JPH04356967A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH04356967A JPH04356967A JP13108391A JP13108391A JPH04356967A JP H04356967 A JPH04356967 A JP H04356967A JP 13108391 A JP13108391 A JP 13108391A JP 13108391 A JP13108391 A JP 13108391A JP H04356967 A JPH04356967 A JP H04356967A
- Authority
- JP
- Japan
- Prior art keywords
- film
- soi
- thin film
- insulating film
- back side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 238000005498 polishing Methods 0.000 claims abstract description 13
- 239000010408 film Substances 0.000 abstract description 55
- 239000010409 thin film Substances 0.000 abstract description 26
- 230000010354 integration Effects 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- 229910052710 silicon Inorganic materials 0.000 description 16
- 239000010703 silicon Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910052814 silicon oxide Inorganic materials 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000010931 gold Substances 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、半導体装置,特に、
SOI(Silicon On Insulator)
デバイスに関し、さらに詳しくは、SOIデバイスにお
けるトランジスタ装置の改良構造に係るものである。[Industrial Field of Application] This invention relates to semiconductor devices, particularly
SOI (Silicon On Insulator)
The present invention relates to devices, and more particularly to an improved structure of a transistor device in an SOI device.
【0002】0002
【従来の技術】一般に、半導体基板,例えば、シリコン
基板上に比較的厚い酸化膜を介してSOI層(半導体層
)を形成すると共に、当該SOI層上にトランジスタな
どの回路素子を形成して構成するSOIデバイスのうち
,特に、SOI層を、例えば、1000オングストロー
ム程度まで薄くした薄膜SOIデバイスにおいては、ト
ランジスタの駆動力の向上,ならびに寄生容量の低減に
よって、その回路動作の高速性が期待されているところ
である。2. Description of the Related Art Generally, an SOI layer (semiconductor layer) is formed on a semiconductor substrate, for example a silicon substrate, through a relatively thick oxide film, and circuit elements such as transistors are formed on the SOI layer. Among the SOI devices that are used in this field, in particular, thin-film SOI devices in which the SOI layer is thinned to about 1000 angstroms, for example, are expected to have high-speed circuit operation by improving the driving force of transistors and reducing parasitic capacitance. This is where I am.
【0003】こゝで、従来例によるこの種の薄膜SOI
デバイスの概要構成を図7に模式的に示す。[0003] Here, this kind of thin film SOI according to the conventional example
FIG. 7 schematically shows the general configuration of the device.
【0004】すなわち、この図7に示す薄膜SOIデバ
イスの装置構成において、シリコン基板1には、シリコ
ン酸化膜11aを配置させ、かつ当該シリコン酸化膜1
1a上に、おゝよそ1000オングストローム程度に薄
膜化させたSOI層12を設けておき、また、このSO
I層12の分離酸化膜13で島状に分離された所定の領
域部分に対しては、それぞれにソース・ドレイン拡散層
15を選択的に形成させると共に、これらの各ソース・
ドレイン拡散層15間での絶縁膜14にゲート電極21
を選択的に形成させ、さらに、絶縁膜14の各対応部分
を開孔させることでそれぞれの配線用電極22を取り出
してあり、これらの各ソース・ドレイン拡散層15,ゲ
ート電極21,および各配線用電極22によって、こゝ
では、MOSFET(MOS型の電界効果トランジスタ
)を構成している。That is, in the device configuration of the thin film SOI device shown in FIG. 7, a silicon oxide film 11a is disposed on a silicon substrate 1, and the silicon oxide film 1
An SOI layer 12 thinned to about 1000 angstroms is provided on 1a, and this SOI layer 12 is
Source/drain diffusion layers 15 are selectively formed in predetermined island-like regions of the I layer 12 separated by the isolation oxide film 13, and each of these source/drain diffusion layers 15 is selectively formed.
A gate electrode 21 is formed on the insulating film 14 between the drain diffusion layers 15.
are selectively formed, and each wiring electrode 22 is taken out by opening holes in each corresponding part of the insulating film 14, and each of these source/drain diffusion layers 15, gate electrode 21, and each wiring The electrode 22 constitutes a MOSFET (MOS type field effect transistor) here.
