[go: up one dir, main page]

JPH04356441A - Complex ester of ether-ester - Google Patents

Complex ester of ether-ester

Info

Publication number
JPH04356441A
JPH04356441A JP3157460A JP15746091A JPH04356441A JP H04356441 A JPH04356441 A JP H04356441A JP 3157460 A JP3157460 A JP 3157460A JP 15746091 A JP15746091 A JP 15746091A JP H04356441 A JPH04356441 A JP H04356441A
Authority
JP
Japan
Prior art keywords
ester
c2h4o
alkyl
integer
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3157460A
Other languages
Japanese (ja)
Inventor
Satoru Matsumoto
哲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3157460A priority Critical patent/JPH04356441A/en
Publication of JPH04356441A publication Critical patent/JPH04356441A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To readily produce low volatile and non-colored compounds having an ether-ester structure, including novel compounds, having various characteristics and a low acid value, and useful as a plasticizer for polyvinyl chloride or as a lubricant at a high rate. CONSTITUTION:A ester selected from (i) a 1-8C alkyl ester of phthalic acid or adipic acid, (ii) an ester of formula I (X is ethylene, etc.; R'' is lower alkyl;(k) is an integer of 1-15) and (iii) octyl trimellitate ester is subjected to an ester exchange reaction with 1-2 equivalents of a mono-triethylene glycol mono 1-16C alkyl benzyl ether in the presence of an alkoxytitanium or a solid polytitanic acid catalyst produced therefrom under vacuum to produce esters of formula II (R' is 1-l6C alkyl, etc.; (m) is 1, 2, 3; (n) is an integer of 0-3 wherein, when (n)is not 0, (m) is (n); (i), (j) are 1, 2; (i+j)=2, 3; Y is phthalic acid, etc.,) including new compounds, while 1-2 equivalents of the alcohol by-produced by the ester exchange reaction is removed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は、低揮発性で、種々な特
性を有するエ−テルエステル構造を有する主としてポリ
塩化ビニールの可塑剤または潤滑油の製造方法に関する
[Field of Industrial Application] The present invention relates to a method for producing a plasticizer or lubricant, mainly made of polyvinyl chloride, which has an ether ester structure and has low volatility and various properties.

【従来の技術】フタ−ル酸ジエステル並びにアジピン酸
ジエステルの製造方法はすでに良く知られたことであり
、主として脱水エステル化反応で製造される。その触媒
は古くは硫酸、パラトルエンスルフォン酸がまた近年は
アルコキシチタンが使用されてきている。
BACKGROUND OF THE INVENTION Methods for producing phthalic acid diesters and adipic acid diesters are already well known, and are mainly produced by dehydration and esterification reactions. Sulfuric acid and para-toluenesulfonic acid have been used as catalysts in the past, and alkoxy titanium has been used in recent years.

【発明が解決しようとする課題】本発明は脱水エステル
化反応によらないジエステルの製造方法に関する。特に
これらの目的のエステルを製造する際にエステル交換法
を使用することが本技術の特色であるが、その最大の利
点は、反応速度が早く、一官能性アルコ−ルに対比して
より単価が高いと予想されるエーテルアルコ−ルの使用
量を過剰量を使用することなく必要な化学量論量で生成
物を得ることが出来る点である。さらに生成物が高沸点
であるので蒸留分離精製が困難である為に出来るだけ着
色しない方法が必要であるが、着色を防止することが出
来また低酸価生成物を得ることができる。またポリエス
テルの末端を高分子量エーテルエステルとすることによ
って低分子量の不純物に由来する揮発分を少なくするこ
とが容易となる。同じ生成物を脱水エステル化反応で製
造すると低酸価にするには高温で長時間必要で、着色を
防止することが容易ではない。
SUMMARY OF THE INVENTION The present invention relates to a method for producing diesters that does not involve dehydration and esterification reactions. A feature of this technology is the use of transesterification especially when producing these desired esters, and its greatest advantage is that the reaction rate is fast and the unit price is lower than that of monofunctional alcohols. The advantage is that the product can be obtained in the required stoichiometric amount without using an excessive amount of ether alcohol, which would be expected to have a high yield. Furthermore, since the product has a high boiling point, it is difficult to separate and purify it by distillation, so a method that does not cause coloring as much as possible is required, but coloring can be prevented and a product with a low acid value can be obtained. Further, by using a high molecular weight ether ester at the end of the polyester, it becomes easy to reduce the volatile content derived from low molecular weight impurities. If the same product is produced by dehydration and esterification, it will take a long time at high temperature to obtain a low acid value, and it will be difficult to prevent coloration.

