[go: up one dir, main page]

JPH04354521A - Hollow fiber porous separation membrane element and its manufacturing method - Google Patents

Hollow fiber porous separation membrane element and its manufacturing method

Info

Publication number
JPH04354521A
JPH04354521A JP15764291A JP15764291A JPH04354521A JP H04354521 A JPH04354521 A JP H04354521A JP 15764291 A JP15764291 A JP 15764291A JP 15764291 A JP15764291 A JP 15764291A JP H04354521 A JPH04354521 A JP H04354521A
Authority
JP
Japan
Prior art keywords
hollow fiber
porous separation
resin
separation membrane
fiber porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15764291A
Other languages
Japanese (ja)
Other versions
JP3077260B2 (en
Inventor
Shinichi Kanazawa
進一 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP03157642A priority Critical patent/JP3077260B2/en
Publication of JPH04354521A publication Critical patent/JPH04354521A/en
Application granted granted Critical
Publication of JP3077260B2 publication Critical patent/JP3077260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide the hollow fiber type porous separating membrane element made of a fluororesin which is greatly improved in heat resistance and chemical resistance and to provide the process for producing the hollow fiber type porous separating membrane element including a stage for forming the terminal sealing part of the hollow fiber type porous separating membrane element made of the fluororesin by fine molding by using a hot meltable resin, such as a hot meltable fluororesin. CONSTITUTION:This hollow fiber type porous separating membrane element is constituted by sealing the spacings between the hollow fiber type porous separating membranes and the spacings between the hollow fiber type porous separating membranes 5 and an outside cylinder by the hot meltable fluororesin 2 which is melt-molded at least at the terminal of the hollow fiber type porous separating membrane element formed by housing the bundle of the hollow fiber type porous separating membranes 5 made of the fluororesin into the outside cylinder 1. The process for producing this element in provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、中空糸状多孔質分離膜
エレメントに関し、さらに詳しくは、ガス分離膜、透析
膜、逆浸透膜、限外濾過膜、精密濾過膜などとして用い
られるフッ素樹脂製の中空糸状多孔質分離膜を用いた耐
熱性、耐薬品性等に優れた中空糸状多孔質分離膜エレメ
ントに関する。
[Industrial Application Field] The present invention relates to a hollow fiber porous separation membrane element, and more specifically, a fluororesin membrane element used as a gas separation membrane, dialysis membrane, reverse osmosis membrane, ultrafiltration membrane, precision filtration membrane, etc. This invention relates to a hollow fiber porous separation membrane element that uses a hollow fiber porous separation membrane and has excellent heat resistance, chemical resistance, etc.

【0002】0002

【従来の技術】中空糸状多孔質分離膜は、中空繊維の壁
部を選択性透過膜として利用する分離膜であり、ガス分
離膜、透析膜、逆浸透膜、限外濾過膜、精密濾過膜など
として用いられている。この中空糸状多孔質分離膜は、
単位体積当たりの膜面積を増大させるために、中空糸型
モジュール化して実用に供している。
[Prior Art] Hollow fiber porous separation membranes are separation membranes that utilize the walls of hollow fibers as selective permeation membranes, including gas separation membranes, dialysis membranes, reverse osmosis membranes, ultrafiltration membranes, and precision filtration membranes. It is used as such. This hollow fiber porous separation membrane is
In order to increase the membrane area per unit volume, a hollow fiber type module is used for practical use.

【0003】中空糸型モジュールは、中空糸状多孔質分
離膜(中空糸)の束を円筒状等の耐圧性の外筒に収納し
たエレメントを含み、膜の充填密度が高く、例えば、水
、ジュース、酒あるいは溶剤等の液体の有用物を塵埃、
雑菌等から分離する濾過装置の小型化を計ることができ
る他、耐圧性に優れているため、半導体、食品、その他
の分野で多く用いられている。特に、フッ素樹脂などの
疎水性樹脂からなる中空糸状多孔質分離膜は、耐薬品性
に優れていることから賞用されている。
[0003] A hollow fiber type module includes an element in which a bundle of hollow fiber porous separation membranes (hollow fibers) is housed in a cylindrical or other pressure-resistant outer cylinder, and has a high membrane packing density, such as water, juice, etc. , remove useful liquids such as alcohol or solvents from dust,
In addition to being able to miniaturize filtration equipment that separates bacteria from bacteria, it also has excellent pressure resistance, so it is widely used in semiconductors, food, and other fields. In particular, hollow fiber porous separation membranes made of hydrophobic resins such as fluororesins are prized for their excellent chemical resistance.

【0004】中空糸型モジュールにおいては、多数の中
空糸状多孔質分離膜の束を円筒等の外筒に収納したエレ
メントを用いており、中空糸状多孔質分離膜の一端を熱
融着封止した閉鎖型の内圧式分離膜エレメントや両端の
開口部を開放した内圧循環式分離膜エレメントなどがあ
る。これらのエレメントでは、多数の中空糸状多孔質分
離膜の束を外筒に収納し、その一端または両端部におい
て、中空糸状多孔質分離膜相互の間隙および中空糸状多
孔質分離膜と外筒の間隙を封止剤等で封止している。
[0004] A hollow fiber type module uses an element in which a bundle of a large number of hollow fiber porous separation membranes is housed in an outer cylinder such as a cylinder, and one end of the hollow fiber porous separation membrane is sealed by heat sealing. There are closed internal pressure type separation membrane elements and internal pressure circulation type separation membrane elements with open openings at both ends. In these elements, a bundle of a large number of hollow fiber porous separation membranes is housed in an outer cylinder, and at one or both ends of the bundle there are gaps between the hollow fiber porous separation membranes and gaps between the hollow fiber porous separation membranes and the outer cylinder. is sealed with a sealant or the like.

【0005】従来、外筒と中空糸束との間隙や中空糸束
相互の間隙を封止する方法として、封止剤としてエポキ
シ樹脂、ウレタン樹脂、シリコーン樹脂等の低粘度の樹
脂を端末部に注入し、静置あるいは遠心力により、間隙
に充分充填させた後、加熱硬化させる方法が知られてい
る(特公昭44−5526号、特公昭56−40602
号)。
Conventionally, as a method for sealing the gap between the outer cylinder and the hollow fiber bundle and the gap between the hollow fiber bundles, a low-viscosity resin such as epoxy resin, urethane resin, or silicone resin is applied to the end portion as a sealant. There is a known method of injecting the resin, allowing it to stand still or using centrifugal force to sufficiently fill the gap, and then heating and curing it.
issue).

【0006】ところが、封止剤として使用するこれらの
樹脂は、耐熱性や耐薬品性の点で充分ではなく、酸やア
ルカリを含む溶液または有機溶剤を溶媒や洗浄液として
使用したり、あるいは蒸気滅菌したりする分野に適用す
るには、制限があった。すなわち、エポキシ樹脂は、比
較的耐熱性に優れているものの、強酸、強アルカリおよ
び一部の溶剤にもろく、また、皮膚感作性があり、薬品
や食品分野への適用は制限される。ウレタン樹脂は、耐
熱性が不充分であり、しかも強酸、強アルカリおよび一
部の溶剤に耐性を持たない。シリコーン樹脂は、耐溶剤
性に劣る。
However, these resins used as sealants do not have sufficient heat resistance or chemical resistance, and solutions containing acids or alkalis or organic solvents are used as solvents or cleaning liquids, or steam sterilization is required. There were limitations to its application to fields of That is, although epoxy resins have relatively excellent heat resistance, they are fragile to strong acids, strong alkalis, and some solvents, and are skin sensitizing, which limits their application to the pharmaceutical and food fields. Urethane resins have insufficient heat resistance and are not resistant to strong acids, strong alkalis, and some solvents. Silicone resin has poor solvent resistance.

【0007】一方、中空糸状多孔質分離膜エレメントの
封止剤として熱溶融性樹脂を使用する場合には、(1)
糸束を収納した外筒を型内に配置し、樹脂を加熱溶融し
て流し込む射出成型または押出成型による方法、(2)
糸束を収納した外筒を型内に配置し、粉状、粒状または
ペレット状の樹脂を型に入れて加熱溶融し、樹脂中に含
まれる気泡を脱泡する方法、(3)予め蜂の巣状の貫通
孔を有する樹脂を成型し、中空糸を孔中に装着してから
熱溶融する方法等がある。
On the other hand, when using a hot melt resin as a sealant for a hollow fiber porous separation membrane element, (1)
(2) A method using injection molding or extrusion molding, in which an outer cylinder containing a yarn bundle is placed in a mold, and resin is heated and melted and poured into the mold.
A method in which an outer cylinder containing a yarn bundle is placed in a mold, powdered, granular, or pelleted resin is placed in the mold, heated and melted, and air bubbles contained in the resin are defoamed. There is a method of molding a resin having through-holes, installing hollow fibers into the holes, and then heat-melting the resin.

