal powder is less than 0.5 parts by weight, the effect of adding it will not be exhibited, and if it exceeds 5 parts by weight, the spalling resistance will decrease due to a decrease in stress relaxation function.

【0015】また、六硼化カルシウムの使用量は0.5
 〜5重量部とする。六硼化カルシウムが0.5 重量
部未満ではその添加効果が発揮されず、5重量部を越え
ると耐食性が低下するためである。
[0015] Also, the amount of calcium hexaboride used is 0.5
~5 parts by weight. This is because if the amount of calcium hexaboride is less than 0.5 parts by weight, the effect of adding it will not be exhibited, and if it exceeds 5 parts by weight, the corrosion resistance will decrease.

【0016】さらに、上記金属粉末と六硼化カルシウム
の両者の含量は1〜6重量部とすることが好ましい。そ
して、それぞれの添加量はれんがの使用部位の要求され
る性能により加減して各種性能を調整し、全体の損耗を
一様にすることができる。例えば、耐酸化性をより要求
される部位では六硼化カルシウムの使用量を増し、熱間
強度の要求される湯当り部では金属粉末および六硼化カ
ルシウムを共に多めに使用し、耐食性の必要なスラグラ
イン部では六硼化カルシウムを少なくする。また、耐ス
ポ−リング性が重要視される際は、金属粉末を少なくし
て六硼化カルシウムを多くするなどである。
Further, the content of both the metal powder and calcium hexaboride is preferably 1 to 6 parts by weight. The amount of each addition can be adjusted depending on the required performance of the part where the brick is used to adjust various performances and make the overall wear and tear uniform. For example, the amount of calcium hexaboride used is increased in areas that require higher oxidation resistance, and the metal powder and calcium hexaboride are used in larger amounts in areas that are in contact with hot water where hot strength is required. Reduce the amount of calcium hexaboride in the slag line area. Furthermore, when spalling resistance is important, the amount of metal powder is reduced and the amount of calcium hexaboride is increased.

【0017】この発明の炭素含有塩基性耐火物の製造方
法は、粒度調整された各材料に結合剤を加え、混練後加
圧成形し、熱処理した不焼成耐火物として使用されるの
が一般的である。結合剤は通常のもので、例えばタ−ル
、ピッチ、フェノ−ル樹脂等が用いられる。
[0017] In the method for producing a carbon-containing basic refractory of the present invention, a binder is added to each material whose particle size has been adjusted, and the mixture is kneaded and then pressure-formed, which is then used as an unfired refractory that is heat-treated. It is. The binder used is a common one, such as tar, pitch, or phenolic resin.

【0018】[0018]

【作用】この発明で使用される金属粉末は酸化され易い
ので、炭素材料や結合剤から生ずる炭素質物質の酸化を
防止すると同時に、生成した酸化アルミニウムが塩基性
材料のマグネシアと反応してスピネル(MgO・Al2
 O3 )を生成する際の体積膨張により気孔を閉塞し
、組織の緻密化によりさらに耐酸化性が増し、同時に熱
間強度も向上する。この系に六硼化カルシウムが共存す
るとその硼素がスピネル生成を促進する結果、さらに著
しい耐酸化性と熱間強度の向上が見られる。
[Operation] Since the metal powder used in this invention is easily oxidized, it prevents the oxidation of the carbonaceous material generated from the carbon material and binder, and at the same time, the produced aluminum oxide reacts with the basic material magnesia to form the spinel. MgO・Al2
The volumetric expansion during the production of O3) closes the pores, and the densification of the structure further increases the oxidation resistance, and at the same time improves the hot strength. When calcium hexaboride coexists in this system, the boron promotes spinel formation, resulting in further significant improvements in oxidation resistance and hot strength.