【課題を解決する手段】本発明に記載される化合物は下
記一般式で記載される構造を有する化合物の製造方法に
関する。 RO(CH2CH2O)mOCO(CH2)4COO(
CH2CH2O)nR               
 (A−1)RO(CH2CH2O)mOCOC6H4
COO(CH2CH2O)nR           
       (A−2)RO(CH2CH2O)nO
{CO(CH2)4COOXO}kCO(CH2)4C
OO(CH2CH2O)nR(B)これらうち(A−1
、A−1)のエステル類の一部は既に公知の化合物と推
定されるが、新規の化合物を含み、特に部分エステル化
による混合エステルC−1,C−2(A:n=0)の合
成報告は知られていない。 RO(CH2CH2O)mOCO(CH2)4COOC
8H17(C−1)RO(CH2CH2O)mOCOC
6H4COOC8H17  (C−2)これらの式でR
は炭素数1ないし16のアルキル基、並びにベンジル基
であり、主としてブチル、ヘキシル、オクチル、2−エ
チルヘキシル基であり、mは1ないし3の整数、nは0
〜3の整数、kは1ないし15の整数でり、またXはH
OXOHで記載されるジオ−ルのアルコ−ル残基を示す
。反応方法を更に詳しく述べると、原料として、ジ又は
トリカルボン酸のエステルとエチレングリコ−ル、ジエ
チレングリコ−ル又はトリエチレングリコ−ルのモノア
ルキル又はベンジルエ−テルとを用いる。エステルとし
ては、好ましくはブチルエステル等の低級エステルを原
料とするが、オクチルエステルを使用するときは一方を
オクチルのままで残した生成物も得られる。例えば、フ
タ−ル酸ジブチルまたはアジピン酸ジブチルに原料とな
るジエチレングリコ−ルモノブチルエ−テルの2当量な
らびに触媒としてアルコキシチタン0.2ないし2モル
%加え、減圧下大略100ー200mmHgで攪拌下に
加熱をはじめると140℃で反応が始まり190ー20
0℃に1.5時間保つとほぼ計算量のブタノールが留出
する。最後は減圧を15mmHgにあげ理論量の脱アル
コ−ルを行って反応を終了するが、ほぼ2.5時間で全
反応が終了する。当初減圧を充分に下げないのはジブチ
ルアジペ−トや一部ブチルセロソルブ使用の際は原料の
沸騰が始まるからで、分溜の効率が高ければ最初から低
圧下で反応をすることが出来る。エステル交換反応自体
は良く知られたことで反応は平衡反応であるので生成し
たブタノ−ルを蒸留して系外に除く速度が実際上の反応
速度となる。ブタノ−ルは真空下では、40℃程度で除
く事が出来、一方触媒として使用するチタン系触媒は1
6O℃が反応の進行する温度で140℃では遅くなる。 アルカリ触媒等の通常の触媒に対して、チタン触媒を使
用しアルコ−ルを添加してエステル交換反応を行うとき
は、優れた触媒である特長を生かしこの反応に応用した
ものである。当然の事としてこの触媒を使用して脱水エ
ステル反応を行うことが出来るが、本系統の化合物を使
用した場合に原料であるエ−テルアルコ−ルである、エ
チレングリコ−ルモノアルキルエーテルとの間に触媒中
間体が出来るが、おそらく酸の吸着速度が遅く、アルキ
ルアルコ−ルに比べてエステル化反応の速度が極端に遅
く、反応速度を上げるために高温に上げまた使用量を増
すほど、加熱によって着色物質が生成するものと考えら
れ、一旦着色するとその除去には蒸留除去しか方法がな
く、高沸点の生成物であるエステル類を製造する方法を
種々検討して本発明に到達したもので、反応速度も早く
各種の生成物を容易に得ることが出来た。 脱水エステル化反応の速度はこのエ−テルアルコ−ルを
使用した場合は、通常のアルキルアルコ−ルの2倍以上
の時間がかかり、温度を上げてもアルキルアルコ−ルの
速度にはならず、着色ばかりが進行するのに対し、その
短所を大幅に改善される。これらの生成物をポリ塩化ビ
ニールの可塑剤として使用すると、第一の特長として其
の分子量に対応して揮発性が少なくなるが、エチレング
リコ−ルがジまたはトリエチレングリコ−ルに変わりま
たアルキル基がブチルないしオクチル基更にベンジル基
に変わったときに其れらの組み合わせによって異なった
特長が出てくることを見いだしたので、グループに分け
てその性質を説明する。 末端ブチルオキシエチレングリコ−ル 記号としてブチルのB、エチレンオキシのEを使用し、
ジエステルでは最初にD記号を付け、末端混合エステル
はそれぞれの基を併記した。ジエチレンオキシをEE,
トリエチレンオキシをDEEと省略して記載し、参考の
末端エチルE,フタレートをP,アジペ−トをAと記載
する。このように、それぞれ製造される化合物をDBE
A,DBEEA,DBDEEA,DBEP,DBEEP
,DBDEEPと、またDOP(ジオクチルフタレ−ト
)より製造される化合物をBEEOPと表現する。これ
らは可塑化効率が改善されほぼDOAまたはDOPと同
等の可塑性をしめし、又低温特性である柔軟温度が低下
し、特にDBEEAまたはDBDEEAのジエチレング
リコール、トリエチレングリコール系では沸点が高くな
るに従って揮発減量が少なくなり、耐薬品性としてガソ
リン可溶による減量が少なくポリエチレンえの移行性が
改善された。 ヘキシルオキシエチレングリコール系 記号として前記のブチルのBに変えてHを使用して表現
する。製造されるDHEA,DHEEA,DHEP,D
HEEP,及びHEEOPはブチルエステル系に対比す
ると可塑化効率柔軟温度移行性は中程度であった。末端
基の一部がオクチル基であるHEEOPの性質は、DO
Pとの混合物または中間的性質を示し、ジエステルとの
混合使用時の添加剤となり得ることを示している。 オクチルオキシエチレングリコ−ル系 記号としてOを前記ブチルのBに変えて使用して表現す
る。製造されるDOEA,DOEEA,D0EP,DO
EEPは分子量に対応して揮発減量が少ない、特にフタ
−ル酸系の柔軟温度はアジピン酸系より高いがDOPに
対比して低くなり、DOEEPでは−30℃以下の低温
特性をしめした。DOEA,DOEEAはDOA同等又
はそれ以下の柔軟温度を示し、フタレート系とともに低
揮発性低温用可塑剤として使用される。短所としてDO
EP,DOEEPは可塑化効率が悪くなった。 ベンジルオキシエチレングリコ−ル系 記号としてBzをBに変えて使用して表現する。製造さ
れるDBzEA,DBzEEAは可塑化効率はDOP並
か幾分悪い程度であるが、DBzEPおよびDBzEE
Pは可塑化効率が悪い。しかしとくに電気特性が良くD
OPより1桁優れた表面電気抵抗値をしめ、BzEOP
,BzEEOPでもDOPより優れた電気特性をしめし
た。更にこの系統の特長として揮発性が一段と少ない点
ならびに、対ガソリン溶解抽出性およびポリエチレンシ
−トによる移行性の測定結果は溶解移行量が少なく著し
い改善の結果を示した。以上のごとくエチレングリコ−
ルまたはジおよびトリエチレングリコールのアルキルエ
ーテル末端を有するエステルの性質を検討したがを、そ
の他のエステルにも適用することが出来、3官能性のト
リメリット酸トリオクチルより部分的に交換したジエチ
レングリコ−ルモノブチルエーテル末端をもつエステル
を作ると可塑性柔軟温度移行性が程度は少ないが改善さ
れた。また複合エステルである1,3−ブタンジオ−ル
ビスブチルアジペート(13BBBA)より、その両末
端をベンジルエチレンオキシにBzEAXAEBzある
いはブチルエチレンオキシエチルに変えたエステル、B
EEAXAEEBを製造した。ここでAXAは複合エス
テルの骨格−{CO(CH2)4COCH2CH2CH
(CH3)OCO(CH2)4CO}n−を示す。さら
に分子量858を示し、末端ブチル基で、二塩基酸とし
てアジピン酸、ジオ−ル成分として1,3−ブタンジオ
ールよりなるポリエステルに対して、末端をジエチレン
グリコ−ルモノブチルエーテルまたはベンジルオキシエ
チルアルコ−ルを使用してエステル交換反応で末端変成
ポリエステルを製造した。その結果は生成物中の160
ー220℃/0.7mmの低揮発分が少なくなりその結
果成形シートの揮発減量が少ない結果となった。ベンジ
ル末端とすることによっては電気特性がDOPより優れ
たポリエステルとなった。一方ブチルオキシヂエチレン
グリコール末端では比較的柔軟温度の低いポリエステル
となった。ポリエステル成分としてジエチレングリコ−
ルと1,3−ブタンジオールの混合ジオール成分を使用
し、また二塩基酸としても混合二塩基酸を混合使用する
ことはすでにポリエステル製造の方法としてよく知られ
たことである以下に実施例について述べる。 実施例1    ジブチルオキシエチルアジペート(D
BEA) 2モル当量に相当するエチレングリコ−ルモノブチルエ
ーテル236gにエステル交換触媒としてブチルチタネ
ート0.5gをくわえ120℃に加温攪拌した後ジブチ
ルアジペート258g1モル量を加え弱減圧で160ー
200℃で加熱攪拌を行って生成するブタノールを除去
し、約1時間後より減圧度を高め最後は20mmHgの
減圧としてエステル交換反応による生成物のブタノ−ル
を除去し殆ど定量的量の145gを回収し反応を終了し
た。反応終了後、後処理法として100℃に下がったと
き溶剤を添加し酸価に見合うアルカリとして炭酸カリま
たはソーダ希薄溶液を加え20ー60分間80℃前後で
攪拌したのち活性白土5gー15gを加えて攪拌濾過を
した。次いで水洗必要に応じてアルカリ洗浄水洗を行っ
た。蒸留して溶剤を除去した後減圧下に蒸留して生成物
を得た。 実施例2〜6 アジピン酸系はジブチルアジペートフタ−ル酸系はジブ
チルフタレートを原料とし、対応するエチレングリコ−
ル,ジエチレングリコ−ルまたはトリエチレングリコ−
ルのモノブチルエ−テル2モル当量を使用し、実施例1
と同様にして反応しついで精製蒸留し、大部分は減圧蒸
留残液として生成物を得た。得られた生成物の可塑化効
率並びに低温特性電気特性対薬品性は第1表に示した。 実施例7 ジブチルフタレ−ト DBP 111.2 g (0.
4モル)を用いジエチレングリコ−ルモノブチルエ−テ
ル 72 g (0.42 モル) および2−エチル
ヘキサノ−ル 52.8 g 各1モル当量づつを加え
固体ポリチタン酸触媒の存在下、始め常圧、ついで 3
0 mmHgの減圧下エステル交換反応を行って60 
gのブタノ−ルを回収し反応を終えた。後処理後蒸留残
液として生成物をえた。HPLC分析の結果はBEEB
P13% BEEOP87%の混合物と考えられた。そ
の 21℃の粘度ならびに可塑剤として使用したときの
結果を第1表に記載した。                          
        第1表          略名  
 式               1)粘度  2)
可塑化効率 3)沸点実施例1  DBEA   (A
−1,R:C4H9 n=1)   12      
42.5        164/1mmHg実施例2
  DBEEA  (A−1,R:C4H9 n=2)
   34      44.9        20
0−205/1mmHg実施例3  DBDEEA (
A−1,R:C4H9 n=3)   74     
 45.7実施例4  DBEP   (A−2,R:
C4H9 n=1)   38      48.9実
施例5  DBEEP  (A−2,R:C4H9 n
=2)   63      51.1実施例6  D
BDEEP (A−2,R:C4H9 n=3)   
85      53.1実施例7  BEEOP  
(C−2,R:C4H9 n=2)  119    
  49.7対照例1  DOA          
             23      44対照
例2  DOP                  
     75      50         4
)柔軟温度 5)電気抵抗 6)加熱減量 7)PE 
 8)カ゛ソリン実施例1  −46.0      
 8.5X108    25.77     5.0
4  17.60実施例2  −46.0      
 6.0X108     9.01     2.1
7  17.42実施例3  −39.9      
 5.9X108     6.44     1.4
6  15.00実施例4  −20.8      
 1.2X1010   16.16     2.6
6  13.20実施例5  −21.0      
 3.8X109     4.79     1.5
8  11.80実施例6  −17.8      
 3.0X109     4.41     0.8
4   9.30実施例7  −24.5      
 3.0X1010    7.10        
   14.90対照例1  −43.0      
 3.4X109    17.86        
   14.92対照例2  −22.3      
 4.8X1010   15.70     5.7
0  17.411)粘度:20℃における可塑剤の溶
液粘度、2)可塑化効率:50PHRシ−ト及び80P
HRシ−トを使用し表面硬度測定値から計算されるDO
P50PHRの表面硬度と同じ硬度になる為に必要な可
塑剤の使用量を可塑化効率値とした。 3)()記載は減圧蒸留による沸点値で記載のないもの
はいずれも250℃/1mmHgで蒸留残液として得ら
れる可塑剤。 4)柔軟温度:JIS規格による50PHRシ−トにつ
いての測定温度。 5)電気抵抗:80PHR成形シ−トによる表面電気抵
抗値、 6)加熱減量:50PHR成形1mmシ−トを160℃
の熱風循環加熱炉中に設置し、2時間後の加熱減量%を
測定した。 7)PE:ポリエチレンシ−ト圧着10Kg/cm2に
よる可塑化シ−トより移行減量%。 8)カ゛ソリン:ガソリン浸漬60℃48時間24時間
乾燥後の溶出減量%を測定した。以下同じ。 実施例8〜11、13〜16及び17〜20エチレング
リコ−ル又はジエチレングリコ−ルのモノヘキシルエ−
テル(8−11)、モノ−2−エチルヘキシルエ−テル
(13−16)、またはモノベンジルエ−テル(17−
20)それぞれ2モル当量を使用して、ジブチルアジペ
ートまたはジブチルフタレート1モルとの混合物に、チ
タン触媒を使用して160ー200℃で減圧下にエステ
ル交換を行い生成する理論量のブタノ−ルを除去して反
応を終わり、常法に従って触媒不活性化、脱触媒、アル
カリ洗浄、熱水洗浄を行った後、減圧下に揮発分を除去
し、主として残液として得られた生成物に付いての性質
ならびに可塑剤として使用したときの結果を、第2表(
8−11)、第3表(13−16)、第4表(17−2
0)に示した。 実施例12 DOP1モル390gに1モル当量のジエチレングリコ
−ルモノヘキシルエ−テル102gを加えて、エステル
交換反応を行った。反応液を常法で処理した後減圧で蒸
留して、180ー200℃/0.6mmHgと200ー
225℃の留分をわけ、それぞれに付いてガスクロマト
グラフの分析結果は前者はDOPとヘキシルエチレンオ
キシエチル2−エチルヘキシルフタレートHEEOPと
の53:47の混合物で有り、後者は62:38のHE
EOPとDEEOPとの混合物であった。 実施例21〜22 DOP0.6モル234gにエチレングリコ−ルモノベ
ンジルエ−テル65g0.6モルまたは、ジエチレング
リコ−ルモノベンジルエ−テル0.6モル91.2gお
よび109g0.72モルを加えてエステル交換反応を
行って生成物を得た後、250℃/0.5mmHgで揮
発分を除いてBzEOPおよびBzEEOPを得た。こ
れらのエステル混合物も純粋な記載の化合物ではなく、
ジエステルとの混合物であったがいずれもその性質を表
中に記載した。                          
        第2表           略名 
  式              1)粘度 2)可
塑化効率 3)沸点実施例8   DHEA  (A−
1,R:C6H13 n=1)  19     48
.5         215−225/1mmHg実
施例9   DHEEA (A−1,R:C6H13 
n=2)  27     48.0実施例10 DH
EP  (A−2,R:C6H13 n=1)  68
     51.1実施例11 DHEEP (A−2
,R:C6H13 n=2)  78     54.
7実施例12 HEEOP (C−2,R:C6H13
 n=2)  95     51.0       
    HEEOP−DHEEP(62:38)   
   108     49.7          
 4)柔軟温度 5)電気抵抗 6)加熱減量 7)P
E   8)カ゛ソリン実施例8     −49.3
      1.0X108    14.45   
   4.26  17.60実施例9     −4
4.3      9.8X108     7.38
      2.34  17.41実施例10   
−24.3      1.1X1010    5.
83      6.44  14.91実施例11 
  −27.3      4.7X109     
4.37      3.43  13.23実施例1
2   −23.3                
  8.14            14.91  
           −24.8         
         5.74            
14.00                    
             第3表         
         式             1)
粘度 2)可塑化効率 3)沸点実施例13  DOE
A (A−1,R:C8H17 n=1)  38  
   57.2        210−220/0.
5mmHg実施例14  DOEEA(A−1,R:C
8H17 n=2)  54     58.9実施例
15  DOEP (A−2,R:C8H17 n=1
)  67     60.5実施例16  DOEE
P(A−2,R:C8H17 n=2) 122   
  62.3           4)柔軟温度 5
)電気抵抗 6)加熱減量 7)PE   8)カ゛ソ
リン実施例13   −47.8      3.3X
109    11.23     6.30    
17.60実施例14   −38        3
.7X109     4.82     3.42 
   15.0実施例15   −27.8     
 2.5X1010    4.72     5.4
2    17.9実施例16   −29.3   
   6.5X109     3.20     3
.16    17.9              
                   第4表   
                         