【0008】しかしながら、(1)の方法では、熱溶融
性樹脂の粘度が高い場合には、外筒と中空糸束や中空糸
束相互の間隙などの細い間隙に樹脂を侵入させることが
困難である。(2)の方法では、一度入った気泡を高粘
度の樹脂から抜くことは困難であり、封止が不完全とな
る。(3)の方法では、多数の貫通孔を高密度で作成す
ること自体が困難であるとともに、気泡の混入が避けら
れず、しかも間隙を完全に封止することが難しい。した
がって、これらの方法によっては、熱溶融性樹脂を用い
て封止部を微細成型することができず、中空糸の充填率
を上げることもできない。
However, in method (1), when the viscosity of the hot-melt resin is high, it is difficult to infiltrate the resin into narrow gaps such as the gap between the outer cylinder and the hollow fiber bundle or between the hollow fiber bundles. be. In method (2), it is difficult to remove air bubbles once they have entered the resin from the highly viscous resin, resulting in incomplete sealing. In method (3), it is difficult to create a large number of through holes at a high density, the inclusion of air bubbles is inevitable, and it is difficult to completely seal the gaps. Therefore, depending on these methods, it is not possible to finely mold the sealing portion using a hot-melt resin, and it is also not possible to increase the filling rate of the hollow fibers.

【0009】中空糸状多孔質分離膜エレメントの最大の
長所は、単位体積当たりの膜面積を増大できることであ
るが、そのためには、外筒内に中空糸を高度に充填する
ことが不可欠であり、中空糸の充填率(エレメント内体
積に対する、中空糸の内腔を含む体積の合計の割合)は
一般に50%以上とする必要があるとされている。しか
し、封止剤として熱溶融性樹脂を用い高充填率の中空糸
状多孔質分離膜エレメントを作成することは極めて困難
である。特に、耐熱性や耐薬品性に優れた熱溶融性樹脂
は、一般に高融点・高粘度であるため、従来公知の成型
法により封止剤として使用することは、実際には無理で
あった。
The greatest advantage of the hollow fiber porous separation membrane element is that it can increase the membrane area per unit volume, but for this purpose it is essential to highly fill the outer cylinder with hollow fibers. It is generally said that the filling rate of the hollow fibers (the ratio of the total volume including the lumen of the hollow fibers to the internal volume of the element) needs to be 50% or more. However, it is extremely difficult to create a hollow fiber porous separation membrane element with a high filling rate using a hot-melt resin as a sealant. In particular, hot-melt resins with excellent heat resistance and chemical resistance generally have a high melting point and high viscosity, so it has been practically impossible to use them as sealants by conventionally known molding methods.

【0010】0010

【発明が解決しようとする課題】本発明の目的は、耐熱
性、耐薬品性が大幅に改善されたフッ素樹脂製の中空糸
状多孔質分離膜エレメントを提供することにある。また
、本発明の目的は、熱溶融性フッ素樹脂などの熱溶融性
樹脂を用いて、微細成型加工により、フッ素樹脂製の中
空糸状多孔質分離膜エレメントの末端封止部を形成させ
る工程を含む中空糸状多孔質分離膜エレメントの製造方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hollow fiber porous separation membrane element made of fluororesin that has significantly improved heat resistance and chemical resistance. Further, an object of the present invention includes a step of forming an end sealing part of a hollow fiber-like porous separation membrane element made of fluororesin by micro-molding using a heat-melt resin such as a heat-melt fluororesin. An object of the present invention is to provide a method for manufacturing a hollow fiber porous separation membrane element.

【0011】熱溶融性フッ素樹脂は、耐熱、耐薬品性に
優れているが、一般に高融点・高粘度であるため、前記
した射出成型法、押出成型法、粉末成型法などによって
、中空糸状多孔質分離膜エレメントの末端封止部を形成
させることは極めて困難であり、満足のいく製品を得る
ことはできない。例えば、FEP(テトラフルオロエチ
レン/ヘキサフルオロプロピレン共重合体)の成型用樹
脂の比溶融粘度は、通常、104〜106ポアズと高く
、溶融させても加圧なしではほとんど流動性はない。 したがって、熱溶融性フッ素樹脂を中空糸状多孔質分離
膜エレメントの末端封止用の封止剤として使用するには
、細かい隙間に樹脂を侵入させるために高圧が必要であ
り、従来の成型技術では事実上不可能であると考えられ
ていた。
[0011] Heat-melting fluororesin has excellent heat resistance and chemical resistance, but generally has a high melting point and high viscosity. However, it is extremely difficult to form an end seal of a separation membrane element, and a satisfactory product cannot be obtained. For example, the specific melt viscosity of a molding resin such as FEP (tetrafluoroethylene/hexafluoropropylene copolymer) is usually as high as 104 to 106 poise, and even when melted, it has almost no fluidity without pressure. Therefore, in order to use a heat-melting fluororesin as a sealant for end-sealing a hollow fiber porous separation membrane element, high pressure is required to infiltrate the resin into small gaps, and conventional molding techniques cannot It was considered virtually impossible.

【0012】ところが、本発明者の研究結果、熱溶融性
樹脂を予め円柱状や平板状などの所定の形状に溶融成型
した成型品を用い、これを加熱溶融状態にしながら、フ
ッ素樹脂製の中空糸状多孔質分離膜の束または該中空糸
束と外筒を自重、加重、引力またはこれらの組合わせに
より熱溶融性樹脂中に埋設させることにより、該熱溶融
性樹脂による末端封止部を形成できることを見出した。
However, as a result of research by the present inventors, using a molded product made by melting and molding a hot-melt resin into a predetermined shape such as a cylinder or a flat plate, and heating and melting the molded product, a hollow molded product made of fluororesin was molded. By embedding a bundle of filamentous porous separation membranes or the hollow fiber bundle and the outer cylinder in a hot-melt resin using its own weight, weight, gravity, or a combination thereof, an end-sealing portion is formed with the hot-melt resin. I found out what I can do.

【0013】自重、加重または引力を付与するには、中
空糸内腔にステンレス棒などの支え棒を挿入したり、中
空糸の先端に重りをつけたりする方法などがある。そし
て、糸束等を熱溶融性樹脂中に埋設した後には、先端の
余分な部分を切断除去し、支持棒を除去することなどに
より、少なくとも一方の末端部において、中空糸状多孔
質分離膜相互の間隙および中空糸状多孔質分離膜と外筒
の間隙を溶融成型された熱溶融性樹脂により封止した中
空糸状多孔質分離膜エレメントが得られる。
[0013] In order to apply dead weight, weight, or attractive force, there are methods such as inserting a support rod such as a stainless steel rod into the hollow fiber cavity, or attaching a weight to the tip of the hollow fiber. After embedding the fiber bundle etc. in the hot melt resin, the hollow fiber porous separation membrane is mutually bonded at least at one end by cutting off the excess portion at the tip and removing the support rod. A hollow fiber porous separation membrane element is obtained in which the gap and the gap between the hollow fiber porous separation membrane and the outer cylinder are sealed with a melt-molded hot-melt resin.

【0014】この方法によれば、封止剤として、耐熱性
、耐薬品性などに優れた熱溶融性フッ素樹脂などの熱溶
融性樹脂を用い、気泡がなく封止が完全で、高充填率の
中空糸状多孔質分離膜エレメントを製造することができ
る。w本発明は、これらの知見に基づいて完成するに至
ったものである。
According to this method, a heat-melting resin such as a heat-melting fluororesin having excellent heat resistance and chemical resistance is used as the sealant, and the sealing is complete without bubbles and has a high filling rate. A hollow fiber porous separation membrane element can be produced. wThe present invention has been completed based on these findings.

【0015】[0015]

【課題を解決するための手段】かくして本発明によれば
、外筒内にフッ素樹脂製の中空糸状多孔質分離膜の束を
収納した中空糸状多孔質分離膜エレメントにおいて、そ
の少なくとも一方の末端部において、中空糸状多孔質分
離膜相互の間隙および中空糸状多孔質分離膜と外筒の間
隙を溶融成型された熱溶融性フッ素樹脂により封止して
成ることを特徴とする中空糸状多孔質分離膜エレメント
が提供される。
[Means for Solving the Problems] According to the present invention, in a hollow fiber porous separation membrane element in which a bundle of hollow fiber porous separation membranes made of fluororesin is housed in an outer cylinder, at least one end portion of the hollow fiber porous separation membrane element is provided. A hollow fiber porous separation membrane characterized in that the gap between the hollow fiber porous separation membranes and the gap between the hollow fiber porous separation membrane and the outer cylinder are sealed with a heat-melting fluororesin melt-molded. elements are provided.

