[go: up one dir, main page]

JPH0436096B2 - - Google Patents

Info

Publication number
JPH0436096B2
JPH0436096B2 JP59230645A JP23064584A JPH0436096B2 JP H0436096 B2 JPH0436096 B2 JP H0436096B2 JP 59230645 A JP59230645 A JP 59230645A JP 23064584 A JP23064584 A JP 23064584A JP H0436096 B2 JPH0436096 B2 JP H0436096B2
Authority
JP
Japan
Prior art keywords
antimony
water
amount
temperature
antimony trioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59230645A
Other languages
Japanese (ja)
Other versions
JPS61111920A (en
Inventor
Shigeki Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23064584A priority Critical patent/JPS61111920A/en
Publication of JPS61111920A publication Critical patent/JPS61111920A/en
Publication of JPH0436096B2 publication Critical patent/JPH0436096B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα線放射量の極めて低い三酸化アンチ
モンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing antimony trioxide that emits extremely low amounts of α-ray radiation.

〔従来の技術〕[Conventional technology]

近年集積回路の小型化に伴ない、集積回路の封
止材から放射されるα線に基く集積回路の誤動作
(ソフトエラー)が大きな問題となつている。
BACKGROUND ART In recent years, with the miniaturization of integrated circuits, malfunctions (soft errors) of integrated circuits due to alpha rays emitted from the sealing material of integrated circuits have become a major problem.

集積回路の封止方法としては、金属によるも
の、セラミツクによるもの、エポキシ樹脂を主と
するプラスチツクによるもの等があるが、最近の
集積度の高い回路では、コスト面からプラスチツ
クによる封止が主流である。
There are various ways to encapsulate integrated circuits, including metals, ceramics, and plastics, mainly made of epoxy resin.However, in recent highly integrated circuits, plastics have become mainstream due to cost considerations. be.

プラスチツクを集積回路の封止に用いる場合、
これを難燃性化する必要があり、その目的のため
に三酸化アンチモンが用いられている。
When plastics are used to encapsulate integrated circuits,
It is necessary to make this flame retardant, and antimony trioxide is used for this purpose.

従来、上記の難燃剤用三酸化アンチモンの製造
方法としては、硫化アンチモン又は粗アンチモン
を揮発酸化する方法が実用されているが、該アン
チモン中に微量含まれているウラン、トリウム等
のα線放射物質が充分に除去されていないため、
α線放射量で1〜0.01カウント/cm2・Hr(以下
C/cm2・Hrと略す)を示していた。
Conventionally, as a method for producing the above-mentioned antimony trioxide for flame retardant, a method of volatilizing and oxidizing antimony sulfide or crude antimony has been used. Because the substance is not removed sufficiently,
The α-ray radiation amount was 1 to 0.01 counts/cm 2 ·Hr (hereinafter abbreviated as C/cm 2 ·Hr).

集積回路の集積度(メモリーの数)が64キロダ
イナミツクラム(以下KDRAMと略す)以下で
あれば、これでも使用可能であるが、該集積度が
上記のもの以上、例えば256KDRAMの場合はα
線放射量は0.01〜0.005C/cm2・Hr程度のものが
必要と云われており、従来の製品はそのまゝでは
集積度の高いものに使用することはできない。
If the degree of integration (number of memories) of the integrated circuit is 64 kilodynamic rams (hereinafter abbreviated as KDRAM) or less, it can still be used, but if the degree of integration is more than the above, for example 256KDRAM, α
It is said that a radiation dose of about 0.01 to 0.005 C/cm 2 ·Hr is required, and conventional products cannot be used as they are in highly integrated systems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、集積度の高い集積回路用とし
て使用できる三酸化アンチモンを簡便に製造する
方法を提供することにある。
An object of the present invention is to provide a method for easily producing antimony trioxide that can be used for highly integrated circuits.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため本願発明者は、鋭意研
究の結果、粗アンチモンを60メツシユ以下に粉砕
したのち所定の温度で塩素ガスと接触させると、
発熱反応を伴なつて容易に塩化アンチモンを生成
することに着目、このようにして得られる塩化ア
ンチモンをそのまゝ大量の水で加水分解するか、
又は上記塩化アンチモンを少量の水に溶解したの
を蒸留し、得られる蒸留塩化アンチモンを水によ
り加水分解するとα線放射量が0.01C/cm2・Hr以
下のものが得られることを見出し本発明に到達し
たものである。
In order to achieve this objective, the inventor of the present application has conducted intensive research and found that if crude antimony is crushed into 60 mesh or less and then brought into contact with chlorine gas at a predetermined temperature,
Focusing on the fact that antimony chloride can be easily produced with an exothermic reaction, the antimony chloride thus obtained was either directly hydrolyzed with a large amount of water, or
Alternatively, it was discovered that when the above-mentioned antimony chloride is dissolved in a small amount of water and then distilled, and the resulting distilled antimony chloride is hydrolyzed with water, a product with an α-ray emission amount of 0.01 C/cm 2 ·Hr or less can be obtained.The present invention has been reached.