      1)粘度 2)可塑化効率実施例17  
DBzEA (A−1,R:C7H7 n=1)   
85     49.3実施例18  DBzEEA(
A−1,R:C7H7 n=2)  129     
55.4実施例19  DBzEP (A−2,R:C
7H7 n=1)  464     58.1実施例
20  DBzEEP(A−2,R:C7H7 n=2
)  322     62.3実施例21  BzE
OP (C−2,R:C7H7 n=1)  268 
    54.4実施例22  BzEEOP(C−2
,R:C7H7 n=2)  121     52.
5            BzEEOP(C−2,R
:C7H7 n=2)  243     54.7 
          4)柔軟温度 5)電気抵抗 6
)加熱減量 7)PE   8)カ゛ソリン実施例17
   −21.3      4.3X1010   
4.58      1.59    10.25実施
例18   −21.5      3.6X1010
   4.45      1.08     6.9
9実施例19    −4.3      1.8X1
012   3.06      1.02     
4.84実施例20    −4.3      3.
5X1011   3.40      0.69  
  −0.25実施例21    −4.5     
 2.6X1012   3.10         
     14.90実施例22    −5.5  
    2.1X1011   9.64      
         9.38            
  −8.0                 3.
25               5.41実施例2
3  1モル当量のトリメリット酸トリオクチルエステ
ルを使用して1モル当量または2モル当量のジエチレン
グリコ−ルモノブチルエ−テルを加えてエステル交換反
応を行って得た生成物BEEDOTm及びDBEEOT
mまた別に1モル当量のトリエチレングリコ−ルモノブ
チルエ−テルを使用して得た生成物BDEEOTmの性
質を第5表に示した。                          
        第5表              
                    1)粘度 
2)可塑化効率実施例23 BEEDOTm (A−2
’,R:C4H9 n=2) 250   59.8実
施例24 DBEEOTm (A−2’,R:C4H9
 n=2) 201   56.5実施例25 BDE
EOTm (A−2’,R:C4H9 n=2) 25
0   59.4           4)柔軟温度
 5)電気抵抗 6)加熱減量実施例23  −17.
3       6.3X1011   1.71実施
例24  −14.8       0.8X1011
   1.49実施例25  −15.5      
 2.9X1010   1.87実施例26〜27 複合エステルである1,ブタンジオ−ルビスブチルアジ
ペ−ト220ー225℃/0.5mmHgを原料として
その0.4モル183.2gとジエチレングリコ−ルモ
ノブチルエ−テル0.8モル130gまたはエチレング
リコ−ルモノベンジルエ−テル0.8モル86.4gと
の混合物よりチタン触媒を使用してエステル交換反応を
行って前述の方法と同様処理を行って蒸留残液として生
成物BEEAXAEEBおよびBzEAXAEBzを得
た。 実施例28  1,3ブタンジオ−ル3モルアジピン酸
4モルブタノール2モルならびに過剰量として2モルの
ブタノールより脱水エステル化反応に依って得られた、
m=3を目標に製造した末端ブチル基を有するポリエス
テル混合物(HPLCの結果はn=1よりn=11まで
のポリエステルの混合物)0.2モル当量(分子量85
8として)172gにエチレングリコ−ルモノベンジル
エ−テル0.4モル当量43.2gを加えてエステル交
換反応を行って生成物BzEAXAEBzを得た。例2
6ー28の結果を次表にしめす。                          
        第6表              
                      1)粘
度 2)可塑化効率実施例26 BEEAXAEEB 
(C−1,R:C4H9 n=2)  192    
 48.9実施例27 BzEAXAEBz (C−1
,R:C7H7 n=1)  233     52.
2実施例28 BzE(AX)3AEBz(C−1: 
   n=2)   611     61.4対照例
3   13BBBA               
       46      40.0      
     4)柔軟温度 5)電気抵抗 6)加熱減量
 7)PE   8)カ゛ソリン実施例26   −2
6.0      3.9X109    4.74 
      1.26   10.20実施例27  
 −15.8      1.9X1010   3.
15       0.88    5.56実施例2
8   −11.5      2.5X1010  
 2.0        0.71対照例3     
−30.0      3.5X109    5.0
2       7.99   14.77実施例29 エチレングリコ−ル、ジエチレングリコ−ルおよびトリ
エチレングリコ−ルのモノメチルおよびモノエチルエ−
テルを使用して同様のジエステルをDBPおよびDBA
より作った。生成物は特にアジピン酸エステルおよびD
EEPは水に対して溶解度が大きく水洗処理で収量が大
幅に少なくなりまた可塑剤として使用したとき、可塑化
シ−トの表面に可塑剤が滲出した。其の中で、DEDE
EPの粘度116CP可塑化効率は51.9で、80P
HRシ−トでは表面に可塑剤が浸出したが50PHRで
は滲出が認められなかった。                      実施例の
出発物と生成物のまとめ              
        出発物              
        生成物の式          No
.     エステル成分      エ−テル成分 
  1 H9C4OCO(CH2)4COOC4H9 
 HO(C2H4O)1C4H9    BuO(C2
H4O)1COACOO(C2H4O)1Bu 2 H
9C4OCO(CH2)4COOC4H9  HO(C
2H4O)2C4H9    BuO(C2H4O)2
COACOO(C2H4O)2Bu 3 H9C4OC
O(CH2)4COOC4H9  HO(C2H4O)
3C4H9    BuO(C2H4O)3COACO
O(C2H4O)3Bu 4 H9C4OCOC6H4
COOC4H9    HO(C2H4O)1C4H9
    BuO(C2H4O)1COPhCOO(C2
H4O)1Bu 5 H9C4OCOC6H4COOC
4H9    HO(C2H4O)2C4H9    
BuO(C2H4O)2COPhCOO(C2H4O)
2Bu 6 H9C4OCOC6H4COOC4H9 
   HO(C2H4O)3C4H9    BuO(
C2H4O)3COPhCOO(C2H4O)3Bu 
7 H17C8OCOC6H4COOC8H17  H
O(C2H4O)2C4H9    BuO(C2H4
O)1COPhCOOC8H17 8 H9C4OCO
(CH2)4COOC4H9  HO(C2H4O)1
C6H13   HxO(C2H4O)1COACOO
(C2H4O)1Hx 9 H9C4OCO(CH2)
4COOC4H9  HO(C2H4O)2C6H13
   HxO(C2H4O)2COACOO(C2H4
O)2Hx10 H9C4OCOC6H4COOC4H
9    HO(C2H4O)1C6H13   Hx
O(C2H4O)1COPhCOO(C2H4O)1H
x11 H9C4OCOC6H4COOC4H9   
 HO(C2H4O)2C6H13   HxO(C2
H4O)2COPhCOO(C2H4O)2Hx12 
H17C8OCOC6H4COOC8H17  HO(
C2H4O)1C6H13   HxO(C2H4O)
2COPhCOOC8H17            
                         