【0016】また、本発明によれば、所定形状に溶融成
型された熱溶融性樹脂を外筒の末端内部に挿入し、該熱
溶融性樹脂を加熱溶融しながら、フッ素樹脂製の中空糸
状多孔質分離膜の束を外筒の他端から挿入し、自重、加
重、引力またはこれらの組合わせにより熱溶融性樹脂中
に埋設させて熱溶融性樹脂による末端封止部を形成させ
ることを特徴とする中空糸状多孔質分離膜エレメントの
製造方法が提供される。
Further, according to the present invention, a thermofusible resin melt-molded into a predetermined shape is inserted into the inner end of the outer cylinder, and while the thermofusible resin is heated and melted, the hollow fiber-like porous fluororesin is formed. A bundle of quality separation membranes is inserted from the other end of the outer cylinder, and is embedded in the hot melt resin using its own weight, weight, gravity, or a combination of these to form an end sealing portion with the hot melt resin. A method for manufacturing a hollow fiber porous separation membrane element is provided.

【0017】さらに、本発明によれば、所定形状に溶融
成型した熱溶融性樹脂を加熱溶融しながら、その上にフ
ッ素樹脂製の中空糸状多孔質分離膜の束を収納した外筒
を載置し、自重、加重、引力またはこれらの組合わせに
より末端部を該熱溶融性樹脂中に埋設させて熱溶融性樹
脂による末端封止部を形成させることを特徴とする中空
糸状多孔質分離膜エレメントの製造方法が提供される。
Furthermore, according to the present invention, while heating and melting the hot-melt resin that has been melt-molded into a predetermined shape, an outer cylinder containing a bundle of hollow fiber porous separation membranes made of fluororesin is placed thereon. A hollow fiber porous separation membrane element characterized in that the end portion is embedded in the hot-melt resin by its own weight, weight, attraction, or a combination thereof to form an end-sealed portion with the hot-melt resin. A manufacturing method is provided.

【0018】以下、本発明について詳述する。本発明で
使用するフッ素樹脂製の中空糸状多孔質分離膜は、特に
限定されず、PTFE(ポリテトラフルオロエチレン)
製中空糸など従来公知のものが使用できる。また、円筒
状などのエレメント外筒の材質としては、耐熱性、耐薬
品性に優れたステンレス等の金属やPTFE、FEP、
PFA(テトラフルオロエチレン/パーフルオロアルキ
ルビニルエーテル共重合体)などのフッ素樹脂が好まし
い。
The present invention will be explained in detail below. The hollow fiber porous separation membrane made of fluororesin used in the present invention is not particularly limited, and may be made of PTFE (polytetrafluoroethylene).
Conventionally known fibers such as hollow fibers can be used. In addition, the material of the cylindrical element outer cylinder is metal such as stainless steel, which has excellent heat resistance and chemical resistance, PTFE, FEP, etc.
Fluororesins such as PFA (tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer) are preferred.

【0019】本発明において封止剤として使用される熱
溶融性樹脂としては、例えば、FEP、PFA、ETF
E(エチレン/テトラフルオロエチレン共重合体)、P
CTFE(ポリクロロトリフルオロエチレン)、PVd
F(ポリビニリデンフルオライド)等の熱溶融性フッ素
樹脂を挙げることができる。これらの中でも、蒸気滅菌
への耐性を基準にした耐熱性と、酸、アルカリおよび溶
剤に対する耐薬品性の観点から、FEPとPFAが最も
適している。
[0019] Examples of the heat-melting resin used as a sealant in the present invention include FEP, PFA, and ETF.
E (ethylene/tetrafluoroethylene copolymer), P
CTFE (polychlorotrifluoroethylene), PVd
Examples include heat-melting fluororesins such as F (polyvinylidene fluoride). Among these, FEP and PFA are most suitable from the viewpoint of heat resistance based on resistance to steam sterilization and chemical resistance against acids, alkalis and solvents.

【0020】また、フッ素樹脂製の中空糸状多孔質分離
膜と封止剤として用いる熱溶融性樹脂は、親和性が高い
組合わせのもの程良く、同種の樹脂とすることが望まし
い。例えば、PTFE中空糸を使用した場合、封止剤と
しては、FEPやPFAが最適である。異種、異性質の
組み合わせの時は、中空糸表面を処理してできるだけ親
和性を上げることが望ましい。
[0020] Furthermore, the combination of the fluororesin hollow fiber porous separation membrane and the heat-melting resin used as the sealant is better if the combination has higher affinity, and it is desirable that the resins be of the same type. For example, when PTFE hollow fibers are used, FEP or PFA is optimal as the sealant. When combining different types and properties, it is desirable to treat the surface of the hollow fiber to increase the affinity as much as possible.

【0021】以下、図面を参照しながら、本発明の中空
糸状多孔質分離膜エレメントとその製造方法について説
明する。図1は、本発明の中空糸状多孔質分離膜エレメ
ントの末端封止部を示す略図である。エレメント外筒1
内に収納された多数のフッ素樹脂製の中空糸状多孔質分
離膜5は、エレメントの末端部で熱溶融性樹脂2により
中空糸状多孔質分離膜5相互の間隙および中空糸状多孔
質分離膜5と外筒1の間隙が封止されている。
The hollow fiber porous separation membrane element of the present invention and its manufacturing method will be explained below with reference to the drawings. FIG. 1 is a schematic diagram showing the end sealing portion of the hollow fiber porous separation membrane element of the present invention. Element outer cylinder 1
A large number of hollow fiber porous separation membranes 5 made of fluororesin housed in the element are separated by the heat-melting resin 2 at the ends of the elements and the gaps between the hollow fiber porous separation membranes 5 and the hollow fiber porous separation membranes 5. The gap in the outer cylinder 1 is sealed.

【0022】図2〜図4に、本発明の製造方法の1実施
例を示す。熱溶融性樹脂は、高融点・高粘度のものであ
っても、円柱状や平板状などの成型品であれば、押出成
型や射出成型などの一般的溶融加工法により容易に所定
形状に溶融成型できる。そこで、図2に示すように、予
め熱溶融性樹脂を用いて、エレメント外筒の内部に挿入
できる大きさの円柱状成形品2を溶融成型により作成し
ておき、これを外筒1の末端内部に挿入する。円柱状成
形品の一部は外筒1からはみ出るようにしておき、凹状
の樹脂受部を有する耐熱性の受皿3で蓋をする。ついで
、受皿が下になるように配置し、加熱用ヒーター4で熱
溶融性樹脂を加熱溶融させ、外筒内部に円柱状に広がっ
た状態としておく。
FIGS. 2 to 4 show an embodiment of the manufacturing method of the present invention. Even if heat-melting resin has a high melting point and high viscosity, if it is a molded product such as a cylinder or a flat plate, it can be easily melted into the desired shape using general melt processing methods such as extrusion molding and injection molding. Can be molded. Therefore, as shown in FIG. 2, a cylindrical molded product 2 of a size that can be inserted into the element outer cylinder is prepared in advance by melt-molding using a hot-melt resin, and this is placed at the end of the outer cylinder 1. Insert inside. A part of the cylindrical molded product is made to protrude from the outer cylinder 1, and is covered with a heat-resistant saucer 3 having a concave resin receiver. Next, the resin is placed so that the saucer is facing downward, and the heat-melting resin is heated and melted by the heating heater 4, so that it is spread in a cylindrical shape inside the outer cylinder.

【0023】一方、フッ素樹脂製の中空糸状多孔質分離
膜5の内腔に、ステンレス等の金属やセラミック等の熱
に強い材質からなる支え棒6を挿入し、この中空糸の束
を外筒1の他端から挿入し、加熱溶融している熱溶融性
樹脂の表面に置くと、この束は自重でゆっくりと熱溶融
性樹脂の中へ沈んで行く(図3)。この沈降は急速に行
なうと気泡をまき込む恐れがあるため、ゆっくりと沈降
するように沈降速度を制御して行なうことが望ましい。
On the other hand, a support rod 6 made of a metal such as stainless steel or a heat-resistant material such as ceramic is inserted into the inner cavity of the hollow fiber porous separation membrane 5 made of fluororesin, and the bundle of hollow fibers is inserted into the outer cylinder. When inserted from the other end of 1 and placed on the surface of the hot-melt resin that is being heated and melted, the bundle slowly sinks into the hot-melt resin due to its own weight (Figure 3). If this sedimentation is performed too quickly, there is a risk of introducing air bubbles, so it is desirable to control the sedimentation speed so that the sedimentation is performed slowly.