【0019】また、MgO−Cれんがに六硼化カルシウ
ムを添加した場合、酸化により生成した酸化硼素とマグ
ネシアが反応して3MgO・B2 O3 となり、これ
が炭素材料の被膜となり酸化防止効果を発揮する。さら
に、金属粉末と六硼化カルシウムを併用すると、六硼化
カルシウムが金属粉末により還元状態になると炭素材料
と反応し易くなり、CaB2 C2 からさらにCaC
2 となって炭素材料間に新たな結合を生じ、マトリッ
クス部の結合を強化すると共に炭素材料の反応し易い末
端基を閉塞する。これは強度および耐酸化性の向上の働
きをする。 この炭化物の生成は金属粉末が存在しないと起こらない
か、また起こってもその速度と量がわずかでしかない。 この六硼化カルシウムの炭化による結合の生成は表面反
応であり、六硼化カルシウムの粒径が小さくなるとより
顕著となる。
Furthermore, when calcium hexaboride is added to MgO--C bricks, boron oxide produced by oxidation reacts with magnesia to form 3MgO.B2 O3, which forms a coating of carbon material and exhibits an antioxidant effect. Furthermore, when metal powder and calcium hexaboride are used together, when calcium hexaboride is reduced to a reduced state by the metal powder, it becomes more likely to react with carbon materials, and furthermore CaC
2, new bonds are generated between the carbon materials, strengthening the bonds in the matrix portion and blocking the easily reactive terminal groups of the carbon materials. This serves to improve strength and oxidation resistance. This carbide formation does not occur in the absence of metal powder, or occurs only at a small rate and amount. This bond formation due to carbonization of calcium hexaboride is a surface reaction, and becomes more pronounced as the particle size of calcium hexaboride becomes smaller.

【0020】なお、六硼化カルシウムの酸化で生成した
酸化硼素に起因する被膜による炭素材料の酸化防止の効
果としては、炭化硼素あるいは酸化硼素そのものの添加
でも同様の効果は見られるが、耐食性の低下が見られる
。これは六硼化カルシウムは、同時に酸化して生成する
酸化カルシウムがスラグの粘性を高めてれんが内部への
スラグ侵入を防ぐ作用が、逆に炭化硼素や酸化硼素の添
加ではスラグ中へ溶融してしまい組織劣化につながるた
めである。
[0020] Regarding the effect of preventing oxidation of carbon materials by the coating caused by boron oxide produced by the oxidation of calcium hexaboride, the same effect can be seen by adding boron carbide or boron oxide itself, but the corrosion resistance A decline is seen. This is because when calcium hexaboride is oxidized, the calcium oxide produced increases the viscosity of the slag and prevents it from penetrating into the bricks.On the other hand, when boron carbide or boron oxide is added, it melts into the slag. This is because it leads to tissue deterioration.

【0021】[0021]

【実施例】表1に示す組成の通常の粒度構成のマグネシ
アクリンカ−および鱗状黒鉛に粒径0.5mm 以下の
金属粉末と粒径10μm以下の六硼化カルシウム超微粉
末を加えフェノ−ル樹脂 2.5重量部と共に混練成形
後300 ℃で3時間熱処理した。物性の測定値および
各種のテスト結果を同じく表1に示す。耐酸化性指数は
1400℃10時間空気中で加熱した後の脱炭面積を従
来の金属アルミニウム添加の標準品(比較例1)を10
0とする指数で表したものである。耐食性指数は転炉ス
ラグ(C/S=3.4)を用いて1750℃、5時間処
理後の溶損量をやはり比較例1を100 とする指数で
表した。耐スポ−リング性指数は1650℃の溶銑に浸
漬する操作を3回繰り返して、前後の弾性率の比を同じ
く比較例1を100 とする指数で表した。総合評価に
ついては比較例1を標準(C)として各種特性を総合的
に判断してよいものから順にA〜Eの5段階で評価した
[Example] Metal powder with a particle size of 0.5 mm or less and calcium hexaboride ultrafine powder with a particle size of 10 μm or less were added to magnesia clinker and scale graphite having the usual particle size composition shown in Table 1 to form a phenolic resin. After kneading and molding with 2.5 parts by weight, the mixture was heat-treated at 300°C for 3 hours. Measured values of physical properties and various test results are also shown in Table 1. The oxidation resistance index is the decarburized area after heating in air at 1400°C for 10 hours compared to the conventional standard product with metal aluminum addition (Comparative Example 1).
It is expressed as an index that is set to 0. The corrosion resistance index was expressed as an index in which the amount of corrosion loss after treatment at 1750°C for 5 hours using converter slag (C/S=3.4) was set as 100 for Comparative Example 1. The spalling resistance index was determined by repeating the operation of immersion in hot metal at 1650 DEG C. three times, and the ratio of the elastic modulus before and after was expressed as an index, with Comparative Example 1 being 100. Regarding the comprehensive evaluation, Comparative Example 1 was used as the standard (C), and various characteristics were evaluated in five grades from A to E in descending order of overall judgment.

【0022】[0022]

【表1】[Table 1]

【0023】上記表1によれば、比較例1は現在使用さ
れているMgO−Cれんがに相当するものであり、金属
粉末が単独で使用されている。この比較例1を標準(C
)として評価すると、実施例1〜11ではいずれも(A
)または(B)の高い評価が得られた。
According to Table 1 above, Comparative Example 1 corresponds to the currently used MgO--C brick, in which metal powder was used alone. This Comparative Example 1 was used as the standard (C
), Examples 1 to 11 all had (A
) or (B).