      HxO(C2H4O)2COPhCOO(
C2H4O)2Hx13 H9C4OCO(CH2)4
COOC4H9  HO(C2H4O)1C8H17 
  OcO(C2H4O)1COACOO(C2H4O
)1Oc14 H9C4OCO(CH2)4COOC4
H9  HO(C2H4O)2C8H17   OcO
(C2H4O)2COACOO(C2H4O)2Oc1
5 H9C4OCOC6H4COOC4H9    H
O(C2H4O)1C8H17   OcO(C2H4
O)1COPhCOO(C2H4O)1Oc16 H9
C4OCOC6H4COOC4H9    HO(C2
H4O)2C8H17   OcO(C2H4O)2C
OPhCOO(C2H4O)2Oc17 H9C4OC
O(CH2)4COOC4H9  HO(C2H4O)
1CH2C6H5 BzO(C2H4O)1COACO
O(C2H4O)1Bz18 H9C4OCO(CH2
)4COOC4H9  HO(C2H4O)2CH2C
6H5 BzO(C2H4O)2COACOO(C2H
4O)2Bz19 H9C4OCOC6H4COOC4
H9    HO(C2H4O)1CH2C6H5 B
zO(C2H4O)1COPhCOO(C2H4O)1
Bz20 H9C4OCOC6H4COOC4H9  
  HO(C2H4O)2CH2C6H5 BzO(C
2H4O)2COPhOO(C2H4O)2Bz21 
H17C8OCOC6H4COOC8H17  HO(
C2H4O)1CH2C6H5 BzO(C2H4O)
1COPhCOOC8H1722 H17C8OCOC
6H4COOC8H17  HO(C2H4O)2CH
2C6H5 BzO(C2H4O)2COPhCOOC
8H17                     
                      BzO
(C2H4O)2COPhCOOC8H1723 C6
H3(COOC8H17)3       HO(C2
H4O)2C4H9(1) BzO(C2H4O)2C
OC6H3(COOC8H17)224 C6H3(C
OOC8H17)3       HO(C2H4O)
2C4H9(2) (BzO(C2H4O)2CO)2
C6H3COOC8H1725 C6H3(COOC8
H17)3       HO(C2H4O)3C4H
9(1) BzO(C2H4O)3COC6H3(CO
OC8H17)226 BuOCOACOOXOCOA
COOBu   HO(C2H4O)2C4H9   
 BuO(C2H4O)2OCOACOOXOCOAC
OO−                      
                     −(C2
H4O)2Bu27 BuOCOACOOXOCOAC
OOBu   HO(C2H4O)1CH2C6H5 
BzO(C2H4O)1OCOACOOXOCOACO
O−                       
                    −(C2H
4O)1Bz28 BuOCOACOOXOCOACO
OXO−  HO(C2H4O)1CH2C6H5 B
zO(C2H4O)1OCOACOOXOCOACOO
XO−   −COACOOXOCOACOOBu  
                     −COA
COOXOCOACOO(C2H4O)1Bz29 H
9C4OCOACOOC4H9       HO(C
2H4O)1−3CH3   MeO(C2H4O)1
−3COACOO−                
                         
  −(C2H4O)1−3Me   H9C4OCO
ACOOC4H9       HO(C2H4O)1
−3C2H5  EtO(C2H4O)1−3COAC
OO−                      
                     −(C2
H4O)1−3Et   H9C4OCOPhCOOC
4H9      HO(C2H4O)1−3CH3 
  MeO(C2H4O)1−3COPhCOO−  
                         