【0005】そして、前記のように構成される薄膜SO
Iデバイスでは、MOSFETの動作時にあって、約1
000オングストローム程度にまで薄膜化されたSOI
層12が完全に空乏化され、ゲート電界による可動電荷
の誘起が効果的に行なわれるために、その電流駆動能力
を向上できるのであり、また同時に、各ソース・ドレイ
ン拡散層15がシリコン酸化膜11aにまで達している
ことから、それぞれの各ソース・ドレインの接合面積を
小さくできて、その寄生容量を低減し得るのである。[0005] Then, the thin film SO constructed as described above
In I-devices, when the MOSFET is operating, approximately 1
SOI film thinned to around 1,000 angstroms
Since the layer 12 is completely depleted and movable charges are effectively induced by the gate electric field, its current driving ability can be improved. Since the junction area of each source and drain can be reduced, the parasitic capacitance can be reduced.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記構
成による従来の薄膜SOIデバイスの場合には、MOS
FETにおけるチャネル相当部のSOI層12が、シリ
コン基板1に比較して熱伝導性の悪いシリコン酸化膜1
1aに接しており、MOSFETを高バイアス状態で駆
動させると、当該チャネル相当部のSOI層12での温
度上昇によってキャリアの移動度が低下し、電流駆動能
力が低減されて負性抵抗を示す傾向を有している。[Problems to be Solved by the Invention] However, in the case of the conventional thin film SOI device with the above configuration, the MOS
The SOI layer 12 corresponding to the channel in the FET is a silicon oxide film 1 having poor thermal conductivity compared to the silicon substrate 1.
1a, and when the MOSFET is driven in a high bias state, the carrier mobility decreases due to the temperature rise in the SOI layer 12 corresponding to the channel, the current drive ability is reduced, and there is a tendency to exhibit negative resistance. have.
【0007】そして、この傾向は、特に前記したような
MOSFETの動作時に、シリコン酸化膜11a上での
チャネル相当部のSOI層12が完全に空乏化されると
ころの,当該SOI層12の厚さが約1000オングス
トローム程度以下の薄膜SOIデバイスにおいて顕著に
現われ、さらに、その装置構成を一層,微細化すること
でチャネル相当部の温度上昇も激しくなるもので、この
結果、薄膜SOIデバイスの微細化,ひいては高集積化
が次第に困難になるという好ましくない問題点があった
。[0007] This tendency is particularly caused by the thickness of the SOI layer 12 where the channel-corresponding portion of the SOI layer 12 on the silicon oxide film 11a is completely depleted during the operation of the MOSFET as described above. This is noticeable in thin-film SOI devices with a thickness of about 1000 angstroms or less, and further miniaturization of the device configuration causes a rapid rise in temperature in the channel-corresponding portion.As a result, miniaturization of thin-film SOI devices, Furthermore, there is an undesirable problem in that it becomes increasingly difficult to achieve high integration.
【0008】この発明は、このような従来の問題点を解
消するためになされたもので、その目的とするところは
、薄膜SOIデバイスの回路素子,特にMOSFETに
生ずる負性抵抗を解消し、併せて、装置構成の集積度を
向上し得るようにした,この種の半導体装置を提供する
ことである。The present invention was made to solve these conventional problems, and its purpose is to eliminate the negative resistance that occurs in the circuit elements of thin film SOI devices, especially MOSFETs, and to Therefore, it is an object of the present invention to provide a semiconductor device of this type that can improve the degree of integration of the device configuration.
【0009】[0009]
【課題を解決するための手段】前記目的を達成するため
に、この発明に係る半導体装置は、絶縁膜を裏面側から
研磨して薄くさせると共に、当該絶縁膜の裏面側に対し
て熱伝導性のよい金属膜を設けるようにしたものである
。[Means for Solving the Problems] In order to achieve the above object, a semiconductor device according to the present invention polishes an insulating film from the back side to make it thinner, and also provides thermal conductivity to the back side of the insulating film. A metal film with good quality is provided.
【0010】すなわち、この発明は、絶縁膜の表面側主
面上に半導体層を配置させ、かつ当該半導体層の表面部
にトランジスタなどの回路素子を形成して構成する半導
体装置において、前記絶縁膜の研磨によって薄くされた
裏面側に、熱伝導率の高い金属膜を設けたことを特徴と
する半導体装置である。That is, the present invention provides a semiconductor device in which a semiconductor layer is disposed on the main surface on the front side of an insulating film, and a circuit element such as a transistor is formed on the surface portion of the semiconductor layer. This semiconductor device is characterized in that a metal film with high thermal conductivity is provided on the back side that has been made thinner by polishing.