【0024】まず、アルミニウムと六硼化カルシウムを
それぞれ0.5 〜5.0 重量部の範囲で併用した実
施例1〜4,6,8〜11では、いずれも耐食性もまず
まずの結果か或いは向上がみられると共に、耐酸化性、
耐スポーリング性および熱間強度の面では共に著しい効
果が発揮されていることが判る。特に、実施例1,2に
おいては、アルミニウムと六硼化カルシウムの使用量が
それぞれ少なくても両者を併用することによって耐酸化
性が良く、しかも熱間強度と耐スポーリング性が向上し
ている点で優れている。
First, in Examples 1 to 4, 6, and 8 to 11, in which aluminum and calcium hexaboride were used in combination in the range of 0.5 to 5.0 parts by weight, the corrosion resistance was either fair or improved. is observed, as well as oxidation resistance,
It can be seen that remarkable effects are exhibited in both spalling resistance and hot strength. In particular, in Examples 1 and 2, even if the amounts of aluminum and calcium hexaboride used were small, by using both together, the oxidation resistance was good, and the hot strength and spalling resistance were improved. Excellent in that respect.

【0025】また、マグネシウムと六硼化カルシウムを
それぞれ0.5 〜5重量部の範囲で併用した実施例5
では、耐食性、耐酸化性、耐スポーリング性および熱間
強度の面で共に著しい向上がみられる。さらに、アルミ
ニウム−マグネシウム合金と六硼化カルシウムを併用し
た実施例7においても、耐食性などがより一層優れてい
ることが判る。
[0025] Also, Example 5 in which magnesium and calcium hexaboride were used together in a range of 0.5 to 5 parts by weight each
Significant improvements were seen in corrosion resistance, oxidation resistance, spalling resistance, and hot strength. Furthermore, it can be seen that even in Example 7, in which an aluminum-magnesium alloy and calcium hexaboride were used in combination, corrosion resistance and the like were even more excellent.

【0026】上記のように、金属粉末と六硼化カルシウ
ムの併用により相乗効果が得られ、この発明の優秀性が
証明されている。
As described above, a synergistic effect is obtained by the combined use of metal powder and calcium hexaboride, proving the superiority of the present invention.

【0027】これに対して、六硼化カルシウムを単独で
使用する比較例2では、耐酸化性および耐スポーリング
性はそこそこではあるが、熱間強度と耐食性は低下する
。また、金属粉末と六硼化カルシウムを上記実施例1〜
11以外の範囲、即ち0.5 〜5.0 重量部以外の
範囲で併用した比較例3〜6では、耐酸化性、耐食性、
耐スポーリング性および熱間強度の少なくともいずれか
1つに著しい低下がみられる。また、マグネシウムと炭
化硼素を併用した比較例7では、耐食性の低下がみられ
る。
On the other hand, in Comparative Example 2 in which calcium hexaboride is used alone, the oxidation resistance and spalling resistance are fair, but the hot strength and corrosion resistance are reduced. In addition, the metal powder and calcium hexaboride were added in Example 1 to
In Comparative Examples 3 to 6, in which oxidation resistance, corrosion resistance,
A significant decrease is observed in at least one of spalling resistance and hot strength. Further, in Comparative Example 7 in which magnesium and boron carbide were used in combination, a decrease in corrosion resistance was observed.

【0028】[0028]