【0024】中空糸束の先端部が外筒1の先端よりも下
の位置に来るまで充分に沈降し、熱溶融性樹脂中に埋設
されたところで、加熱を止めて室温に戻す。ついで、受
皿3を外し、図4に示すように、外筒1の先端よりも先
の余分な箇所7を切断除去した後、中空糸5内に挿入し
てある支え棒6を抜き去れば、末端部において、中空糸
相互の間隙および中空糸5と外筒1の間隙を熱溶融性樹
脂2により封止されたエレメントが得られる。図5は、
エレメント末端部の完成図である。
[0024] When the tip of the hollow fiber bundle has settled sufficiently to be at a position below the tip of the outer cylinder 1 and is embedded in the hot-melt resin, heating is stopped and the temperature is returned to room temperature. Next, the saucer 3 is removed, and as shown in FIG. 4, the excess portion 7 beyond the tip of the outer cylinder 1 is cut and removed, and the support rod 6 inserted into the hollow fiber 5 is removed. At the end, an element is obtained in which the gaps between the hollow fibers and the gap between the hollow fibers 5 and the outer cylinder 1 are sealed with the hot-melt resin 2. Figure 5 shows
FIG. 3 is a completed view of the end of the element.

【0025】本発明の製造方法においては、この支え棒
は必ずしも必要ではなく、例えば、図6に示すように、
中空糸の先端に充分な重さの重り10を接続しても、上
記同様の方法が可能である。この重りを磁力によって引
かれる金属製とすれば、下方から磁界をかけて引っ張っ
てやることもできる。また、他の方法としては、中空糸
の内径とほぼ等しいかやや細い金属等の棒を、予め熱溶
融性樹脂に貫通させておいて、この棒を中空糸の内腔に
挿入し、この棒を下方から引っ張っることにより、中空
糸を樹脂内に埋設させることもできる。
[0025] In the manufacturing method of the present invention, this support rod is not necessarily necessary; for example, as shown in FIG.
The same method as described above is possible even if a weight 10 of sufficient weight is connected to the tip of the hollow fiber. If this weight is made of metal that can be pulled by magnetic force, it can also be pulled by applying a magnetic field from below. In addition, as another method, a rod made of metal or the like that is approximately equal to the inner diameter of the hollow fiber or slightly thinner is passed through the hot melt resin in advance, and this rod is inserted into the inner cavity of the hollow fiber. The hollow fibers can also be embedded in the resin by pulling from below.

【0026】図7は、本発明の製造方法の他の実施例を
示す図である。前記の方法は、中空糸の束を熱溶融性樹
脂内に沈降させる方法であったが、予めエレメント外筒
内に中空糸の束を挿入しておいてエレメント外筒ごと、
溶融状態の樹脂内に沈降させて末端封止部を成型するこ
ともで可能である。
FIG. 7 is a diagram showing another embodiment of the manufacturing method of the present invention. The method described above is a method in which a bundle of hollow fibers is precipitated in a hot melt resin, but the bundle of hollow fibers is inserted into the element outer cylinder in advance and the entire element outer cylinder is separated.
It is also possible to mold the end sealing portion by precipitating it in a molten resin.

【0027】図7に示すように、予め平板状に溶融成型
した熱溶融性樹脂成形品9を受皿10に入れて、加熱用
ヒーター4で加熱溶融する。一方、内腔にステンレス棒
などの支え棒6を挿入した中空糸5の束を外筒1内に入
れ、その先端部分を外筒より外部に露出させておく。こ
のような状態の外筒と中空糸の束を熱溶融性樹脂成形品
の上に載置すれば、自重により先端部分が樹脂内に沈降
し埋設される。
As shown in FIG. 7, a hot-melt resin molded article 9 which has been melt-molded into a flat plate shape in advance is placed in a saucer 10 and heated and melted by a heating heater 4 . On the other hand, a bundle of hollow fibers 5 with a support rod 6 such as a stainless steel rod inserted into the inner cavity is placed in the outer cylinder 1, and the tip portion thereof is exposed to the outside from the outer cylinder. When the outer cylinder and the bundle of hollow fibers in such a state are placed on a hot-melt resin molded product, the tip portion sinks into the resin due to its own weight and is buried.

【0028】外筒1と中空糸束が充分に沈降し、その先
端部が熱溶融性樹脂中に埋設されたところで、加熱を止
めて室温に戻す。ついで、受皿10を外し、外筒1の先
端よりも先の余分な箇所を切断除去した後、中空糸5内
に挿入してある支え棒6を抜き去れば、末端部において
、中空糸相互の間隙および中空糸5と外筒1の間隙を熱
溶融性樹脂9により封止されたエレメントが得られる。
When the outer cylinder 1 and the hollow fiber bundle have settled sufficiently and their tips are embedded in the hot melt resin, heating is stopped and the temperature is returned to room temperature. Next, after removing the saucer 10 and cutting off the excess portion beyond the tip of the outer cylinder 1, the support rod 6 inserted into the hollow fiber 5 is removed, and the hollow fibers are connected to each other at the end. An element is obtained in which the gap and the gap between the hollow fiber 5 and the outer cylinder 1 are sealed with the hot melt resin 9.

【0029】この方法は、両端に中空糸の開口部を持つ
中空糸状多孔質分離膜エレメントの作成においては、必
要な方法でもある。というのは、エレメント片端を封止
成型後、さらに他端を封止成型する際には、すでに外筒
と中空糸の束が片端において封止されて一体化している
からである。
This method is also a necessary method for producing a hollow fiber porous separation membrane element having hollow fiber openings at both ends. This is because, after sealing one end of the element and then sealing the other end, the outer cylinder and the bundle of hollow fibers have already been sealed and integrated at one end.

【0030】また、本発明の製造方法を実施する際には
、封止剤の樹脂と同じ材質の熱収縮チューブを、予め中
空糸の端部の封止剤と接着する側に被覆しておくと、中
空糸と封止剤の樹脂との親和性が増し、成型時間の短縮
、中空糸充填率の向上を図ることができる。
[0030] Furthermore, when carrying out the manufacturing method of the present invention, a heat-shrinkable tube made of the same material as the resin of the sealant is coated in advance on the end of the hollow fiber on the side to be bonded to the sealant. This increases the affinity between the hollow fibers and the resin of the sealant, making it possible to shorten the molding time and improve the filling rate of the hollow fibers.

【0031】本発明の製造方法による中空糸状多孔質分
離膜エレメントは、従来品と同様の50〜60%の中空
糸充填率を保持することができる。
The hollow fiber porous separation membrane element manufactured by the manufacturing method of the present invention can maintain a hollow fiber filling rate of 50 to 60%, which is the same as that of conventional products.

【0032】本発明による製造方法は、次の点で従来の
方法よりも優れている。(1)熱溶融性樹脂の溶融成型
品が円柱状または平板状などと簡単であるため、高粘度
の熱溶融性樹脂でも成型が容易である。(2)封止剤の
熱溶融性樹脂を予めバルク状に成型するため、気泡がな
く封止が完全である。(3)封止成型する際に、高粘度
で流動性の乏しい樹脂に圧力を加えるのではなく、外筒
や中空糸等の固体に力を加えるため、高圧や強い力は必
要がない。
The manufacturing method according to the present invention is superior to conventional methods in the following points. (1) Since the melt-molded product of the hot-melt resin is simple, such as a cylinder or a flat plate, even a high-viscosity hot-melt resin can be easily molded. (2) Since the heat-melting resin as the sealant is molded in bulk in advance, the sealing is complete without air bubbles. (3) During sealing and molding, pressure is not applied to the highly viscous resin with poor fluidity, but rather to the solids such as the outer cylinder and hollow fibers, so high pressure and strong force are not necessary.

【0033】したがって、本発明の製造方法においては
、従来、高粘度であるため微細成型が困難であるとされ
ていた熱溶融性フッ素樹脂を、中空糸状多孔質分離膜エ
レメント末端の封止剤に使用することができるため、従
来使用されていたエポキシ樹脂、シリコーン樹脂、ウレ
タン樹脂等を封止剤としたものと比べて耐熱性、耐薬品
性を大きく改善することができる。そして、特に、熱溶
融性樹脂として、FEPやPFAを用いると、強酸性、
強アルカリ性の溶液またはあらゆる溶剤を溶媒とする分
離・濃縮用途に使用可能であり、また、蒸気滅菌を繰り
返し行なうことが可能な中空糸状多孔質分離膜エレメン
トが得られる。
Therefore, in the production method of the present invention, a heat-melting fluororesin, which has conventionally been considered difficult to mold due to its high viscosity, is used as a sealant at the end of a hollow fiber porous separation membrane element. Therefore, heat resistance and chemical resistance can be greatly improved compared to conventionally used sealants using epoxy resins, silicone resins, urethane resins, etc. In particular, when FEP or PFA is used as a hot melt resin, strong acidity,
A hollow fiber porous separation membrane element is obtained which can be used for separation and concentration applications using strong alkaline solutions or any solvent as a solvent, and which can be repeatedly steam sterilized.