即ち、本発明の方法はα線放射物質を含有する
粗アンチモンを粉砕し、60メツシユ以下好ましく
100メツシユ以下としたのち、100℃以上に保持し
て、これに当量以上好ましくは1.5当量以上の塩
素ガスをほぼ均一な流量で、該試料100g当たり
少なくとも30分間好ましくは1時間程度かけて通
気し、生成する留出物を集め、そのまゝ大量の水
を加えて加水分解するか、又は上記留出物に少量
の水を加えて溶解し135〜230℃で蒸留したのち、
蒸留生成物に大量の水を加え加水分解することを
特徴とするものである。
That is, the method of the present invention involves pulverizing crude antimony containing an α-ray emitting substance, preferably 60 mesh or less.
After reducing the mesh size to 100 g or less, the sample is kept at 100°C or higher, and an equivalent or more, preferably 1.5 equivalent or more, of chlorine gas is bubbled therethrough at a substantially uniform flow rate for at least 30 minutes, preferably about 1 hour per 100 g of the sample. , the resulting distillate is collected and hydrolyzed by adding a large amount of water, or the distillate is dissolved by adding a small amount of water and distilled at 135-230℃,
It is characterized by adding a large amount of water to the distilled product for hydrolysis.

加水分解によつて生成する三酸化アンチモン
は、複数回60℃以上の温水でレパルプ洗浄を行な
い、固液分離し乾燥して製品とする。
The antimony trioxide produced by hydrolysis is washed multiple times with hot water at 60°C or higher, separated into solid and liquid, and dried to produce a product.

〔作用〕[Effect]

本発明の方法において、原料を60メツシユ以下
好ましくは100メツシユ以下とするのは、反応効
率を良くするためであり、これより粗度の場合塩
素ガスの使用量が増加して好ましくないからであ
る。
In the method of the present invention, the raw material is set to 60 meshes or less, preferably 100 meshes or less, in order to improve the reaction efficiency, and if the raw material is coarser than this, the amount of chlorine gas used increases, which is undesirable. .

塩素ガスとの反応を100℃以上で、試料100g当
り塩素ガスをほぼ均一な流量で30分間以上好まし
くは1時間程度の時間をかけて当量以上好ましく
は1.5当量以上使用する理由も、アンチモンとの
反応を効率よく進行させ、原料の粗金属アンチモ
ンよりα線放射性物質の含有量の少ない塩化アン
チモンを生成させ、この塩化アンチモンを加水分
解することでα線放射量の低い三酸化アンチモン
が得られるようにしたものである。
The reason why the reaction with chlorine gas is carried out at 100°C or higher at a substantially uniform flow rate per 100 g of sample for 30 minutes or more, preferably about 1 hour, and using at least an equivalent amount, preferably at least 1.5 equivalents, is due to the reaction with antimony. The reaction proceeds efficiently to produce antimony chloride with a lower content of alpha-ray emitting substances than the crude metallic antimony raw material, and by hydrolyzing this antimony chloride, antimony trioxide with a low alpha-ray emission amount can be obtained. This is what I did.

この工程で過剰の塩素ガスは、アルカリ溶液次
いで洗浄塔を経て大気中に放出される。
In this process, excess chlorine gas is discharged into the atmosphere through an alkaline solution and a washing tower.