【0011】[0011]
【作用】従って、この半導体装置では、研磨によって薄
くされた絶縁膜の裏面側に、熱伝導性のよい金属膜を設
けて構成したので、動作時における半導体層の温度上昇
が、薄い絶縁膜を通した裏面側の金属膜からの放熱によ
って抑制されることになり、結果的に、回路素子,特に
MOSFETに生ずる負性抵抗を解消し得るのである。[Function] Therefore, in this semiconductor device, a metal film with good thermal conductivity is provided on the back side of the insulating film thinned by polishing. The heat dissipation from the metal film on the back side through which it is passed is suppressed, and as a result, the negative resistance that occurs in circuit elements, especially MOSFETs, can be eliminated.
【0012】0012
【実施例】以下,この発明に係る半導体装置の実施例に
つき、図1,および図2を参照して詳細に説明する。Embodiments Hereinafter, embodiments of a semiconductor device according to the present invention will be described in detail with reference to FIGS. 1 and 2.
【0013】図1はこの発明による半導体装置の一実施
例を適用した薄膜SOIデバイスの概要構成を模式的に
示す断面図であり、図2ないし図5は同上薄膜SOIデ
バイスの主要な製造工程を順次模式的に示すそれぞれに
断面図である。また、図6は同上他の実施例を適用した
薄膜SOIデバイスの概要構成を模式的に示す断面図で
ある。これらの図1ないし図6に示す各実施例構成にお
いて、前記図7に示す従来構成と同一符号は同一または
相当部分を表わしている。FIG. 1 is a sectional view schematically showing the general structure of a thin film SOI device to which an embodiment of the semiconductor device according to the present invention is applied, and FIGS. 2 to 5 show the main manufacturing steps of the thin film SOI device. They are each a sectional view schematically shown in sequence. Further, FIG. 6 is a cross-sectional view schematically showing the general structure of a thin film SOI device to which the same and other embodiments are applied. In the configurations of the embodiments shown in FIGS. 1 to 6, the same reference numerals as in the conventional configuration shown in FIG. 7 represent the same or corresponding parts.
【0014】まず最初に、図1に示す一実施例による薄
膜SOIデバイスの構成について述べる。First, the structure of a thin film SOI device according to an embodiment shown in FIG. 1 will be described.
【0015】すなわち、この図1に示す薄膜SOIデバ
イスの装置構成において、シリコン酸化膜11,こゝで
は、後述するように終段階における裏面側からの研磨に
よって薄くされ、かつ当該裏面側に対して熱伝導性のよ
い,例えば、金(Au)などの金属膜2を設けたシリコ
ン酸化膜11には、前記した従来の場合と同様に、おゝ
よそ1000オングストローム程度に薄膜化させたSO
I層(半導体層)12が設けられ、かつこのSOI層1
2の分離酸化膜13で島状に分離された所定の領域部分
に対しては、それぞれにソース・ドレイン拡散層15が
、また、これらの各ソース・ドレイン拡散層15間での
絶縁膜14には、ゲート電極21がそれぞれ選択的に形
成されると共に、絶縁膜14での各対応部分の開孔を通
してそれぞれの配線用電極22が取り出され、これらの
各ソース・ドレイン拡散層15,ゲート電極21,およ
び各配線用電極22によって、こゝでも、MOSFET
(MOS型の電界効果トランジスタ)が構成されており
、さらに、各配線用電極22を取り出した表面側には、
絶縁性の接着剤31を介してシリコン基板などの支持基
板41を強固に接着させたものである。That is, in the device configuration of the thin film SOI device shown in FIG. 1, the silicon oxide film 11 is thinned by polishing from the back side in the final stage as described later, and is thinned with respect to the back side. The silicon oxide film 11 provided with the metal film 2 having good thermal conductivity, such as gold (Au), is covered with an SO film thinned to about 1000 angstroms, as in the conventional case described above.