                −(C2H4O)1
−3Me   H9C4OCOPhCOOC4H9  
    HO(C2H4O)1−3C2H5  EtO
(C2H4O)1−3COPhCOO−       
                         
           −(C2H4O)1−3Et実
施例と一般式{R(OCH2CH2)mOCO}iY{
CO(OCH2CH2)nOR’}jの記号定義との関
係。 No. R m i  Y n  R’ j     
        No. R m i  Y n  R
’ j 1  Bu  1  1  A   1  B
u  1              17  Bz 
 1  1  A   1  Bz  1 2  Bu
  2  1  A   2  Bu  1     
         18  Bz  2  1  A 
  2  Bz  1 3  Bu  3  1  A
   3  Bu  1              
19  Bz  1  1  Ph  1  Bz  
1 4  Bu  1  1  Ph  1  Bu 
 1              20  Bz  2
  1  Ph  2  Bz  1 5  Bu  
2  1  Ph  2  Bu  1       
       21  Bz  1  1  Ph  
0  Oc  1 6  Bu  3  1  Ph 
 3  Bu  1              22
  Bz  2  1  Ph  0  Oc  1 
7  Bu  1  1  Ph  0  Oc  1
                  Bz  2  
1  Ph  0  Oc  1 8  Hx  1 
 1  A   1  Hx  1         
     23  Bz  2  1  Tm  0 
 Oc  2 9  Hx  2  1  A   2
  Hx  1              24  
Bz  2  2  Tm  0  Oc  110 
 Hx  1  1  Ph  1  Hx  1  
            25  Bz  3  1 
 Tm  0  Oc  211  Hx  2  1
  Ph  2  Hx  1           
   26  Bu  2  1  P1  2  B
u  112  Hx  2  1  Ph  0  
Oc  1              27  Bz
  1  1  P1  1  Bz  1    H
x  2  1  Ph  2  Hx  1    
          28  Bz  1  1  P
2  1  Bz  113  Oc  1  1  
A   1  Oc  1             
 29  Me 1−3 1  A  1−3 Me 
 114  Oc  2  1  A   2  Oc
  1                  Et 1
−3 1  A  1−3 Et  115  Oc 
 1  1  Ph  1  Oc  1      
            Me 1−3 1  Ph 
1−3 Me  116  Oc  2  1  Ph
  2  Oc  1               
   Et 1−3 1  Ph 1−3 Et  1
(Bu=ブチル、Hx=ヘキシル、Oc=オクチル、P
h=フタル酸残基、Me=メチル、Et=エチル)
Means for Solving the Problems The present invention relates to a method for producing a compound having a structure represented by the following general formula. RO(CH2CH2O)mOCO(CH2)4COO(
CH2CH2O)nR
(A-1) RO(CH2CH2O)mOCOC6H4
COO(CH2CH2O)nR
(A-2)RO(CH2CH2O)nO
{CO(CH2)4COOXO}kCO(CH2)4C
OO(CH2CH2O)nR(B) Of these (A-1
, A-1) Some of the esters are presumed to be already known compounds, but some of them include new compounds, especially mixed esters C-1, C-2 (A:n=0) by partial esterification. No synthesis reports are known. RO(CH2CH2O)mOCO(CH2)4COOC
8H17(C-1)RO(CH2CH2O)mOCOC
6H4COOC8H17 (C-2) R in these formulas
is an alkyl group having 1 to 16 carbon atoms and a benzyl group, mainly butyl, hexyl, octyl, and 2-ethylhexyl, m is an integer of 1 to 3, and n is 0.
~3 integer, k is an integer from 1 to 15, and X is H
It shows the alcohol residue of diol described as OXOH. To explain the reaction method in more detail, a di- or tricarboxylic acid ester and a monoalkyl or benzyl ether of ethylene glycol, diethylene glycol or triethylene glycol are used as raw materials. As the ester, a lower ester such as a butyl ester is preferably used as a raw material, but when an octyl ester is used, a product in which one of the octyl esters remains is also obtained. For example, 2 equivalents of diethylene glycol monobutyl ether as a raw material and 0.2 to 2 mol% of alkoxy titanium as a catalyst are added to dibutyl phthalate or dibutyl adipate, and heating is started under reduced pressure at approximately 100 to 200 mmHg with stirring. The reaction starts at 140℃ and 190-20℃.
When kept at 0°C for 1.5 hours, approximately the calculated amount of butanol is distilled out. Finally, the reaction is terminated by raising the reduced pressure to 15 mmHg to perform the theoretical amount of dealcoholization, and the entire reaction is completed in approximately 2.5 hours. The reason why the reduced pressure is not lowered sufficiently at the beginning is because when dibutyl adipate or some butyl cellosolve is used, the raw materials begin to boil, but if the efficiency of fractional distillation is high, the reaction can be carried out under low pressure from the beginning. The transesterification reaction itself is well known, and since the reaction is an equilibrium reaction, the actual reaction rate is the rate at which the produced butanol is distilled and removed from the system. Butanol can be removed under vacuum at about 40℃, while the titanium catalyst used as a catalyst
The temperature at which the reaction progresses is 60°C, and the reaction progresses slowly at 140°C. When performing a transesterification reaction using a titanium catalyst and adding an alcohol to a normal catalyst such as an alkali catalyst, titanium catalyst is used to take advantage of its excellent catalyst properties and is applied to this reaction. Naturally, this catalyst can be used to carry out a dehydrated ester reaction, but when this system of compounds is used, the reaction between ethylene glycol monoalkyl ether, which is the raw material ether alcohol, and A catalyst intermediate is formed, but the rate of esterification reaction is extremely slow compared to alkyl alcohols, probably due to the slow adsorption rate of acids. It is thought that a colored substance is produced, and once colored, the only way to remove it is by distillation, and the present invention was arrived at after studying various methods for producing esters, which are products with a high boiling point. The reaction rate was fast and various products could be easily obtained. When this ether alcohol is used, the dehydration esterification reaction takes more than twice as long as a normal alkyl alcohol, and even if the temperature is raised, it does not reach the speed of an alkyl alcohol. While only coloring progresses, this disadvantage is greatly improved. When these products are used as plasticizers for polyvinyl chloride, the primary feature is that they have low volatility in proportion to their molecular weight, but they also convert ethylene glycol into di- or triethylene glycol and also convert alkyl We have discovered that when the group changes from a butyl or octyl group to a benzyl group, different features emerge depending on the combination, so we will explain the properties by dividing them into groups. Using B for butyl and E for ethyleneoxy as the terminal butyloxyethylene glycol symbol,
For diesters, the symbol D is attached first, and for terminal mixed esters, each group is also written together. Diethyleneoxy as EE,
Triethyleneoxy is abbreviated as DEE, and for reference, terminal ethyl E, phthalate is P, and adipate is A. In this way, the respective produced compounds are DBE
A, DBEEA, DBDEEA, DBEP, DBEEP
, DBDEEP, and DOP (dioctyl phthalate) is expressed as BEEOP. These have improved plasticization efficiency and exhibit plasticity almost equivalent to DOA or DOP, and their low-temperature properties, such as softness temperature, are lowered, and in particular, DBEEA or DBDEEA based on diethylene glycol or triethylene glycol has a higher boiling point, resulting in a lower volatilization loss. In terms of chemical resistance, there was less weight loss due to gasoline solubility and migration to polyethylene was improved. The hexyloxyethylene glycol system symbol is expressed using H instead of B in butyl. DHEA, DHEEA, DHEP, D manufactured
Compared to the butyl ester type, HEEP and HEEOP had medium plasticization efficiency, flexibility and temperature transition. The properties of HEEOP, in which some of the terminal groups are octyl groups, are DO
It shows a mixture with P and intermediate properties, indicating that it can be used as an additive when mixed with diester. It is expressed using the octyloxyethylene glycol symbol by replacing O with B of butyl. Manufactured DOEA, DOEEA, D0EP, DO
EEP has a small volatilization loss corresponding to its molecular weight.In particular, the softening temperature of phthalic acid type is higher than that of adipic acid type, but lower than that of DOP, and DOEEP showed low temperature characteristics of -30°C or lower. DOEA and DOEEA exhibit a softening temperature equal to or lower than that of DOA, and are used as low-volatility low-temperature plasticizers together with phthalate-based plasticizers. DO as a disadvantage
EP and DOEEP had poor plasticization efficiency. It is expressed using the benzyloxyethylene glycol symbol by changing Bz to B. The plasticizing efficiency of the manufactured DBzEA and DBzEEA is comparable to that of DOP, but it is slightly worse than that of DBzEP and DBzEE.
P has poor plasticization efficiency. However, the electrical characteristics are particularly good.
BzEOP has a surface electrical resistance value that is one order of magnitude better than OP.
, BzEEOP also showed better electrical properties than DOP. Furthermore, this system is characterized by much lower volatility, and the results of measurements of dissolution and extraction with gasoline and transferability with polyethylene sheets showed a significant improvement in the amount of dissolution and transfer. As mentioned above, ethylene glycol
Although the properties of alkyl ether-terminated esters of di- or di- and triethylene glycol have been investigated, they can also be applied to other esters, such as diethylene glycol mono- or di- and tri-ethylene glycol partially exchanged with trioctyl trimellitate. Making esters with butyl ether terminals improved the plasticity, flexibility and temperature transition properties to a lesser extent. In addition, from the complex ester 1,3-butanediolbisbutyl adipate (13BBBA), esters in which both ends are changed to benzylethyleneoxy, BzEAXAEBz or butylethyleneoxyethyl, B
EEAXAEEB was manufactured. Here, AXA is the skeleton of complex ester -{CO(CH2)4COCH2CH2CH
(CH3)OCO(CH2)4CO}n-. Furthermore, the polyester has a molecular weight of 858, has a terminal butyl group, adipic acid as the dibasic acid, and 1,3-butanediol as the diol component, and diethylene glycol monobutyl ether or benzyloxyethyl alcohol at the end. A terminal-modified polyester was produced by a transesterification reaction. The result is 160 in the product
-220°C/0.7mm The volatile content was reduced, resulting in less volatilization loss of the molded sheet. By using a benzyl terminal, a polyester with electrical properties superior to DOP was obtained. On the other hand, the butyloxydiethylene glycol terminal resulted in a polyester with a relatively low softening temperature. Diethylene glycol as a polyester component
The use of a mixed diol component of 1,3-butanediol and 1,3-butanediol, and also the mixed use of a mixed dibasic acid as a dibasic acid, is already well known as a method for producing polyester. state Example 1 Dibutyloxyethyl adipate (D
BEA) Add 0.5 g of butyl titanate as a transesterification catalyst to 236 g of ethylene glycol monobutyl ether equivalent to 2 molar equivalents, heat to 120°C and stir, then add 258 g of dibutyl adipate (1 molar amount) and heat at 160-200°C under slight vacuum. The butanol produced by stirring was removed, and after about 1 hour, the degree of vacuum was increased to 20 mmHg to remove the butanol produced by the transesterification reaction, and an almost quantitative amount of 145 g was recovered and the reaction was continued. finished. After completion of the reaction, as a post-treatment method, when the temperature drops to 100℃, add a solvent, add potassium carbonate or dilute solution of soda as an alkali suitable for the acid value, stir at around 80℃ for 20 to 60 minutes, and then add 5g to 15g of activated clay. The mixture was stirred and filtered. Next, washing with water and, if necessary, alkaline washing and washing with water were performed. After removing the solvent by distillation, the product was obtained by distillation under reduced pressure. Examples 2 to 6 The adipic acid series uses dibutyl adipate, and the phthalic acid series uses dibutyl phthalate as a raw material, and the corresponding ethylene glycol
alcohol, diethylene glycol or triethylene glycol
Example 1
The reaction was carried out in the same manner as above, followed by purification distillation to obtain the product, most of which was the residue of vacuum distillation. The plasticization efficiency and low temperature electrical properties versus chemical properties of the products obtained are shown in Table 1. Example 7 Dibutyl phthalate DBP 111.2 g (0.
4 mol), 72 g (0.42 mol) of diethylene glycol monobutyl ether and 52.8 g of 2-ethylhexanol were added in 1 molar equivalent each in the presence of a solid polytitanic acid catalyst, initially at normal pressure, then at 3 mol.
The transesterification reaction was carried out under reduced pressure of 0 mmHg.
g of butanol was collected to complete the reaction. The product was obtained as a distillation residue after work-up. The result of HPLC analysis is BEEB
It was considered to be a mixture of 13% P and 87% BEEOP. The viscosity at 21°C and the results when used as a plasticizer are listed in Table 1.
Table 1 Abbreviations
Formula 1) Viscosity 2)
Plasticization efficiency 3) Boiling point example 1 DBEA (A
-1, R:C4H9 n=1) 12
42.5 164/1mmHg Example 2
DBEEA (A-1, R:C4H9 n=2)
34 44.9 20
0-205/1mmHg Example 3 DBDEEA (
A-1, R: C4H9 n=3) 74
45.7 Example 4 DBEP (A-2,R:
C4H9 n=1) 38 48.9 Example 5 DBEEP (A-2,R:C4H9 n
=2) 63 51.1 Example 6 D
BDEEP (A-2,R:C4H9 n=3)
85 53.1 Example 7 BEEOP
(C-2,R:C4H9 n=2) 119
49.7 Control Example 1 DOA
23 44 Control Example 2 DOP
75 50 4
) Softness temperature 5) Electrical resistance 6) Heating loss 7) PE
8) Kasoline Example 1 -46.0
8.5X108 25.77 5.0
4 17.60 Example 2 -46.0
6.0X108 9.01 2.1
7 17.42 Example 3 -39.9
5.9X108 6.44 1.4
6 15.00 Example 4 -20.8
1.2X1010 16.16 2.6
6 13.20 Example 5 -21.0
3.8X109 4.79 1.5
8 11.80 Example 6 -17.8
3.0X109 4.41 0.8
4 9.30 Example 7 -24.5
3.0X1010 7.10
14.90 Control Example 1 -43.0
3.4X109 17.86
14.92 Control Example 2 -22.3
4.8X1010 15.70 5.7
0 17.411) Viscosity: Plasticizer solution viscosity at 20°C, 2) Plasticization efficiency: 50PHR sheet and 80P
DO calculated from surface hardness measurements using HR sheet
The amount of plasticizer used to achieve the same hardness as the surface hardness of P50PHR was defined as the plasticization efficiency value. 3) The values listed in parentheses are boiling point values obtained by distillation under reduced pressure. Anything not listed is a plasticizer obtained as a distillation residue at 250° C./1 mmHg. 4) Softness temperature: Measured temperature for 50PHR sheet according to JIS standard. 5) Electrical resistance: Surface electrical resistance value of 80PHR molded sheet, 6) Heating loss: 50PHR molded 1mm sheet at 160℃
The sample was placed in a hot air circulation heating furnace, and the % loss on heating after 2 hours was measured. 7) PE: % migration weight loss from a plasticized sheet by crimping a polyethylene sheet at 10 kg/cm2. 8) Gasoline: After dipping in gasoline at 60°C for 48 hours and drying for 24 hours, the % elution loss was measured. same as below. Examples 8-11, 13-16 and 17-20 Monohexyl ether of ethylene glycol or diethylene glycol
(8-11), mono-2-ethylhexyl ether (13-16), or monobenzyl ether (17-
20) Using 2 molar equivalents of each, add the theoretical amount of butanol produced by transesterifying a mixture with 1 mol of dibutyl adipate or dibutyl phthalate at 160-200°C under reduced pressure using a titanium catalyst. After the reaction is completed and the catalyst is deactivated, decatalyzed, washed with alkali, and washed with hot water according to conventional methods, the volatile matter is removed under reduced pressure, and the product obtained mainly as a residual liquid is removed. The properties and results when used as a plasticizer are shown in Table 2 (
8-11), Table 3 (13-16), Table 4 (17-2
0). Example 12 1 mole equivalent of 102 g of diethylene glycol monohexyl ether was added to 390 g of 1 mole of DOP to carry out a transesterification reaction. The reaction solution was treated in a conventional manner and then distilled under reduced pressure to separate the fractions at 180-200℃/0.6mmHg and 200-225℃, and the gas chromatograph analysis results for each showed that the former was DOP and hexyl ethylene. Oxyethyl 2-ethylhexyl phthalate is a 53:47 mixture with HEEOP, the latter being a 62:38 mixture of HEOP.
It was a mixture of EOP and DEEOP. Examples 21-22 Transesterification reaction was carried out by adding 65 g 0.6 mol of ethylene glycol monobenzyl ether or 0.6 mol 91.2 g and 109 g 0.72 mol of diethylene glycol monobenzyl ether to 0.6 mol 234 g of DOP. After obtaining a product, volatile components were removed at 250° C./0.5 mmHg to obtain BzEOP and BzEEOP. These ester mixtures are also not pure described compounds;
Although they were mixtures with diesters, their properties are listed in the table.
Table 2 Abbreviations
Formula 1) Viscosity 2) Plasticization efficiency 3) Boiling point Example 8 DHEA (A-
1,R:C6H13 n=1) 19 48
.. 5 215-225/1mmHg Example 9 DHEEA (A-1,R:C6H13
n=2) 27 48.0 Example 10 DH
EP (A-2, R:C6H13 n=1) 68
51.1 Example 11 DHEEP (A-2
, R:C6H13 n=2) 78 54.
7 Example 12 HEEOP (C-2,R:C6H13
n=2) 95 51.0
HEEOP-DHEEP (62:38)
108 49.7
4) Softness temperature 5) Electrical resistance 6) Heating loss 7) P
E 8) Kasoline Example 8-49.3
1.0X108 14.45
4.26 17.60 Example 9-4
4.3 9.8X108 7.38
2.34 17.41 Example 10
-24.3 1.1X1010 5.
83 6.44 14.91 Example 11
-27.3 4.7X109
4.37 3.43 13.23 Example 1
2 -23.3
8.14 14.91
-24.8
5.74
14.00
Table 3
Formula 1)
Viscosity 2) Plasticization efficiency 3) Boiling point Example 13 DOE
A (A-1, R: C8H17 n=1) 38
57.2 210-220/0.
5mmHg Example 14 DOEEA (A-1, R:C
8H17 n=2) 54 58.9 Example 15 DOEP (A-2,R:C8H17 n=1
) 67 60.5 Example 16 DOEE
P(A-2,R:C8H17 n=2) 122
62.3 4) Softening temperature 5
) Electrical resistance 6) Heating loss 7) PE 8) Kasoline Example 13 -47.8 3.3X
109 11.23 6.30
17.60 Example 14-38 3
.. 7X109 4.82 3.42
15.0 Example 15 -27.8
2.5X1010 4.72 5.4
2 17.9 Example 16 -29.3
6.5X109 3.20 3
.. 16 17.9
Table 4