【発明の効果】以上説明したように、この発明によれば
、金属粉末により炭素材料や結合剤から生ずる炭素質物
質の酸化を防止すると同時に、生成した酸化アルミニウ
ムが塩基性材料のマグネシアと反応してスピネルを生成
する際の体積膨張により気孔を閉塞し、組織の緻密化に
よりさらに耐酸化性が増し同時に熱間強度も向上する。 また、六硼化カルシウムを添加することによって、金属
粉末との相互作用でマトリックス部の結合強化と炭素材
料の酸化を防止する。このように金属粉末と六硼化カル
シウムの併用により、一層の耐酸化性と熱間強度が向上
するという格別の効果を奏する。
[Effects of the Invention] As explained above, according to the present invention, the metal powder prevents the oxidation of carbonaceous substances generated from carbon materials and binders, and at the same time, the produced aluminum oxide reacts with the basic material magnesia. The pores are closed by the volumetric expansion when spinel is produced, and the densification of the structure further increases oxidation resistance and improves hot strength at the same time. Further, by adding calcium hexaboride, the interaction with the metal powder strengthens the bond in the matrix portion and prevents oxidation of the carbon material. In this way, the combined use of metal powder and calcium hexaboride has the extraordinary effect of further improving oxidation resistance and hot strength.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  塩基性耐火材料60〜97重量部、炭
素材料3〜40重量部、アルミニウムまたは/およびマ
グネシウム0.5 〜5重量部、六硼化カルシウム0.
5 〜5重量部よりなることを特徴とする炭素含有塩基
性耐火物。
Claim: 1. 60 to 97 parts by weight of basic refractory material, 3 to 40 parts by weight of carbon material, 0.5 to 5 parts by weight of aluminum or/and magnesium, and 0.5 parts by weight of calcium hexaboride.
5 to 5 parts by weight of a carbon-containing basic refractory.
JP3166485A 1991-06-10 1991-06-10 Carbon-containing basic refractory Expired - Lifetime JPH0764651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3166485A JPH0764651B2 (en) 1991-06-10 1991-06-10 Carbon-containing basic refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3166485A JPH0764651B2 (en) 1991-06-10 1991-06-10 Carbon-containing basic refractory

Publications (2)

Publication Number Publication Date
JPH04362067A true JPH04362067A (en) 1992-12-15
JPH0764651B2 JPH0764651B2 (en) 1995-07-12

Family

ID=15832270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3166485A Expired - Lifetime JPH0764651B2 (en) 1991-06-10 1991-06-10 Carbon-containing basic refractory

Country Status (1)

Country Link
JP (1) JPH0764651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110668833A (en) * 2019-10-28 2020-01-10 刘晓慧 Preparation method of magnesium-calcium-carbon composite material
CN113860890A (en) * 2021-09-03 2021-12-31 山东柯信新材料有限公司 CaC for refining furnace2-C refractory material and preparation process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107749A (en) * 1979-02-09 1980-08-19 Kyushu Refract Co Ltd Carbon-containing fire brick
JPS6452348A (en) * 1987-05-25 1989-02-28 Matsushita Electric Works Ltd Sealed contact device
JPH0345553A (en) * 1989-07-14 1991-02-27 Kawasaki Refract Co Ltd Carbon-containing refractory
JPH0545546A (en) * 1991-08-12 1993-02-23 Corning Inc Adhesive buffer optical waveguide fiber and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107749A (en) * 1979-02-09 1980-08-19 Kyushu Refract Co Ltd Carbon-containing fire brick
JPS6452348A (en) * 1987-05-25 1989-02-28 Matsushita Electric Works Ltd Sealed contact device
JPH0345553A (en) * 1989-07-14 1991-02-27 Kawasaki Refract Co Ltd Carbon-containing refractory
JPH0545546A (en) * 1991-08-12 1993-02-23 Corning Inc Adhesive buffer optical waveguide fiber and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110668833A (en) * 2019-10-28 2020-01-10 刘晓慧 Preparation method of magnesium-calcium-carbon composite material
CN113860890A (en) * 2021-09-03 2021-12-31 山东柯信新材料有限公司 CaC for refining furnace2-C refractory material and preparation process thereof

Also Published As

Publication number Publication date
JPH0764651B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
US4471059A (en) Carbon-containing refractory
JP4681456B2 (en) Low carbon magnesia carbon brick
JPH04362067A (en) Carbon-containing basic refractories
JPH11322405A (en) Low carbon refractory and its production
JPS6119584B2 (en)
EP0116194A1 (en) A carbon-containing refractory
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JPH09295857A (en) Carbon-containing brick containing aluminum oxycarbide
JPS6141861B2 (en)
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH01305849A (en) Magnesia-carbon brick
JPH0578180A (en) Carbon fiber-containing refractory
KR960015652B1 (en) Mat material composition for closing the blast furnace outlet
JPS59146975A (en) Plate refractories for sliding nozzle
JPH01294582A (en) Carbon-containing castable refractory
JPH10226563A (en) Production of sliding nozzle plate
JP3025511B2 (en) High spalling resistant carbon-containing refractory
JP2000086334A (en) Brick for sliding nozzle apparatus
JPH02283656A (en) Carbon-containing refractory
JPH05319902A (en) Carbon-containing basic refractory
JPH0551247A (en) Carbon-containing unfired refractory
JPS59107962A (en) Carbon-containing refractories
JPH10297958A (en) Chromium-containing alumina-carbon refractories
JPH04338160A (en) High-durable magnesia-carbon brick
JPS59131563A (en) Carbon containing refractories

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 16

EXPY Cancellation because of completion of term