【0034】[0034]

【実施例】以下、本発明について、実施例および比較例
を挙げて具体的に説明するが、本発明は、これらの実施
例のみに限定されるものではない。
[Examples] The present invention will be specifically explained below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0035】[実施例1] 中空糸状多孔質分離膜として、気孔率65%、平均孔径
0.8μm、内径2mm、外径3mmのPTFE(ポリ
テトラフルオロエチレン)多孔質チューブを用い、末端
封止剤としてFEP(テトラフルオロエチレン/ヘキサ
フルオロプロピレン共重合体)からなる95mmφ×4
0mm高の円柱状成型品を用いた。
[Example 1] A PTFE (polytetrafluoroethylene) porous tube with a porosity of 65%, an average pore diameter of 0.8 μm, an inner diameter of 2 mm, and an outer diameter of 3 mm was used as a hollow fiber porous separation membrane, and the ends were sealed. 95mmφ×4 made of FEP (tetrafluoroethylene/hexafluoropropylene copolymer) as agent
A cylindrical molded product with a height of 0 mm was used.

【0036】内径95mmφのステンレス製(SUS3
04)外筒の片端に上記FEP成型品を半ば挿入し、内
径95mmφ×10mm高の受け皿で蓋をして、受け皿
と外筒を接続し、受け皿が下になるように設置した(図
2)。
[0036] Made of stainless steel (SUS3) with an inner diameter of 95 mmφ.
04) The above FEP molded product was inserted halfway into one end of the outer cylinder, covered with a saucer with an inner diameter of 95 mmφ and a height of 10 mm, and the saucer and the outer cylinder were connected and installed with the saucer facing down (Figure 2). .

【0037】外筒および受け皿をバンドヒーターで30
0℃に加熱して、そのまま8時間放置した。FEP成型
品が溶融状態になったところで、上記中空糸状多孔質分
離膜に2mmφのステンレス棒を挿入し、両端を針金で
固定したものを586本束ねて、外筒内へ上方より挿入
し、溶融しているFEP成型品内へ1cm/時の速度で
ゆっくり沈降させていった。受け皿底面に到達したとこ
ろで、バンドヒーターを切り、室温に戻るまで自然放置
した。
Heat the outer cylinder and saucer for 30 minutes using a band heater.
The mixture was heated to 0° C. and left for 8 hours. When the FEP molded product is in a molten state, insert 2 mmφ stainless steel rods into the hollow fiber porous separation membrane, secure both ends with wire, bundle 586 rods, insert into the outer cylinder from above, and melt. It was slowly allowed to settle into the FEP molded product at a rate of 1 cm/hour. When it reached the bottom of the saucer, the band heater was turned off and the sample was left to stand until it returned to room temperature.

【0038】その後、受け皿をはずして、外筒よりはみ
出ているFEP成型品部分および中空糸内腔にステンレ
ス棒を挿入した中空糸端部を外筒端面で切断除去し、挿
入したステンレス棒を抜き去った(図4)。
[0038] After that, remove the tray, cut and remove the FEP molded part protruding from the outer cylinder and the hollow fiber end with a stainless steel rod inserted into the hollow fiber lumen at the outer cylinder end surface, and pull out the inserted stainless steel rod. left (Figure 4).

【0039】中空糸の他端を熱融着させて封止し、さら
に、熱融着端側の外筒をステンレス製の蓋で密封して、
閉鎖型の内圧式中空糸状多孔質分離膜エレメントを得た
。図1に本発明の中空糸状多孔質分離膜エレメントの末
端部断面を示す。
The other end of the hollow fiber is heat-sealed and sealed, and the outer cylinder on the heat-sealed end side is further sealed with a stainless steel lid.
A closed internal pressure type hollow fiber porous separation membrane element was obtained. FIG. 1 shows a cross section of the end portion of the hollow fiber porous separation membrane element of the present invention.

【0040】得られた中空糸状多孔質分離膜エレメント
は、その末端封止部の樹脂に気泡は見られず、樹脂と中
空糸および外筒との接着性も良好であった。また、中空
糸内腔への封止樹脂の侵入はなかった。
In the obtained hollow fiber porous separation membrane element, no air bubbles were observed in the resin at the end sealing portion, and the adhesiveness between the resin, the hollow fibers, and the outer cylinder was also good. Further, there was no intrusion of the sealing resin into the hollow fiber lumen.

【0041】[実施例2] 中空糸状多孔質分離膜および封止剤は、実施例1と同様
とし、内径20mmφのステンレス製外筒、20mmφ
×40mmの円柱状FEP成型品、21本の中空糸を用
いて実施例1と同様にして末端封止部を成型した。この
時は、ステンレス棒は抜き去らずにおいた。
[Example 2] The hollow fiber porous separation membrane and the sealant were the same as in Example 1, and a stainless steel outer cylinder with an inner diameter of 20 mmφ and a 20 mmφ
An end sealing portion was molded in the same manner as in Example 1 using a 40 mm cylindrical FEP molded product and 21 hollow fibers. At this time, the stainless steel rod was not removed.

【0042】次に70mm角40mm高さのFEP平板
状成型品を用意し、これを70mm角の金属製容器に入
れ、300℃の熱風恒温槽内で急速溶融させ、取り出し
た後に、バンドヒーターにて300℃に容器および外筒
を加熱した、加熱を継続しながら、上記の片端を封止し
た側を上にして、溶融状態のFEP成型品上に載置し樹
脂内に外筒および中空糸の束を1cm/時の速度で沈降
させた。この際、中空糸は、外筒の下端部より約1cm
突き出すようにしたおいた。中空糸束の先端が金属容器
の底面に到達した後にバンドヒーターを切り、室温に戻
るまで自然放置した(図7)。
[0042] Next, prepare a 70 mm square FEP plate-shaped molded product with a height of 40 mm, place it in a 70 mm square metal container, rapidly melt it in a hot air constant temperature bath at 300°C, take it out, and place it in a band heater. The container and outer cylinder were heated to 300°C.While heating was continued, the outer cylinder and hollow fibers were placed on the molten FEP molded product with the one end sealed side facing up. The bundles were allowed to settle at a speed of 1 cm/h. At this time, the hollow fiber should be approximately 1 cm from the lower end of the outer cylinder.
I left it so that it stuck out. After the tip of the hollow fiber bundle reached the bottom of the metal container, the band heater was turned off and the bundle was left to cool down to room temperature (FIG. 7).

【0043】その後、外筒下端部面で中空糸束およびF
EP封止部成型品の不要部分を切断除去し、ステンレス
棒を抜き去って、内圧循環式中空糸状多孔質分離膜エレ
メントを得た。
[0043] After that, the hollow fiber bundle and F
An unnecessary portion of the EP sealing part molded product was cut and removed, and the stainless steel rod was removed to obtain an internal pressure circulation type hollow fiber porous separation membrane element.

【0044】得られた中空糸状多孔質分離膜エレメント
は、その末端封止部の樹脂に気泡は見られず、樹脂と中
空糸および外筒との接着性も良好であった。また、中空
糸内腔への封止樹脂の侵入はなかった。
In the obtained hollow fiber porous separation membrane element, no air bubbles were observed in the resin at the end sealing portion, and the adhesiveness between the resin, the hollow fibers, and the outer cylinder was also good. Further, there was no intrusion of the sealing resin into the hollow fiber lumen.

【0045】[実施例3] 中空糸状多孔質分離膜として、気孔率60%、平均孔径
0.45μm、内径3.5mm、外径5mmのPTFE
多孔質チューブを用い、封止剤としてFEPを用いた。 実施例1と同様の内径95mmφのステンレス製外筒、
FEP円柱状成型品、受け皿を設置し、バンドヒーター
でFEPを溶融させた。上記多孔質チューブの片端に図
6に示すような形状の3.5mmφのチューブ挿入部と
先端部を円錐状に削った5mmφの真鍮製の重りを接続
したものを185本、溶融状態のFEP中に沈降させた
。また、エレメントの他端も実施例2と同様に、120
mm角×40mmのFEP成型品、内付120mm角の
金属容器を用いて、0.2cm/時の速度で沈降させ、
不要部分を切断除去し、内圧循環式中空糸状多孔質分離
膜エレメントを得た。
[Example 3] As a hollow fiber porous separation membrane, PTFE with a porosity of 60%, an average pore diameter of 0.45 μm, an inner diameter of 3.5 mm, and an outer diameter of 5 mm was used.
A porous tube was used and FEP was used as the sealant. A stainless steel outer cylinder with an inner diameter of 95 mmφ similar to Example 1,
A cylindrical FEP molded product and a saucer were installed, and the FEP was melted with a band heater. At one end of the above porous tube, 185 pieces were connected to a 3.5 mmφ tube insertion portion shaped as shown in Figure 6 and a 5 mmφ brass weight with a conically cut tip, during FEP in a molten state. was allowed to settle. Further, the other end of the element is also 120 mm as in Example 2.
Using a mm square x 40 mm FEP molded product and a 120 mm square metal container with an inner part, let it settle at a speed of 0.2 cm/hour.
Unnecessary parts were cut and removed to obtain an internal pressure circulation type hollow fiber porous separation membrane element.