1) Viscosity 2) Plasticization efficiency Example 17
DBzEA (A-1, R:C7H7 n=1)
85 49.3 Example 18 DBzEEA(
A-1, R: C7H7 n=2) 129
55.4 Example 19 DBzEP (A-2, R:C
7H7 n=1) 464 58.1 Example 20 DBzEEP(A-2,R:C7H7 n=2
) 322 62.3 Example 21 BzE
OP (C-2,R:C7H7 n=1) 268
54.4 Example 22 BzEEOP(C-2
, R:C7H7 n=2) 121 52.
5 BzEEOP(C-2,R
:C7H7 n=2) 243 54.7
4) Softness temperature 5) Electrical resistance 6
) Heating loss 7) PE 8) Kasoline Example 17
-21.3 4.3X1010
4.58 1.59 10.25 Example 18 -21.5 3.6X1010
4.45 1.08 6.9
9 Example 19 -4.3 1.8X1
012 3.06 1.02
4.84 Example 20 -4.3 3.
5X1011 3.40 0.69
-0.25 Example 21 -4.5
2.6X1012 3.10
14.90 Example 22 -5.5
2.1X1011 9.64
9.38
-8.0 3.
25 5.41 Example 2
3 Products BEEDOTm and DBEEOT obtained by performing a transesterification reaction using 1 molar equivalent of trimellitic acid trioctyl ester and adding 1 molar equivalent or 2 molar equivalents of diethylene glycol monobutyl ether
The properties of the product BDEEOTm, also obtained using 1 molar equivalent of triethylene glycol monobutyl ether, are shown in Table 5.
Table 5
1) Viscosity
2) Plasticization efficiency example 23 BEEDOTm (A-2
', R: C4H9 n=2) 250 59.8 Example 24 DBEEOTm (A-2', R: C4H9
n=2) 201 56.5 Example 25 BDE
EOTm (A-2', R:C4H9 n=2) 25
0 59.4 4) Softness temperature 5) Electrical resistance 6) Heating loss Example 23 -17.
3 6.3X1011 1.71 Example 24 -14.8 0.8X1011
1.49 Example 25 -15.5
2.9X1010 1.87 Examples 26-27 Using 1, butanediol bisbutyl adipate, which is a composite ester, as a raw material at 220-225°C/0.5 mmHg, 183.2 g of 0.4 mol thereof and diethylene glycol monobutyl ether A mixture of 130 g of 0.8 mole or 0.8 mole of ethylene glycol monobenzyl ether and 86.4 g of ethylene glycol monobenzyl ether was subjected to a transesterification reaction using a titanium catalyst and treated in the same manner as described above to obtain a distillation residue. The products BEEAXAEEB and BzEAXAEBz were obtained. Example 28 3 moles of 1,3-butanediol 4 moles of adipic acid 2 moles of butanol and an excess of 2 moles of butanol obtained by dehydration esterification reaction.
A polyester mixture with a terminal butyl group produced with the aim of m = 3 (HPLC results are a mixture of polyesters from n = 1 to n = 11) 0.2 molar equivalent (molecular weight 85
43.2 g of ethylene glycol monobenzyl ether (0.4 molar equivalent) was added to 172 g of ethylene glycol monobenzyl ether (as No. 8), and a transesterification reaction was carried out to obtain the product BzEAXAEBz. Example 2
The results of 6-28 are shown in the table below.
Table 6
1) Viscosity 2) Plasticization efficiency Example 26 BEEAXAEEB
(C-1,R:C4H9 n=2) 192
48.9 Example 27 BzEAXAEBz (C-1
, R:C7H7 n=1) 233 52.
2 Example 28 BzE(AX)3AEBz(C-1:
n=2) 611 61.4 Control Example 3 13BBBA
46 40.0
4) Softening temperature 5) Electrical resistance 6) Heating loss 7) PE 8) Kasoline Example 26-2
6.0 3.9X109 4.74
1.26 10.20 Example 27
-15.8 1.9X1010 3.
15 0.88 5.56 Example 2
8 -11.5 2.5X1010
2.0 0.71 Control example 3
-30.0 3.5X109 5.0
2 7.99 14.77 Example 29 Monomethyl and monoethyl ether of ethylene glycol, diethylene glycol and triethylene glycol
Similar diesters were prepared using DBP and DBA.
I made more. The products are in particular adipate esters and D
EEP has a high solubility in water, and when washed with water, the yield was significantly reduced, and when used as a plasticizer, the plasticizer oozed out onto the surface of the plasticized sheet. Among them, DEDE
The viscosity of EP is 116CP, and the plasticization efficiency is 51.9, which is 80P.
In the case of the HR sheet, the plasticizer leached out onto the surface, but no leaching was observed in the case of 50 PHR. Summary of starting materials and products for the examples
starting material
Product formula No.
.. Ester component Ether component
1 H9C4OCO(CH2)4COOC4H9
HO(C2H4O)1C4H9 BuO(C2
H4O)1COACOO(C2H4O)1Bu2H
9C4OCO(CH2)4COOC4H9 HO(C
2H4O)2C4H9 BuO(C2H4O)2
COACOO(C2H4O)2Bu3H9C4OC
O(CH2)4COOC4H9 HO(C2H4O)
3C4H9 BuO(C2H4O)3COACO
O(C2H4O)3Bu4 H9C4OCOC6H4
COOC4H9 HO(C2H4O)1C4H9
BuO(C2H4O)1COPhCOO(C2
H4O)1Bu 5 H9C4OCOC6H4COOC
4H9 HO(C2H4O)2C4H9
BuO(C2H4O)2COPhCOO(C2H4O)
2Bu 6 H9C4OCOC6H4COOC4H9
HO(C2H4O)3C4H9 BuO(
C2H4O)3COPhCOO(C2H4O)3Bu
7 H17C8OCOC6H4COOC8H17 H
O(C2H4O)2C4H9 BuO(C2H4
O)1COPhCOOC8H17 8 H9C4OCO
(CH2)4COOC4H9 HO(C2H4O)1
C6H13 HxO(C2H4O)1COACOO
(C2H4O)1Hx 9 H9C4OCO(CH2)
4COOC4H9 HO(C2H4O)2C6H13
HxO(C2H4O)2COACOO(C2H4
O)2Hx10 H9C4OCOC6H4COOC4H
9 HO(C2H4O)1C6H13 Hx
O(C2H4O)1COPhCOO(C2H4O)1H
x11 H9C4OCOC6H4COOC4H9
HO(C2H4O)2C6H13 HxO(C2
H4O)2COPhCOO(C2H4O)2Hx12
H17C8OCOC6H4COOC8H17 HO(
C2H4O)1C6H13 HxO(C2H4O)
2COPhCOOC8H17