An I layer (semiconductor layer) 12 is provided, and this SOI layer 1
A source/drain diffusion layer 15 is formed in each predetermined region separated into islands by the isolation oxide film 13 of No. 2, and an insulating film 14 is formed between each of these source/drain diffusion layers 15. The gate electrodes 21 are selectively formed, and the wiring electrodes 22 are taken out through the openings in the corresponding portions of the insulating film 14, and the source/drain diffusion layers 15 and gate electrodes 21 are taken out. , and each wiring electrode 22, the MOSFET
(MOS type field effect transistor) is configured, and furthermore, on the surface side from which each wiring electrode 22 is taken out,
A support substrate 41 such as a silicon substrate is firmly bonded via an insulating adhesive 31.
【0016】次に、図2ないし図5により、この一実施
例による薄膜SOIデバイスの製造工程について述べる
。Next, the manufacturing process of the thin film SOI device according to this embodiment will be described with reference to FIGS. 2 to 5.
【0017】こゝで、図2は従来からよく知られている
通常の工程で製造された基本的な薄膜SOIデバイスを
構成させた状態を示しており、先の従来での図7の構成
に該当し、この時点では、裏面側のシリコン基板1上に
研磨以前のシリコン酸化膜11aが設けられたまゝで、
表面側にも支持基板41などが施されてはおらず、この
一実施例を適用する前の状態である。FIG. 2 shows the configuration of a basic thin film SOI device manufactured by a conventional process well known, and is different from the conventional configuration shown in FIG. At this point, the silicon oxide film 11a before polishing is still provided on the silicon substrate 1 on the back side.
The support substrate 41 and the like are not provided on the front side either, and this is the state before this embodiment is applied.
【0018】しかして、前記図2の状態において、まず
、図3に示されているように、各配線用電極22を取り
出した表面側,つまり、この場合,MOSFETの構成
面側に対し、絶縁性の接着剤31を用いることで、例え
ば、シリコン基板などの支持基板41を強固に接着させ
ておく。In the state shown in FIG. 2, first, as shown in FIG. 3, the insulation is By using the adhesive 31, a support substrate 41 such as a silicon substrate, for example, is firmly bonded.
【0019】ついで、図4に示されているように、前工
程で表面側に設けられた支持基板41とは反対側,つま
り、裏面側のシリコン基板1の全部からシリコン酸化膜
11aの一部まで(前記図3に破線で示した程度の部分
まで)を、適宜に機械的,もしくは化学的に研磨するこ
とで、シリコン基板1を除去し、かつシリコン酸化膜1
1aを薄くしてシリコン酸化膜11にする。なお、この
裏面側からの研磨に際しては、デバイス自体の表面側が
支持基板41の接着固定によって補強されているために
、当該デバイス自体が機械的に破壊されるなどの惧れは
ない。Next, as shown in FIG. 4, a part of the silicon oxide film 11a is removed from the entire silicon substrate 1 on the side opposite to the support substrate 41 provided on the front side in the previous step, that is, on the back side. (up to the extent shown by the broken line in FIG. 3), the silicon substrate 1 is removed by mechanically or chemically polishing as appropriate, and the silicon oxide film 1 is removed.
1a is thinned to form a silicon oxide film 11. Note that when polishing from the back side, since the front side of the device itself is reinforced by adhesive fixing of the support substrate 41, there is no fear that the device itself will be mechanically destroyed.
【0020】さらに、その後、図5に示されているよう
に、前工程での研磨によって薄くされたシリコン酸化膜
11の裏面側,つまり、研磨面側に対し、熱伝導性の良
い,例えば、金(Au)などの金属膜2をスパッタ,蒸
着などによって付着形成させ、このようにして所期通り
に構成された薄膜SOIデバイスを得るのである。Furthermore, as shown in FIG. 5, a film having good thermal conductivity, for example, is applied to the back side of the silicon oxide film 11, which has been thinned by polishing in the previous step, that is, to the polished surface side. A metal film 2 such as gold (Au) is deposited by sputtering, vapor deposition, etc., and in this way a thin film SOI device configured as desired is obtained.
【0021】従って、前記構成によるこの実施例での薄
膜SOIデバイスにおいても、MOSFETの動作時に
、約1000オングストローム程度にまで薄膜化された
SOI層12が完全に空乏化されて、ゲート電界による
可動電荷の誘起が効果的に行なわれるために、その電流
駆動能力を向上できるのであり、また、各ソース・ドレ
イン拡散層15がシリコン酸化膜11aにまで達してい
ることから、それぞれの各ソース・ドレインの接合面積
を小さくできて、その寄生容量を低減し得るのである。Therefore, in the thin film SOI device of this embodiment having the above structure, the SOI layer 12, which has been thinned to about 1000 angstroms, is completely depleted during operation of the MOSFET, and mobile charges due to the gate electric field are completely depleted. is effectively induced, so that the current driving ability can be improved. Also, since each source/drain diffusion layer 15 reaches as far as the silicon oxide film 11a, each source/drain The junction area can be reduced, and its parasitic capacitance can be reduced.