【0046】得られた中空糸状多孔質分離膜エレメント
は、その末端封止部の樹脂に気泡は見られず、樹脂と中
空糸および外筒との接着性も良好であった。また、中空
糸内腔への封止樹脂の侵入はなかった。
In the obtained hollow fiber porous separation membrane element, no air bubbles were observed in the resin at the end sealing portion, and the adhesiveness between the resin, the hollow fibers, and the outer cylinder was also good. Further, there was no intrusion of the sealing resin into the hollow fiber lumen.

【0047】[実施例4] 封止剤としてPFA(テトラフルオロエチレン/パフル
オロアルキルビニルエーテル共重合体)を用い、作製に
際して、バンドヒーターを使用せず、315℃の熱風高
温槽内で封止剤を溶融させたこと以外は、実施例2と同
様にして内圧循環式中空糸状多孔質分離膜エレメントを
得た。
[Example 4] PFA (tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer) was used as the sealant, and the sealant was heated in a hot air bath at 315° C. without using a band heater. An internal pressure circulation type hollow fiber porous separation membrane element was obtained in the same manner as in Example 2, except for melting.

【0048】得られた中空糸状多孔質分離膜エレメント
は、その末端封止部の樹脂に気泡は見られず、樹脂と中
空糸および外筒との接着性も良好であった。また、中空
糸内腔への封止樹脂の侵入はなかった。
In the obtained hollow fiber porous separation membrane element, no air bubbles were observed in the resin at the end sealing portion, and the adhesiveness between the resin, the hollow fibers, and the outer cylinder was also good. Further, there was no intrusion of the sealing resin into the hollow fiber lumen.

【0049】[実施例5] 内径39mmφのPTFE製外筒を用い、中空糸状多孔
質分離膜は実施例3と同様のものを42本使用し、封止
剤は39mmφ×40mm高のFEP円柱状成形品を用
いた。また、バンドヒーターを使用せず、300℃の熱
風恒温槽内で、実施例1と同様の操作を行ない、全てフ
ッ素樹脂でできた閉鎖型内圧式中空糸状多孔質分離膜エ
レメントを得た。
[Example 5] A PTFE outer cylinder with an inner diameter of 39 mmφ was used, 42 hollow fiber porous separation membranes similar to those in Example 3 were used, and the sealant was an FEP cylinder with a diameter of 39 mm×40 mm. A molded product was used. Further, the same operation as in Example 1 was carried out in a hot air constant temperature bath at 300° C. without using a band heater, to obtain a closed internal pressure type hollow fiber porous separation membrane element made entirely of fluororesin.

【0050】得られた中空糸状多孔質分離膜エレメント
は、その末端封止部の樹脂に気泡は見られず、樹脂と中
空糸および外筒との接着性も良好であった。また、中空
糸内腔への封止樹脂の侵入はなかった。
In the obtained hollow fiber porous separation membrane element, no air bubbles were observed in the resin at the end sealing portion, and the adhesiveness between the resin, the hollow fibers, and the outer cylinder was also good. Further, there was no intrusion of the sealing resin into the hollow fiber lumen.

【0051】[比較例1] 中空糸状多孔質分離膜、エレメント外筒、受け皿、ステ
ンレス棒は実施例1と同様のものを使用した。ステンレ
ス棒を中空糸状多孔質分離膜内腔に挿入し、両端を針金
で固定して586本束ねたものを、受け皿に垂直に立て
たエレメント外筒内にいれた。その際、予め、外筒内に
は底から80mmの高さになるように粉状FEP(ダイ
キン社製、ネオフロンFEP)を入れたおいた。この状
態で300℃の熱風恒温槽に入れ、1週間放置した後、
室温に戻し、受け皿を取り除きエレメント外筒よりはみ
出ているFEP部分を切断除去した。これ以後の操作は
、実施例1と同様にした。
[Comparative Example 1] The same hollow fiber porous separation membrane, element outer cylinder, saucer, and stainless steel rod as in Example 1 were used. Stainless steel rods were inserted into the inner cavity of the hollow fiber porous separation membrane, both ends of which were fixed with wire, and a bundle of 586 rods was placed into an element outer cylinder that was vertically erected on a saucer. At that time, powdered FEP (Neoflon FEP, manufactured by Daikin Corporation) was placed in the outer cylinder in advance at a height of 80 mm from the bottom. In this state, I put it in a hot air constant temperature bath at 300℃ and left it for one week.
The temperature was returned to room temperature, the saucer was removed, and the FEP portion protruding from the element outer cylinder was cut and removed. The subsequent operations were the same as in Example 1.

【0052】得られた中空糸状多孔質分離膜エレメント
は、その末端封止部の樹脂に多数の気泡が見られ、中空
糸相互または中空糸と外筒との間隙に全く封止樹脂のな
い部分があった。
[0052] The obtained hollow fiber porous separation membrane element had many air bubbles in the resin at the end sealing part, and there were parts where there was no sealing resin at all between the hollow fibers or between the hollow fibers and the outer cylinder. was there.

【0053】[比較例2] 実施例1と同様のFEP樹脂成形品をバイスで固定し、
ドリル(ドリル刃径、2.8mm)で蜂の巣状(レンコ
ン状)に貫通孔を開けた。実施例1と同様の586本分
の孔を開けることを試みたが、孔と孔がつながった部分
が多数発生した。この孔に、実施例1と同様に用意した
ステンレス棒を挿入・固定した中空糸状多孔質分離膜を
586本挿入した後、受け皿をつけて、垂直に立てたエ
レメント外筒内にいれた。バンドヒーターによる加熱以
降の操作は、実施例1と同様にした。
[Comparative Example 2] The same FEP resin molded product as in Example 1 was fixed in a vise,
A honeycomb-shaped (lotus root-shaped) through hole was made with a drill (drill blade diameter, 2.8 mm). An attempt was made to drill 586 holes similar to those in Example 1, but many portions where the holes were connected occurred. After inserting 586 hollow fiber porous separation membranes in which stainless steel rods prepared in the same manner as in Example 1 were inserted and fixed into the holes, a saucer was attached and the membranes were placed in the vertically erected outer cylinder of the element. The operations after heating with the band heater were the same as in Example 1.

【0054】得られた中空糸状多孔質分離膜エレメント
は、その末端封止部の樹脂に多数の気泡が見られ、中空
糸相互または中空糸と外筒との間隙に全く封止樹脂のな
い部分があった。
[0054] The obtained hollow fiber porous separation membrane element has many air bubbles in the resin at the end sealing part, and there are parts where there is no sealing resin at all between the hollow fibers or between the hollow fibers and the outer cylinder. was there.

【0055】[比較例3] 内径95mm、深さ20mmの受け皿の側面に10mm
φの孔をあけたものを受け皿として使用し、FEP成形
品を使用しなかった以外は、実施例1と同様にして中空
糸状多孔質分離膜、ステンレス棒、外筒、受け皿、およ
びバンドヒーターをセットした。
[Comparative Example 3] 10 mm on the side of a saucer with an inner diameter of 95 mm and a depth of 20 mm.
A hollow fiber porous separation membrane, a stainless steel rod, an outer cylinder, a tray, and a band heater were prepared in the same manner as in Example 1, except that a hole with φ holes was used as the tray and the FEP molded product was not used. I set it.

【0056】外筒および受け皿を300℃に加温しなが
ら、10mmφのパイプで受け皿と接続した溶融押出機
から、溶融状態のFEP樹脂を受け皿および外筒内に注
入した。注入は、全354ml(95mmφ×50mm
相当)を約1時間で行った。終了後、さらに24時間、
300℃に保持し、受け皿をはずした後は実施例1と同
様にしたが、FEP樹脂は中空糸間および外筒の受け皿
の孔と反対の端には注入されておらず、満足な末端封止
部は作製できなかった。
[0056] While the outer cylinder and saucer were being heated to 300°C, molten FEP resin was injected into the saucer and the outer cylinder from a melt extruder connected to the saucer through a 10 mm diameter pipe. For injection, a total of 354 ml (95 mmφ x 50 mm
equivalent) in about 1 hour. After the end, another 24 hours,
After holding the temperature at 300°C and removing the saucer, the procedure was the same as in Example 1, but the FEP resin was not injected between the hollow fibers or at the end of the outer cylinder opposite to the hole in the saucer, so that satisfactory end sealing was not achieved. It was not possible to create a stop.