HxO(C2H4O)2COPhCOO(
C2H4O)2Hx13 H9C4OCO(CH2)4
COOC4H9 HO(C2H4O)1C8H17
OcO(C2H4O)1COACOO(C2H4O
)1Oc14 H9C4OCO(CH2)4COOC4
H9 HO(C2H4O)2C8H17 OcO
(C2H4O)2COACOO(C2H4O)2Oc1
5 H9C4OCOC6H4COOC4H9 H
O(C2H4O)1C8H17 OcO(C2H4
O)1COPhCOO(C2H4O)1Oc16 H9
C4OCOC6H4COOC4H9 HO(C2
H4O)2C8H17 OcO(C2H4O)2C
OPhCOO(C2H4O)2Oc17 H9C4OC
O(CH2)4COOC4H9 HO(C2H4O)
1CH2C6H5 BzO(C2H4O)1COACO
O(C2H4O)1Bz18 H9C4OCO(CH2
)4COOC4H9 HO(C2H4O)2CH2C
6H5 BzO(C2H4O)2COACOO(C2H
4O)2Bz19 H9C4OCOC6H4COOC4
H9 HO(C2H4O)1CH2C6H5 B
zO(C2H4O)1COPhCOO(C2H4O)1
Bz20 H9C4OCOC6H4COOC4H9
HO(C2H4O)2CH2C6H5 BzO(C
2H4O)2COPhOO(C2H4O)2Bz21
H17C8OCOC6H4COOC8H17 HO(
C2H4O)1CH2C6H5 BzO(C2H4O)
1COPhCOOC8H1722 H17C8OCOC
6H4COOC8H17 HO(C2H4O)2CH
2C6H5 BzO(C2H4O)2COPhCOOC
8H17
BzO
(C2H4O)2COPhCOOC8H1723 C6
H3(COOC8H17)3 HO(C2
H4O)2C4H9(1) BzO(C2H4O)2C
OC6H3 (COOC8H17) 224 C6H3 (C
OOC8H17)3HO(C2H4O)
2C4H9(2) (BzO(C2H4O)2CO)2
C6H3COOC8H1725 C6H3(COOC8
H17)3HO(C2H4O)3C4H
9(1) BzO(C2H4O)3COC6H3(CO
OC8H17) 226 BuOCOACOOXOCOA
COOBu HO(C2H4O)2C4H9
BuO(C2H4O)2OCOACOOXOCOAC
OO-
-(C2
H4O)2Bu27 BuOCOACOOXOCOAC
OOBu HO(C2H4O)1CH2C6H5
BzO(C2H4O)1OCOACOOXOCOACO
O-
-(C2H
4O) 1Bz28 BuOCOACOOXOCOACO
OXO- HO(C2H4O)1CH2C6H5 B
zO(C2H4O)1OCOACOOXOCOACOOO
XO- -COACOOXOCOACOOOBu
-COA
COOXOCOACOO(C2H4O)1Bz29H
9C4OCOACOOC4H9 HO(C
2H4O)1-3CH3 MeO(C2H4O)1
-3COACOO-

-(C2H4O)1-3Me H9C4OCO
ACOOC4H9 HO(C2H4O)1
-3C2H5 EtO(C2H4O)1-3COAC
OO-
-(C2
H4O)1-3Et H9C4OCOPhCOOC
4H9 HO(C2H4O)1-3CH3
MeO(C2H4O)1-3COPhCOO-

-(C2H4O)1
-3Me H9C4OCOPhCOOC4H9
HO(C2H4O)1-3C2H5 EtO
(C2H4O)1-3COPhCOO-

-(C2H4O)1-3Et Examples and general formula {R(OCH2CH2)mOCO}iY{
Relationship with symbol definition of CO(OCH2CH2)nOR'}j. No. R m i Y n R' j
No. R m i Y n R
' j 1 Bu 1 1 A 1 B
u 1 17 Bz
1 1 A 1 Bz 1 2 Bu
2 1 A 2 Bu 1
18 Bz 2 1 A
2 Bz 1 3 Bu 3 1 A
3 Bu 1
19 Bz 1 1 Ph 1 Bz
1 4 Bu 1 1 Ph 1 Bu
1 20 Bz 2
1 Ph 2 Bz 1 5 Bu
2 1 Ph 2 Bu 1
21 Bz 1 1 Ph
0 Oc 1 6 Bu 3 1 Ph
3 Bu 1 22
Bz 2 1 Ph 0 Oc 1
7 Bu 1 1 Ph 0 Oc 1
Bz 2
1 Ph 0 Oc 1 8 Hx 1
1 A 1 Hx 1
23 Bz 2 1 Tm 0
Oc 2 9 Hx 2 1 A 2
Hx 1 24
Bz 2 2 Tm 0 Oc 110
Hx 1 1 Ph 1 Hx 1
25 Bz 3 1
Tm 0 Oc 211 Hx 2 1
Ph 2 Hx 1
26 Bu 2 1 P1 2 B
u 112 Hx 2 1 Ph 0
Oc 1 27 Bz
1 1 P1 1 Bz 1 H
x 2 1 Ph 2 Hx 1
28 Bz 1 1 P
2 1 Bz 113 Oc 1 1
A 1 Oc 1
29 Me 1-3 1 A 1-3 Me
114 Oc 2 1 A 2 Oc
1 Et 1
-3 1 A 1-3 Et 115 Oc
1 1 Ph 1 Oc 1
Me 1-3 1 Ph
1-3 Me 116 Oc 2 1 Ph
2 Oc 1
Et 1-3 1 Ph 1-3 Et 1
(Bu=butyl, Hx=hexyl, Oc=octyl, P
h=phthalic acid residue, Me=methyl, Et=ethyl)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】イ)フタ−ル酸又はアジピン酸のC1〜C
8アルキルエステル、 ロ)C5〜C6脂肪族飽和ジカルボン酸と式HO−X−
OHのジオ−ルとが重合して出来る該ジカルボン酸末端
で繰返し単位1〜15のエステルジカルボン酸のジカル
ボン酸両末端を一価アルコ−ルでエステル化した、式R
”O{CO(CH2)3−4COOXO}kCO(CH
2)3−4COOR”(式中Xは、非置換の又は低級ア
ルキルで置換された、エチレン基又はC4迄のポリメチ
レン基、又はジエチレングリコ−ル又はジプロピレング
リコールの残基であり、R”は低級アルキルであり、k
は1〜15の整数である)で表される複合エステル又は
ポリエステル、及びハ)トリメリット酸オクチルエステ
ル、からなる群から選ばれるエステルに、エチレングリ
コ−ル、ジエチレングリコール或はトリエチレングリコ
−ルのモノ(C1〜C16)アルキルまたはベンジルエ
−テルの1ないし2当量を加え、アルコキシチタンまた
はアルコキシチタンより作られる固体ポリチタン酸触媒
の存在下、減圧下で、エステル交換反応を行い、生成す
る交換された1または2当量のアルコ−ルを除去するこ
とからなる、一般式  {R(OCH2CH2)mOC
O}iY{CO(OCH2CH2)nOR’}j   
(A)〔式中R及びR’は同一又は異なるものであり、
独立にC1〜C16アルキル基、又はベンジル基であり
、mは1〜3の整数、nは0〜3の整数であるが、但し
nが0でないときはm=nであることを条件とし、iと
jは1〜2の整数であるが、但しi+jが2又は3であ
ることを条件とし、Yはフタール酸残基、アジピン酸残
基、トリメリット酸残基、又は該エステルジカルボン酸
の残基であるが、但しYがトリメリット酸残基であると
きはi+jが3であることを条件とする〕を有するアル
キルオキシエチレングリコ−ルの末端エステルを有する
エステル類を製造する方法。
Claim 1: a) C1 to C of phthalic acid or adipic acid
8 alkyl ester, b) C5-C6 aliphatic saturated dicarboxylic acid and formula HO-X-
Formula R, in which both dicarboxylic acid ends of an ester dicarboxylic acid having repeating units 1 to 15 are esterified with a monohydric alcohol at the dicarboxylic acid ends formed by polymerization with diol of OH.
”O{CO(CH2)3-4COOXO}kCO(CH
2) 3-4COOR" (wherein X is an unsubstituted or lower alkyl-substituted ethylene group or a polymethylene group up to C4, or a residue of diethylene glycol or dipropylene glycol, and R" is a lower is alkyl, k
is an integer from 1 to 15); and c) octyl trimellitate ester. Adding 1 to 2 equivalents of mono(C1-C16) alkyl or benzyl ether and carrying out the transesterification reaction under reduced pressure in the presence of an alkoxytitanium or a solid polytitanic acid catalyst made from alkoxytitanium to produce an exchanged The general formula {R(OCH2CH2)mOC
O}iY{CO(OCH2CH2)nOR'}j
(A) [In the formula, R and R' are the same or different,
independently a C1 to C16 alkyl group or a benzyl group, m is an integer of 1 to 3, and n is an integer of 0 to 3, provided that when n is not 0, m = n, i and j are integers of 1 to 2, provided that i+j is 2 or 3, and Y is a phthalic acid residue, an adipic acid residue, a trimellitic acid residue, or the ester dicarboxylic acid. a residue, provided that i+j is 3 when Y is a trimellitic acid residue.
【請求項2】  エチレングリコ−ルまたはジエチレン
グリコ−ルあるいはトリエチレングリコ−ルのモノ(C
1〜C8)アルキルエ−テルを使用する請求項1記載の
方法。
Claim 2: Ethylene glycol, diethylene glycol, or triethylene glycol mono(C
2. The process as claimed in claim 1, wherein 1-C8) alkyl ethers are used.
【請求項3】  エチレングリコ−ルまたはジエチレン
グリコ−ルあるいはトリエチレングリコ−ルのブチル、
ヘキシル、オクチル又はベンジルエ−テルを使用する請
求項1記載の方法。
3. Butyl of ethylene glycol, diethylene glycol or triethylene glycol,
2. A process according to claim 1, wherein hexyl, octyl or benzyl ether is used.
【請求項4】  1,3−または1,4−ブタンジオ−
ル、エチレングリコール、およびそれらのアルキル置換
ジオ−ル、又はジエチレングリコ−ル、プロピレングリ
コ−ル、ジプロピレングリコールなどのエ−テルアルコ
−ルと、アジピン酸またはグルタール酸等の二塩基酸お
よび、末端アルコ−ルとして好ましくはブタノ−ルより
作られた該複合エステル又はポリエステルを使用する請
求項1記載の方法。
[Claim 4] 1,3- or 1,4-butanedio-
ethylene glycol, and their alkyl-substituted diols, or ether alcohols such as diethylene glycol, propylene glycol, and dipropylene glycol, dibasic acids such as adipic acid or glutaric acid, and terminal alcohols. 2. The process as claimed in claim 1, wherein the complex ester or polyester, preferably made from butanol, is used as the alcohol.
【請求項5】  一般式   {R(OCH2CH2)mOCO}iY{CO(O
CH2CH2)nOR’}j   (A)〔式中R及び
R’は同一又は異なるものであり、独立にC1〜C16
アルキル基、又はベンジル基であり、mは1〜3の整数
、nは0〜3の整数であるが、但しnが0でないときは
m=nであることを条件とし、iとjは1〜2の整数で
あるが、但しi+jが2又は3であることを条件とし、
Yは  フタール酸残基、アジピン酸残基、トリメリッ
ト酸残基、又はC5〜C6脂肪族飽和ジカルボン酸と式
HO−X−OHのジオ−ルとが重合して出来る該ジカル
ボン酸末端で繰返し単位1〜15の、式 −{CO(CH2)3−4COOXO}kCO(CH2
)3−4CO−(式中Xは、非置換の又は低級アルキル
で置換された、エチレン基又はC4迄のポリメチレン基
、又はジエチレングリコ−ル又はジプロピレングリコー
ルの残基であり、kは1〜15の整数である)のエステ
ルジカルボン酸残基であるが、但しYがトリメリット酸
残基であるときはi+jが3であることを条件とする〕
を有するアルキルオキシエチレングリコ−ルの末端エス
テルを有するエステルからなる可塑剤。
[Claim 5] General formula {R(OCH2CH2)mOCO}iY{CO(O
CH2CH2)nOR'}j (A) [In the formula, R and R' are the same or different, and independently C1 to C16
It is an alkyl group or a benzyl group, m is an integer of 1 to 3, and n is an integer of 0 to 3, provided that when n is not 0, m=n, and i and j are 1 An integer of ~2, provided that i+j is 2 or 3,
Y is a phthalic acid residue, an adipic acid residue, a trimellitic acid residue, or repeating at the dicarboxylic acid terminal formed by polymerization of a C5-C6 aliphatic saturated dicarboxylic acid and a diol of the formula HO-X-OH. Units 1 to 15, formula -{CO(CH2)3-4COOXO}kCO(CH2
)3-4CO- (wherein, is an integer of ), provided that when Y is a trimellitic acid residue, i+j is 3]
A plasticizer consisting of an ester having a terminal ester of an alkyloxyethylene glycol having the following.
JP3157460A 1991-06-03 1991-06-03 Complex ester of ether-ester Pending JPH04356441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3157460A JPH04356441A (en) 1991-06-03 1991-06-03 Complex ester of ether-ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3157460A JPH04356441A (en) 1991-06-03 1991-06-03 Complex ester of ether-ester