【0022】そして、この実施例の場合には、研磨によ
って薄くされたシリコン絶縁膜11の裏面側に、熱伝導
性のよい金属膜2を形成させたので、SOI層12にお
ける温度上昇が、薄いシリコン絶縁膜11を通した裏面
側の金属膜2からの放熱により抑制されて、電流駆動能
力が低減される惧れはなく、同時に、MOSFETに生
ずる負性抵抗を解消し得るのである。In the case of this embodiment, since the metal film 2 with good thermal conductivity is formed on the back side of the silicon insulating film 11 which has been thinned by polishing, the temperature increase in the SOI layer 12 is There is no risk that the current drive capability will be reduced due to heat dissipation from the metal film 2 on the back side through the silicon insulating film 11, and at the same time, the negative resistance occurring in the MOSFET can be eliminated.
【0023】なお、前記図1に示す一実施例においては
、シリコン絶縁膜11aの裏面側を全面に亘って平均的
に研磨するようにしているが、図6に示す他の実施例に
おけるように、所定量だけ研磨して薄いシリコン絶縁膜
11とした後、SOI層12に対応する部分3のみをよ
り深く選択的に研磨すると共に、当該部分3を含めて金
属膜2を形成させることにより、より一層,放熱効果を
高め得るほか、必要に応じてその他のシリコン絶縁膜1
1の部分を厚くさせることで、デバイス自体の機械的強
度も増加できるのである。In the embodiment shown in FIG. 1, the back side of the silicon insulating film 11a is polished evenly over the entire surface, but as in the other embodiment shown in FIG. After polishing by a predetermined amount to form a thin silicon insulating film 11, only the portion 3 corresponding to the SOI layer 12 is selectively polished more deeply, and the metal film 2 is formed including the portion 3. In addition to further enhancing the heat dissipation effect, other silicon insulating films 1 can be added as necessary.
By making the portion 1 thicker, the mechanical strength of the device itself can also be increased.
【0024】[0024]
【発明の効果】以上、各実施例によって詳述したように
、この発明によれば、絶縁膜の表面側主面上に半導体層
を配置させ、かつ当該半導体層の表面部にトランジスタ
などの回路素子を形成した半導体装置において、絶縁膜
の研磨によって薄くされた裏面側に、熱伝導率の高い金
属膜を設けて構成したので、動作時における半導体層の
温度上昇が、薄い絶縁膜を通した裏面側の金属膜からの
放熱によって抑制されることになり、これによって、M
OSFETの電流駆動能力が低減される惧れ,および負
性抵抗の発生をもそれぞれ容易に解消させ得るもので、
結果的には、安定した特性の半導体装置の提供が可能に
なるほか、装置構成の高集積化に役立つなどの優れた特
長がある。Effects of the Invention As described above in detail in each embodiment, according to the present invention, a semiconductor layer is disposed on the main surface on the front side of an insulating film, and a circuit such as a transistor is formed on the surface of the semiconductor layer. In the semiconductor device in which the element is formed, a metal film with high thermal conductivity is provided on the back side of the insulating film, which has been made thinner by polishing, so that the temperature rise of the semiconductor layer during operation is reduced through the thin insulating film. This will be suppressed by heat radiation from the metal film on the back side, and as a result, M
This can easily eliminate the risk of reducing the current drive capability of the OSFET and the occurrence of negative resistance.
As a result, it is possible to provide a semiconductor device with stable characteristics, and it also has excellent features such as being useful for increasing the degree of integration of the device configuration.
【図面の簡単な説明】[Brief explanation of drawings]
【図1】この発明による半導体装置の一実施例を適用し
た薄膜SOIデバイスの概要構成を模式的に示す断面図
である。FIG. 1 is a cross-sectional view schematically showing the general configuration of a thin film SOI device to which an embodiment of a semiconductor device according to the present invention is applied.
【図2】同上薄膜SOIデバイスにおける一実施例の適
用前の状態を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a state before application of one embodiment of the thin film SOI device.