【0057】[比較例4] 実施例1と同様の中空糸状多孔質分離膜を用いて、以下
の工程で末端封止部がエポキシ樹脂製のエレメントを作
成した。中空糸状多孔質分離膜586本の両端を熱融着
封止し、フッ素樹脂表面改質剤(潤工社製、テトラエッ
チ)にてその端の3〜5cmを処理した後、実施例5の
FEPの代わりにエポキシ樹脂(チバガイギー社製:C
Y−205  100重量部と、HY−974J  2
3重量部の混合物)を50℃に加温し、354mlを1
5分で注入した。
[Comparative Example 4] Using the same hollow fiber porous separation membrane as in Example 1, an element whose terminal end sealing portion was made of epoxy resin was prepared in the following steps. After heat-sealing both ends of 586 hollow fiber porous separation membranes and treating 3 to 5 cm of the ends with a fluororesin surface modifier (manufactured by Junkosha, Tetra Etch), the FEP of Example 5 was sealed. Instead, use epoxy resin (manufactured by Ciba Geigy: C
Y-205 100 parts by weight and HY-974J 2
3 parts by weight of the mixture) was heated to 50°C, and 354 ml was added to 1
Injected in 5 minutes.

【0058】その後、75℃で3時間、さらに120℃
で2時間保持してエポキシ樹脂を硬化させた。受け皿を
はずして、外筒から出ているエポキシ樹脂部分を切断し
、封止剤がエポキシ樹脂であること以外は実施例5と同
じ構造の中空糸状多孔質分離膜エレメントを得た。得ら
れた中空糸状多孔質分離膜エレメントは、その末端封止
部の樹脂に気泡は見られなかった。
[0058] Then, at 75°C for 3 hours, and then at 120°C.
The epoxy resin was cured by holding for 2 hours. The tray was removed and the epoxy resin portion protruding from the outer cylinder was cut to obtain a hollow fiber porous separation membrane element having the same structure as Example 5 except that the sealant was an epoxy resin. In the obtained hollow fiber porous separation membrane element, no air bubbles were observed in the resin at the end sealing part.

【0059】<物性の測定> 実施例1〜5 実施例1〜5で得られた中空糸状多孔質分離膜エレメン
トを用いて、0.2kg/cm2でエアーリークテスト
を行なったが、エアーリークは認められず、末端封止が
完全に行なわれていることが確認できた。
<Measurement of physical properties> Examples 1 to 5 Using the hollow fiber porous separation membrane elements obtained in Examples 1 to 5, an air leak test was conducted at 0.2 kg/cm2. This was not observed, and it was confirmed that the ends were completely sealed.

【0060】また、実施例1〜5で得られた中空糸状多
孔質分離膜エレメントを用いて、膜間差圧4kg/cm
2、400時間の条件で、水、40%アンモニア水、1
0%塩酸、アセトン、トルエン、ジエチルアミンの各濾
過試験を行なった後、再度エアリークテストを実施した
ところ、エアリークは認められなかった。
[0060] Furthermore, using the hollow fiber porous separation membrane elements obtained in Examples 1 to 5, the transmembrane differential pressure was 4 kg/cm.
2. Under the conditions of 400 hours, water, 40% ammonia water, 1
After conducting each filtration test using 0% hydrochloric acid, acetone, toluene, and diethylamine, an air leak test was performed again, and no air leak was observed.

【0061】実施例5で得られた中空糸状多孔質分離膜
エレメントについては、濃硫酸、20%カセイソーダ、
10%硝酸に3ケ月漬浸後に、エアリークテストおよび
5kg/cm2耐圧試験を行ったが、エアリークは認め
られなかった。
Regarding the hollow fiber porous separation membrane element obtained in Example 5, concentrated sulfuric acid, 20% caustic soda,
After being immersed in 10% nitric acid for 3 months, an air leak test and a 5 kg/cm2 pressure test were conducted, but no air leak was observed.

【0062】さらに、実施例1〜5で得られた中空糸状
多孔質分離膜エレメントを用いて、150℃、湿度10
0%で1時間加熱後、急速冷却し、4℃に1時間保持後
、再び150℃に加熱するヒートサイクルテストを1ケ
月行なった後、エアリークテストおよび5kg/cm2
耐圧試験を行ったところ、エアリークは認められなかっ
た。
Furthermore, using the hollow fiber porous separation membrane elements obtained in Examples 1 to 5, a temperature of 150° C. and a humidity of 10
After heating at 0% for 1 hour, rapidly cooling, holding at 4℃ for 1 hour, and heating again to 150℃ for 1 month, a heat cycle test was conducted, followed by an air leak test and 5kg/cm2.
When a pressure test was performed, no air leak was observed.

【0063】比較例1〜3 これに対して、比較例1〜2得られた中空糸状多孔質分
離膜エレメントを用いて、0.2kg/cm2でエアリ
ークテストを行なったところ、いずれにもエアリークが
認められた。比較例3では、前記したとおり満足な末端
封止部が作製できなかったので、エアリークテストは行
なわなかった。
Comparative Examples 1 to 3 On the other hand, when an air leak test was conducted at 0.2 kg/cm2 using the hollow fiber porous separation membrane elements obtained in Comparative Examples 1 to 2, no air leak occurred in any of them. Admitted. In Comparative Example 3, an air leak test was not conducted because a satisfactory end sealing portion could not be produced as described above.

【0064】比較例4 比較例4得られた中空糸状多孔質分離膜エレメントを用
いて、0.2kg/cm2でエアリークテストを行なっ
たところ、エアリークは認められなかった。しかしなが
ら、膜間差圧4kg/cm2、400時間の条件で、水
、40%アンモニア水、10%塩酸、アセトン、トルエ
ン、ジエチルアミンの各濾過試験を行なった後、再度エ
アリークテストを実施したところ、40%アンモニア水
、アセトン、ジエチルアミンの濾過で末端封止部のクラ
ックとエアリークが認められた。特に、ジエチルアミン
の濾過試験後には、末端封止部に多数のヒビ割れと一部
欠損が認められた。
Comparative Example 4 Using the hollow fiber porous separation membrane element obtained in Comparative Example 4, an air leak test was conducted at 0.2 kg/cm2, and no air leak was observed. However, after conducting filtration tests for water, 40% ammonia water, 10% hydrochloric acid, acetone, toluene, and diethylamine under the conditions of a transmembrane pressure difference of 4 kg/cm2 and 400 hours, an air leak test was conducted again. %Aqueous ammonia, acetone, and diethylamine, cracks and air leaks were observed at the end sealing part. In particular, after the diethylamine filtration test, numerous cracks and partial defects were observed in the end-blocking portion.

【0065】また、濃硫酸、20%カセイソーダ、10
%硝酸に3ケ月漬浸後に、エアリークテストおよび5k
g/cm2耐圧試験を行ったところ、同様に末端封止部
のクラックとエアリークが認められた。さらに、ヒート
サイクルテストでは、一日以内に末端封止部が破壊した
[0065] Also, concentrated sulfuric acid, 20% caustic soda, 10%
After soaking in % nitric acid for 3 months, air leak test and 5k
When a g/cm2 pressure test was conducted, cracks and air leaks were similarly observed at the end sealing portion. Furthermore, in a heat cycle test, the end seal broke within one day.

【0066】[0066]

【発明の効果】本発明の中空糸状多孔質分離膜エレメン
トは、耐熱性、耐薬品性が改善され、末端部の封止も完
全であるため、酸性やアルカリ性溶液および有機溶剤を
溶媒または洗浄等に使用する場合、あるいは蒸気滅菌等
の滅菌・殺菌を必要とする分離膜モジュールに好適であ
る。
Effects of the Invention The hollow fiber porous separation membrane element of the present invention has improved heat resistance and chemical resistance, and the end portions are completely sealed. It is suitable for use in separation membrane modules that require sterilization or sterilization such as steam sterilization.

【0067】また、本発明の中空糸状多孔質分離膜エレ
メントの製造方法は、末端封止部の微細成型性を大幅に
改善したものである。そのために、封止剤として高粘度
の熱溶融性フッ素樹脂を使用しても、充填率の高い中空
糸状多孔質分離膜エレメントを得ることができる。
Furthermore, the method for producing a hollow fiber porous separation membrane element of the present invention greatly improves the fine moldability of the end-blocking portion. Therefore, even if a high viscosity heat-melting fluororesin is used as a sealant, a hollow fiber porous separation membrane element with a high filling rate can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の中空糸状多孔質分離膜エレメントの末
端封止部の略図である。
FIG. 1 is a schematic diagram of the end sealing portion of the hollow fiber porous separation membrane element of the present invention.

【図2】本発明の製造方法の1実施例を説明した図であ
る。
FIG. 2 is a diagram illustrating one embodiment of the manufacturing method of the present invention.

【図3】本発明の製造方法の1実施例を説明した図であ
る。
FIG. 3 is a diagram illustrating one embodiment of the manufacturing method of the present invention.