第一工程で得られた塩化アンチモンを135〜230
℃好ましくは200〜230℃で蒸留するのは、水、塩
酸、砒素等の低温留出物と、硫黄、鉛等の比較的
高温留出物が塩化アンチモンに混入して塩化アン
チモンを汚染しないようにするためである。従つ
て製品の純度が多少低下しても収率を重視する場
合は135〜200℃で、より純度の良いものを得たい
場合は200〜230℃の温度範囲で留出したものを採
取するが、何れも塩化アンチモンが蒸留の途中及
び受け容器で固化しないように70℃程度に保温し
て蒸留を行なう。
Antimony chloride obtained in the first step is 135 to 230
The reason why the distillation is preferably carried out at 200 to 230°C is to prevent low-temperature distillates such as water, hydrochloric acid, and arsenic, and relatively high-temperature distillates such as sulfur and lead from contaminating the antimony chloride. This is for the purpose of Therefore, if the yield is important even if the purity of the product is slightly reduced, the distillation temperature should be 135 to 200℃, and if you want to obtain a product with higher purity, the distillation should be collected in the temperature range of 200 to 230℃. In both cases, the temperature is kept at about 70°C to prevent antimony chloride from solidifying during the distillation and in the receiving vessel.

尚、135℃以下の温度での留出物は水、塩酸等
であるので、温度が135℃に達するまでは留出物
を水冷し、得られる塩酸等は別途に回収する。塩
化アンチモンを加水分解する際の水の使用量は塩
素ガスで酸化して得たSbC3の場合は容量で10
倍以上、これを更に蒸留した物の場合は容量で20
倍以上とするが何れも60℃以上の温度で行なわな
いと充分な加水分解ができない。
Incidentally, since the distillate at a temperature of 135°C or lower is water, hydrochloric acid, etc., the distillate is cooled with water until the temperature reaches 135°C, and the obtained hydrochloric acid, etc. are collected separately. The amount of water used when hydrolyzing antimony chloride is 10 by volume in the case of SbC 3 obtained by oxidizing with chlorine gas.
If it is further distilled, the volume is 20 times or more.
However, sufficient hydrolysis cannot be achieved unless the temperature is 60°C or higher.

本発明は、純度の高い製品を得るのが目的であ
るので使用する水や容器等には充分な注意を要す
るが、特に加水分解や洗浄水等に使用する水は
5MΩ以上のものを使用するのが望ましい。
Since the purpose of the present invention is to obtain a product with high purity, careful attention must be paid to the water and containers used, especially the water used for hydrolysis and washing.
It is desirable to use one with a resistance of 5MΩ or more.

本発明によれば工程が短かい割に高純度で、シ
ンチレーシヨンカウンター値で0.01C/cm2・Hr以
下とα線放射量の低いものが得られる。
According to the present invention, although the process is short, it is highly pure and has a low α-ray emission amount, with a scintillation counter value of 0.01 C/cm 2 ·Hr or less.

〔実施例〕〔Example〕

以下実施例について説明する。 Examples will be described below.

実施例 1 100メツシユ以下の粒度(JIS篩)でSb99.80重
量%の粗アンチモン300gを横型環状炉の燃焼管
内に装入し炉内温度を150℃に保持し、Sbに対し
2当量の塩素ガス(ボンベガス)を3時間均一な
流量で導入した。この間出口の炉の外側は70℃、
受け容器は室温に保持したところ531gの塩化ア
ンチモンが得られた。
Example 1 300 g of crude antimony with a particle size of 100 mesh or less (JIS sieve) and 99.80% by weight of Sb was charged into the combustion tube of a horizontal annular furnace, the temperature inside the furnace was maintained at 150°C, and 2 equivalents of chlorine to Sb was charged. Gas (cylinder gas) was introduced at a uniform flow rate for 3 hours. During this time, the temperature outside the furnace at the outlet was 70℃.
The receiving vessel was kept at room temperature and 531 g of antimony chloride was obtained.

操作中反応の通過ガスは10重量%の水酸化ナト
リウム水溶液次いで洗浄塔を経て大気中に放出し
た。
During the operation, the reaction gas passed through a 10% by weight aqueous sodium hydroxide solution and then through a washing tower and was discharged into the atmosphere.