【図3】同上薄膜SOIデバイスの製造における表面側
への絶縁性接着剤を用いた支持基板の接着までの工程を
模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the steps up to adhesion of a support substrate to the front surface using an insulating adhesive in manufacturing the thin film SOI device.
【図4】同上薄膜SOIデバイスの製造における裏面側
からの研磨によるシリコン基板の除去,ならびにシリコ
ン酸化膜を薄くするまでの工程を模式的に示す断面図で
ある。FIG. 4 is a cross-sectional view schematically showing the steps of removing the silicon substrate by polishing from the back side and thinning the silicon oxide film in manufacturing the thin film SOI device.
【図5】同上薄膜SOIデバイスの製造における裏面側
への金属膜の形成までの工程を模式的に示す断面図であ
る。FIG. 5 is a cross-sectional view schematically showing the steps up to the formation of a metal film on the back surface side in manufacturing the thin film SOI device.
【図6】この発明の他の実施例を適用した薄膜SOIデ
バイスの概要構成を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing the general configuration of a thin film SOI device to which another embodiment of the present invention is applied.
【図7】従来の薄膜SOIデバイスの概要構成を模式的
に示す断面図である。FIG. 7 is a cross-sectional view schematically showing the general configuration of a conventional thin film SOI device.
1 シリコン基板 2 熱伝導性のよい金属膜 11a シリコン酸化膜 11 薄くされたシリコン酸化膜 12 SOI層(半導体層) 13 分離酸化膜 14 ソース・ドレイン拡散層 15 絶縁膜 21 ゲート電極 22 配線用電極 31 絶縁性の接着剤 41 支持基板 1 Silicon substrate 2 Metal film with good thermal conductivity 11a Silicon oxide film 11 Thinned silicon oxide film 12 SOI layer (semiconductor layer) 13 Isolation oxide film 14 Source/drain diffusion layer 15 Insulating film 21 Gate electrode 22 Wiring electrode 31 Insulating adhesive 41 Support board
Claims (1)
置させ、かつ当該半導体層の表面部にトランジスタなど
の回路素子を形成して構成する半導体装置において、前
記絶縁膜の研磨によって薄くされた裏面側に、熱伝導率
の高い金属膜を設けたことを特徴とする半導体装置。1. A semiconductor device configured by disposing a semiconductor layer on the main surface of an insulating film and forming a circuit element such as a transistor on the surface of the semiconductor layer, wherein the insulating film is thinned by polishing. A semiconductor device characterized in that a metal film with high thermal conductivity is provided on the back side of the semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13108391A JPH04356967A (en) | 1991-06-03 | 1991-06-03 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13108391A JPH04356967A (en) | 1991-06-03 | 1991-06-03 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04356967A true JPH04356967A (en) | 1992-12-10 |
Family
ID=15049594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13108391A Pending JPH04356967A (en) | 1991-06-03 | 1991-06-03 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04356967A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7541644B2 (en) | 2003-05-23 | 2009-06-02 | Renesas Technology Corp. | Semiconductor device with effective heat-radiation |
JP2012533887A (en) * | 2009-07-15 | 2012-12-27 | アイ・オゥ・セミコンダクター | Semiconductor on insulator with backside heat dissipation |
US8859347B2 (en) | 2009-07-15 | 2014-10-14 | Silanna Semiconductor U.S.A., Inc. | Semiconductor-on-insulator with back side body connection |
US8912646B2 (en) | 2009-07-15 | 2014-12-16 | Silanna Semiconductor U.S.A., Inc. | Integrated circuit assembly and method of making |
US9034732B2 (en) | 2009-07-15 | 2015-05-19 | Silanna Semiconductor U.S.A., Inc. | Semiconductor-on-insulator with back side support layer |
US9390974B2 (en) | 2012-12-21 | 2016-07-12 | Qualcomm Incorporated | Back-to-back stacked integrated circuit assembly and method of making |
US9466719B2 (en) | 2009-07-15 | 2016-10-11 | Qualcomm Incorporated | Semiconductor-on-insulator with back side strain topology |
US9496227B2 (en) | 2009-07-15 | 2016-11-15 | Qualcomm Incorporated | Semiconductor-on-insulator with back side support layer |
US9515181B2 (en) | 2014-08-06 | 2016-12-06 | Qualcomm Incorporated | Semiconductor device with self-aligned back side features |
-
1991