【図4】本発明の製造方法の1実施例を説明した図であ
る。
FIG. 4 is a diagram illustrating one embodiment of the manufacturing method of the present invention.

【図5】本発明の中空糸状多孔質分離膜エレメントの末
端封止部の略図である。
FIG. 5 is a schematic diagram of the end sealing portion of the hollow fiber porous separation membrane element of the present invention.

【図6】中空糸状多孔質分離膜に重りを挿入した図であ
る。
FIG. 6 is a diagram showing a hollow fiber porous separation membrane with a weight inserted therein.

【図7】本発明の製造方法の他の実施例を説明した図で
ある。
FIG. 7 is a diagram illustrating another embodiment of the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1  エレメント外筒 2  熱溶融性樹脂(円柱状成型品) 3  樹脂受け皿 4  加熱用ヒーター 5  中空糸状多孔質分離膜 6  支え棒 7  切断除去部 8  重り 9  熱溶融性樹脂(平板状成型品) 10  樹脂受皿 1 Element outer cylinder 2 Thermofusible resin (cylindrical molded product) 3 Resin saucer 4 Heating heater 5 Hollow fiber porous separation membrane 6 Support rod 7 Cutting removal part 8. Weight 9 Heat-melting resin (flat plate molded product) 10 Resin saucer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  外筒内にフッ素樹脂製の中空糸状多孔
質分離膜の束を収納した中空糸状多孔質分離膜エレメン
トにおいて、その少なくとも一方の末端部において、中
空糸状多孔質分離膜相互の間隙および中空糸状多孔質分
離膜と外筒の間隙を溶融成型された熱溶融性フッ素樹脂
により封止して成ることを特徴とする中空糸状多孔質分
離膜エレメント。
Claim 1: A hollow fiber porous separation membrane element in which a bundle of hollow fiber porous separation membranes made of fluororesin is housed in an outer cylinder, in which at least one end of the hollow fiber porous separation membrane element has a gap between the hollow fiber porous separation membranes. and a hollow fiber porous separation membrane element, characterized in that the gap between the hollow fiber porous separation membrane and the outer cylinder is sealed with a heat-melting fluororesin melt-molded.
【請求項2】  所定形状に溶融成型された熱溶融性樹
脂を外筒の末端内部に挿入し、該熱溶融性樹脂を加熱溶
融しながら、フッ素樹脂製の中空糸状多孔質分離膜の束
を外筒の他端から挿入し、自重、加重、引力またはこれ
らの組合わせにより熱溶融性樹脂中に埋設させて熱溶融
性樹脂による末端封止部を形成させることを特徴とする
中空糸状多孔質分離膜エレメントの製造方法。
2. A thermofusible resin melt-molded into a predetermined shape is inserted into the end of the outer cylinder, and while the thermofusible resin is heated and melted, a bundle of hollow fiber porous separation membranes made of fluororesin is inserted. A hollow fiber-like porous material that is inserted from the other end of the outer cylinder and embedded in a hot-melt resin by its own weight, weight, attraction, or a combination thereof to form an end-sealed part with the hot-melt resin. A method for manufacturing a separation membrane element.
【請求項3】  所定形状に溶融成型した熱溶融性樹脂
を加熱溶融しながら、その上にフッ素樹脂製の中空糸状
多孔質分離膜の束を収納した外筒を載置し、自重、加重
、引力またはこれらの組合わせにより末端部を該熱溶融
性樹脂中に埋設させて熱溶融性樹脂による末端封止部を
形成させることを特徴とする中空糸状多孔質分離膜エレ
メントの製造方法。
3. While heating and melting the hot-melt resin that has been melt-molded into a predetermined shape, an outer cylinder containing a bundle of hollow fiber porous separation membranes made of fluororesin is placed on top of the resin, and the resin is heated and melted. A method for manufacturing a hollow fiber porous separation membrane element, which comprises embedding the end portion in the hot-melt resin by attractive force or a combination thereof to form an end-sealing portion with the hot-melt resin.
【請求項4】  フッ素樹脂製の中空糸状多孔質分離膜
の熱溶融性樹脂中に埋入する端部を予め該熱溶融性樹脂
と同じ材質の熱溶融性樹脂収縮チューブで被覆しておく
こと特徴とする請求項2または3記載の中空糸状多孔質
分離膜エレメントの製造方法。
4. The end portion of the hollow fiber porous separation membrane made of fluororesin to be embedded in the heat-melt resin is covered in advance with a heat-melt resin shrink tube made of the same material as the heat-melt resin. A method for producing a hollow fiber porous separation membrane element according to claim 2 or 3.
JP03157642A 1991-06-01 1991-06-01 Hollow fiber-like porous separation membrane element and method for producing the same Expired - Lifetime JP3077260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03157642A JP3077260B2 (en) 1991-06-01 1991-06-01 Hollow fiber-like porous separation membrane element and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03157642A JP3077260B2 (en) 1991-06-01 1991-06-01 Hollow fiber-like porous separation membrane element and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04354521A true JPH04354521A (en) 1992-12-08
JP3077260B2 JP3077260B2 (en) 2000-08-14

Family

ID=15654191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03157642A Expired - Lifetime JP3077260B2 (en) 1991-06-01 1991-06-01 Hollow fiber-like porous separation membrane element and method for producing the same

Country Status (1)

Country Link
JP (1) JP3077260B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266871A (en) * 1995-03-30 1996-10-15 Tsuchiya Mfg Co Ltd Production of hollow fiber membrane type separation module
WO2000044483A3 (en) * 1999-01-29 2000-11-23 Millipore Corp Method of forming a perfluorinated, thermoplastic hollow fiber module
JP2003033974A (en) * 2001-07-24 2003-02-04 Chuko Kasei Kogyo Kk Fluororesin molded article having through-hole and its production method
US6663745B1 (en) 1999-01-29 2003-12-16 Mykrolis Corporation Method for manufacturing hollow fiber membranes
US7291204B2 (en) 2002-06-14 2007-11-06 Gore Enterprise Holdings, Inc. Separation membrane module with hollow fiber and a method of making the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266871A (en) * 1995-03-30 1996-10-15 Tsuchiya Mfg Co Ltd Production of hollow fiber membrane type separation module
WO2000044483A3 (en) * 1999-01-29 2000-11-23 Millipore Corp Method of forming a perfluorinated, thermoplastic hollow fiber module
US6663745B1 (en) 1999-01-29 2003-12-16 Mykrolis Corporation Method for manufacturing hollow fiber membranes
JP2003033974A (en) * 2001-07-24 2003-02-04 Chuko Kasei Kogyo Kk Fluororesin molded article having through-hole and its production method
US7291204B2 (en) 2002-06-14 2007-11-06 Gore Enterprise Holdings, Inc. Separation membrane module with hollow fiber and a method of making the same

Also Published As

Publication number Publication date
JP3077260B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US5286324A (en) Polytetrafluoroethylene resin porous membrane, separator making use of the porous membrane and methods of producing the porous membrane and the separator
JP4514959B2 (en) Method for producing hollow fiber membrane
EP0768913B1 (en) Hollow fiber membrane module and method of manufacture
US4138460A (en) Method for forming tubesheets on hollow fiber tows and forming hollow fiber bundle assemblies containing same
EP0803281B1 (en) Filter element
US7291204B2 (en) Separation membrane module with hollow fiber and a method of making the same
TWI292335B (en) Method of forming a perfluroinated, thermoplastic hollow fiber module
EP1146944A2 (en) Perfluorinated thermoplastic filter cartridge
JPH04354521A (en) Hollow fiber porous separation membrane element and its manufacturing method
TWI725040B (en) Blended potting resins and use thereof
EP0659468A1 (en) Filter element and method for the production thereof
JP2993217B2 (en) Method for producing hollow fiber-shaped porous separation membrane element
JP2022501191A (en) How to make a filtration and / or diffuser
Doh Hollow fiber membranes
JP4432365B2 (en) Method for producing hollow fiber membrane module
JPH1099657A (en) Hollow yarn type separation membrane module
JPH03106422A (en) Fluid separation module and its manufacture
JP4223098B2 (en) Hot-melt fluororesin hollow fiber, method for producing the same, and hollow fiber membrane module using the same
JPH0368427A (en) Fluid separating module and production thereof
JPH0653215B2 (en) Hollow fiber module and method for producing the same
JPH0679145A (en) Hollow fiber module and manufacturing method thereof
JPH0780256A (en) Hollow fiber module manufacturing method and manufacturing jig
JPH0780257A (en) Hollow fiber module manufacturing method
JPH0747241A (en) Hollow fiber module manufacturing method
JP2010260027A (en) Terminal end structure for module element and manufacturing method of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080616

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 11

EXPY Cancellation because of completion of term