次に上記の塩化アンチモン200gを5のビー
カーに取り、これに5MΩのイオン水5を入れ
プロペラ式撹拌機で撹拌しながらヒーター上で加
温し、95〜98℃に保持して1時間処理したのち吸
引濾過を行ない、得られたケーキは同様にして5
ビーカーに移し、同じイオン水5を加えて上
記の温度で30分間撹拌するリパルブ洗浄を2回行
なつたのちケーキを70〜100℃で24時間真空乾燥
を行なつたところ三酸化アンチモン121gが得ら
れた。
Next, 200g of the above antimony chloride was placed in a beaker 5, and 5MΩ ionized water 5 was added thereto, heated on a heater while stirring with a propeller type stirrer, and kept at 95-98°C for 1 hour. Afterwards, suction filtration was carried out, and the obtained cake was similarly divided into 5
The cake was transferred to a beaker, added with the same ionized water 5, and stirred at the above temperature for 30 minutes to perform repulsion washing twice. The cake was vacuum dried at 70 to 100°C for 24 hours, yielding 121 g of antimony trioxide. It was done.

三酸化アンチモンの純度は不純物差引法で求め
たところ、99.92重量%でα線放射量は0.005C/
cm2・Hr、平均粒径(F.SSS)3.65μm、結合実収
率は計算値で約90%であつた。
The purity of antimony trioxide was determined by the impurity subtraction method, and it was 99.92% by weight, and the amount of α-ray radiation was 0.005C/
cm 2 ·Hr, average particle size (F.SSS) 3.65 μm, and the calculated actual binding yield was about 90%.

実施例 2 実施例1で得られた三酸化アンチモン155gを
ビーカーに取り、これに実施例1で使用したイオ
ン水(以下単にイオン水と略す)16mlを添加して
水溶液状とし、これをコンデンサー付フラスコに
移し、少量の水でビーカー残留物を洗つて該フラ
スコに移したのち、蒸留装置をセツトし、マント
ルヒーターでフラスコを加熱し温度調整を行ない
ながら常圧蒸留を行なつた。
Example 2 Take 155 g of antimony trioxide obtained in Example 1 into a beaker, add 16 ml of the ionized water (hereinafter simply referred to as ionized water) used in Example 1 to make an aqueous solution, and add this to a beaker with a condenser. After the beaker residue was washed with a small amount of water and transferred to the flask, a distillation apparatus was set and atmospheric pressure distillation was carried out while heating the flask with a mantle heater and adjusting the temperature.

蒸留温度105〜110℃で水分が留出、温度が急上
昇して200℃に達した時点で受け容器を取り替え、
以後は200〜220℃でフラスコが乾固するまで蒸留
を行なつたところ140gの塩化アンチモンを得た。
Water is distilled out at a distillation temperature of 105 to 110℃, and when the temperature rapidly rises to 200℃, replace the receiving container.
Thereafter, distillation was carried out at 200 to 220°C until the flask was dry, and 140 g of antimony chloride was obtained.

蒸留操作中前半は留出物を水冷、後半は留出物
を70℃で保温して行なつた。
During the first half of the distillation operation, the distillate was cooled with water, and during the second half, the distillate was kept warm at 70°C.

このようにして得られた塩化アンチモンの全量
を実施例1と同様にして加水分解したのちレパル
プ洗浄、乾燥を行なつたところ、85gの三酸化ア
ンチモンを得た。
The entire amount of antimony chloride thus obtained was hydrolyzed in the same manner as in Example 1, followed by repulp washing and drying to obtain 85 g of antimony trioxide.

測定の結果、シンチレーシヨンカウンター値で
0.003C/cm2・Hr、純度99.95重量%であり、平均
粒径(F.SSS)3.95μm、直接収率95.1%、総合収
率は約86%と満足すべき結果が得られた。
As a result of the measurement, the scintillation counter value
Satisfactory results were obtained: 0.003 C/cm 2 ·Hr, purity 99.95% by weight, average particle size (F.SSS) 3.95 μm, direct yield 95.1%, and total yield approximately 86%.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、酸化アンチモンの製造
工程を最小限度に止め且つ従来製品のα線放射量
を1/10以下とすることができる。
According to the method of the present invention, the manufacturing process of antimony oxide can be kept to a minimum and the amount of α-ray radiation of conventional products can be reduced to 1/10 or less.

製品の粒径、色調も良いものが得られる等の利
点がある。
There are advantages such as the ability to obtain products with good particle size and color tone.