- 1991-06-03 JP JP13108391A patent/JPH04356967A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7541644B2 (en) | 2003-05-23 | 2009-06-02 | Renesas Technology Corp. | Semiconductor device with effective heat-radiation |
US9034732B2 (en) | 2009-07-15 | 2015-05-19 | Silanna Semiconductor U.S.A., Inc. | Semiconductor-on-insulator with back side support layer |
US8859347B2 (en) | 2009-07-15 | 2014-10-14 | Silanna Semiconductor U.S.A., Inc. | Semiconductor-on-insulator with back side body connection |
US8912646B2 (en) | 2009-07-15 | 2014-12-16 | Silanna Semiconductor U.S.A., Inc. | Integrated circuit assembly and method of making |
US8921168B2 (en) | 2009-07-15 | 2014-12-30 | Silanna Semiconductor U.S.A., Inc. | Thin integrated circuit chip-on-board assembly and method of making |
US9029201B2 (en) | 2009-07-15 | 2015-05-12 | Silanna Semiconductor U.S.A., Inc. | Semiconductor-on-insulator with back side heat dissipation |
US9748272B2 (en) | 2009-07-15 | 2017-08-29 | Qualcomm Incorporated | Semiconductor-on-insulator with back side strain inducing material |
US9368468B2 (en) | 2009-07-15 | 2016-06-14 | Qualcomm Switch Corp. | Thin integrated circuit chip-on-board assembly |
JP2012533887A (en) * | 2009-07-15 | 2012-12-27 | アイ・オゥ・セミコンダクター | Semiconductor on insulator with backside heat dissipation |
US9412644B2 (en) | 2009-07-15 | 2016-08-09 | Qualcomm Incorporated | Integrated circuit assembly and method of making |
US9466719B2 (en) | 2009-07-15 | 2016-10-11 | Qualcomm Incorporated | Semiconductor-on-insulator with back side strain topology |
US9496227B2 (en) | 2009-07-15 | 2016-11-15 | Qualcomm Incorporated | Semiconductor-on-insulator with back side support layer |
US10217822B2 (en) | 2009-07-15 | 2019-02-26 | Qualcomm Incorporated | Semiconductor-on-insulator with back side heat dissipation |
US9390974B2 (en) | 2012-12-21 | 2016-07-12 | Qualcomm Incorporated | Back-to-back stacked integrated circuit assembly and method of making |
US9576937B2 (en) | 2012-12-21 | 2017-02-21 | Qualcomm Incorporated | Back-to-back stacked integrated circuit assembly |
US9515181B2 (en) | 2014-08-06 | 2016-12-06 | Qualcomm Incorporated | Semiconductor device with self-aligned back side features |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4332925B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3321899B2 (en) | Semiconductor device | |
JPH11163363A (en) | Semiconductor device and its forming method | |
US20040150013A1 (en) | Semiconductor device | |
JPH04356967A (en) | Semiconductor device | |
JPS634683A (en) | Field-effect transistor | |
JPH09148587A (en) | Semiconductor device | |
JPH0547726A (en) | Method for manufacturing semiconductor device | |
JP2001102442A (en) | Semiconductor substrate, manufacturing method thereof semiconductor integrated circuit | |
JPH10256556A (en) | Semiconductor device and manufacture thereof | |
JPH0595117A (en) | Thin film transistor and manufacturing method thereof | |
US6423578B2 (en) | Field-effect transistor and manufacture thereof | |
JPH05343686A (en) | Semiconductor device and manufacture thereof | |
JP3196229B2 (en) | Semiconductor device | |
JP3694918B2 (en) | Semiconductor device | |
JP2776820B2 (en) | Method for manufacturing semiconductor device | |
JPH11121757A (en) | Semiconductor device and manufacture thereof | |
JPH1070139A (en) | Soi semiconductor device and its manufacture | |
JPH04177876A (en) | Semiconductor device and its manufacture | |
JP3439415B2 (en) | Method for manufacturing semiconductor device | |
JP4943663B2 (en) | Semiconductor device manufacturing method, semiconductor device, and liquid crystal display device | |
JP3483671B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2001257357A (en) | Semiconductor device and its manufacturing method | |
JPH06181312A (en) | Manufacture of semiconductor device | |
JPH0548104A (en) | Semiconductor device and manufacturing method thereof |