Publications (1)

Publication Number Publication Date
JPH04356441A true JPH04356441A (en) 1992-12-10

Family

ID=15650149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3157460A Pending JPH04356441A (en) 1991-06-03 1991-06-03 Complex ester of ether-ester

Country Status (1)

Country Link
JP (1) JPH04356441A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038152A1 (en) * 1997-02-28 1998-09-03 New Japan Chemical Co., Ltd. p-HYDROXYBENZOIC ESTERS, PLASTICIZER CONTAINING THE SAME, POLYAMIDE RESIN COMPOSITION, AND MOLDED OBJECTS
WO2002017972A3 (en) * 2000-09-01 2002-09-06 Occidental Chem Co Preparing sterile articles from polymers containing a stabiliser based on a poly(oxyalkylene)
JP2006096849A (en) * 2004-09-29 2006-04-13 Japan Energy Corp Lubricating oil, lubricating oil for fluid bearing and fluid bearing using the same
JP2006282658A (en) * 2005-03-10 2006-10-19 Mitsubishi Gas Chem Co Inc Method for producing carboxylic acid or carboxylic acid ester
WO2007116725A1 (en) * 2006-03-30 2007-10-18 Nippon Steel Chemical Co., Ltd. Lubricant base oil
JP2008031149A (en) * 2006-06-29 2008-02-14 Hiroshima Univ Novel dicarboxylic acid diester compound, chemical modifier and use thereof
JP2008031069A (en) * 2006-07-27 2008-02-14 Osaka Univ Benzyldiglycerin acetate and polyester resin composition containing the compound
JP2008534734A (en) * 2005-04-12 2008-08-28 エルジー・ケム・リミテッド Triethylene glycol ester plasticizer composition for polyvinyl chloride resin and method for producing the same
WO2011037217A1 (en) * 2009-09-28 2011-03-31 富士フイルム株式会社 Complex alcohol ester composition, method for producing same, and use of same
US9080127B2 (en) 2009-06-24 2015-07-14 Fujifilm Corporation Composition, compound and film forming method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038152A1 (en) * 1997-02-28 1998-09-03 New Japan Chemical Co., Ltd. p-HYDROXYBENZOIC ESTERS, PLASTICIZER CONTAINING THE SAME, POLYAMIDE RESIN COMPOSITION, AND MOLDED OBJECTS
US6348563B1 (en) 1997-02-28 2002-02-19 New Japan Chemical Co., Ltd. p-hydroxybenzoic esters, plasticizer containing the same, polyamide resin composition and molded articles
WO2002017972A3 (en) * 2000-09-01 2002-09-06 Occidental Chem Co Preparing sterile articles from polymers containing a stabiliser based on a poly(oxyalkylene)
EP1818361A3 (en) * 2000-09-01 2012-07-11 Occidental Chemical Corporation Preparing sterile articles from polymers containing a stabiliser based on a poly(oxyalkylene)
JP2006096849A (en) * 2004-09-29 2006-04-13 Japan Energy Corp Lubricating oil, lubricating oil for fluid bearing and fluid bearing using the same
JP2006282658A (en) * 2005-03-10 2006-10-19 Mitsubishi Gas Chem Co Inc Method for producing carboxylic acid or carboxylic acid ester
JP2008534734A (en) * 2005-04-12 2008-08-28 エルジー・ケム・リミテッド Triethylene glycol ester plasticizer composition for polyvinyl chloride resin and method for producing the same
JP4932824B2 (en) * 2005-04-12 2012-05-16 エルジー・ケム・リミテッド Triethylene glycol ester plasticizer composition for polyvinyl chloride resin and method for producing the same
JPWO2007116725A1 (en) * 2006-03-30 2009-08-20 新日鐵化学株式会社 Lubricating base oil
US8153569B2 (en) 2006-03-30 2012-04-10 Nippon Steel Chemical Co., Ltd. Lubricant base oil
WO2007116725A1 (en) * 2006-03-30 2007-10-18 Nippon Steel Chemical Co., Ltd. Lubricant base oil
JP2008031149A (en) * 2006-06-29 2008-02-14 Hiroshima Univ Novel dicarboxylic acid diester compound, chemical modifier and use thereof
JP2008031069A (en) * 2006-07-27 2008-02-14 Osaka Univ Benzyldiglycerin acetate and polyester resin composition containing the compound
US9080127B2 (en) 2009-06-24 2015-07-14 Fujifilm Corporation Composition, compound and film forming method
WO2011037217A1 (en) * 2009-09-28 2011-03-31 富士フイルム株式会社 Complex alcohol ester composition, method for producing same, and use of same
JP2011089106A (en) * 2009-09-28 2011-05-06 Fujifilm Corp Complex alcohol ester composition, method for producing the same, and use of the same
US9255058B2 (en) 2009-09-28 2016-02-09 Fujifilm Corporation Complex alcohol ester composition, method for production same, and use of same

Similar Documents

Publication Publication Date Title
US5364956A (en) Diester, composite ester and polyester having ether-ester terminal structure
JPH04356441A (en) Complex ester of ether-ester
CN106795325A (en) Plasticizer composition and resin combination and preparation method thereof
US1944530A (en) Phosphoric acid esters
TW200528487A (en) Catalyst for manufacture of esters
GB1447146A (en) Preparation of polyalkylene terephthalates
CN100363328C (en) Trimellitic tri(C8-9 ol)ester preparation method
CN111218031B (en) Plasticizer composition, resin composition and method for producing the same
US4596886A (en) Polyester containing impure 1,2-butanediol
US2454274A (en) Manufacture of mixed esters of glycols
JP2517245B2 (en) Method for producing complex ester
DE69011990T3 (en) Process for the preparation of an ester.
JPH0711112A (en) Thermoplastic polymer composition
US3110693A (en) Manufacture of terephthalate polyesters using a manganese glycoloxide catalyst
US3714053A (en) Plasticizers for vinyl polymers and processes for their production
JPH05155810A (en) Improved production of octyl end complex ester plasticizer
JPH0125733B2 (en)
JP6337415B2 (en) Process for producing polyalkylene ether glycol
JPS5859945A (en) Preparation of phthalic ester and ester mixture
JPH032233A (en) Plasticizer of multi-component ester of different kind
JP3547002B2 (en) Method for producing esters
JP3409067B2 (en) Hetero complex ester
JP3525133B2 (en) Catalyst for at least one of esterification reaction and transesterification reaction and method for producing ester
CN119702070A (en) Multi-element catalyst for trioctyl trimellitate production and application thereof
JP3401037B2 (en) Complex ester compound