Claims (1)

【特許請求の範囲】 1 60メツシユ以下のアンチモンを100℃以上に
保持し、これに当量以上の塩素ガスをほぼ均一な
流量で、該試料100g当たり少なくとも30分かけ
て通気し、生成した留出物をそのまま、又はこれ
に少量の水を加えて溶解したのち、135〜230℃で
加熱蒸留し、得られた蒸留物に、水を加えて加水
分解することを特徴とするα線放射量の低い三酸
化アンチモンの製造方法。 2 加熱蒸留は200〜230℃で行うことを特徴とす
る特許請求の範囲1項に記載のα線放射量の低い
三酸化アンチモンの製造方法。
[Claims] 1. Distillate produced by holding 60 mesh or less of antimony at 100°C or higher and aerating an equivalent or more amount of chlorine gas at a substantially uniform flow rate for at least 30 minutes per 100 g of the sample. It is characterized by the fact that the substance is dissolved as it is or by adding a small amount of water to it, then heated and distilled at 135 to 230℃, and the resulting distillate is hydrolyzed by adding water. A method for producing low antimony trioxide. 2. The method for producing antimony trioxide with a low amount of α-ray radiation according to claim 1, wherein the heating distillation is carried out at 200 to 230°C.
JP23064584A 1984-11-01 1984-11-01 Production of antimony trioxide having low alpha-ray emission Granted JPS61111920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23064584A JPS61111920A (en) 1984-11-01 1984-11-01 Production of antimony trioxide having low alpha-ray emission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23064584A JPS61111920A (en) 1984-11-01 1984-11-01 Production of antimony trioxide having low alpha-ray emission

Publications (2)

Publication Number Publication Date
JPS61111920A JPS61111920A (en) 1986-05-30
JPH0436096B2 true JPH0436096B2 (en) 1992-06-15

Family

ID=16911032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23064584A Granted JPS61111920A (en) 1984-11-01 1984-11-01 Production of antimony trioxide having low alpha-ray emission

Country Status (1)

Country Link
JP (1) JPS61111920A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140026A (en) * 1980-04-02 1981-11-02 Rikagaku Kenkyusho Manufacture of superhigh purity alumina
JPS5930719A (en) * 1982-08-12 1984-02-18 Sumitomo Chem Co Ltd Method for producing aluminum hydroxide or oxide with low radioactive element content

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140026A (en) * 1980-04-02 1981-11-02 Rikagaku Kenkyusho Manufacture of superhigh purity alumina
JPS5930719A (en) * 1982-08-12 1984-02-18 Sumitomo Chem Co Ltd Method for producing aluminum hydroxide or oxide with low radioactive element content

Also Published As

Publication number Publication date
JPS61111920A (en) 1986-05-30

Similar Documents

Publication Publication Date Title
US2863913A (en) Process for producing terephthalic acid
JPS5954632A (en) Manufacturing method of quartz glass powder
JPH0436096B2 (en)
JPS6260834A (en) Rare earth element ore processing method
TW318175B (en)
CN112351967B (en) Process for preparing high purity cis-cyclohexane-1,2-dicarboxylic acid salts
US3497382A (en) Method of producing pure,red lead monoxide
JPS6241175B2 (en)
US2805917A (en) Process for the preparation of zinc and cadmium sulfides and selenides
US1855455A (en) Process for recovering certain metals of the third periodic group
EP0068348B1 (en) Process for the manufacture of solid crystalline anhydrous sodium metasilicate
US1566819A (en) Carnie b
JPS6221730B2 (en)
US4925594A (en) Hydrolysis resistance of rare earth oxysulfide phosphors produced by the addition of zinc in synthesis
US2415443A (en) Strontium peroxide and method of making the same
CN1023206C (en) Process for preparing fine granular sodium pyroantimonate
US3330889A (en) Preparation of heat sources for radioisotope heated thermoelectric generators
US3519545A (en) Manufacture of sucrose from starch hydrolysates using radiation
GB2159805A (en) Method of producing a sinterable gamma -LiAlO2 powder
JP2000129255A (en) Production of phosphor
US3594124A (en) Process for the preparation of hydrogen
US2681851A (en) Production of titanium sesquioxide
US2391297A (en) Tartar emetic manufacture
US2075971A (en) Manufacture of phenyl mercury acetate and phenyl mercury hydroxide
US3152055A (en) Process for the production of aromatic chlorocarboxylic acid chlorides