[go: up one dir, main page]

JPH04352971A - In vivo temperature measuring method - Google Patents

In vivo temperature measuring method

Info

Publication number
JPH04352971A
JPH04352971A JP3125981A JP12598191A JPH04352971A JP H04352971 A JPH04352971 A JP H04352971A JP 3125981 A JP3125981 A JP 3125981A JP 12598191 A JP12598191 A JP 12598191A JP H04352971 A JPH04352971 A JP H04352971A
Authority
JP
Japan
Prior art keywords
temperature
value
heating
probe
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3125981A
Other languages
Japanese (ja)
Inventor
Motoji Haratou
基司 原頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3125981A priority Critical patent/JPH04352971A/en
Publication of JPH04352971A publication Critical patent/JPH04352971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PURPOSE:To obtain a two-dimensional temperature distribution data in vivo with high accuracy and under low intrusion by combining a probe method with an EPI method of using a superhigh speed MRI device, in an in vivo temperature measuring method useful for heating control or the like in a hyperthermistor (heating treatment). CONSTITUTION:In a tested person P placed in a magnet 20 of a superhigh speed MRI device, probes 30a to 30b are pierced in several parts, for instance, in a belly and also mounting an applicator 21 for heating. On the other hand, an RF probe 24 for receiving an MR signal from the tested person P is connected to a data collecting computer through respective preamplifiers 25a, 25b with a temperature measuring device 26 to which the above-mentioned probe is connected. A T1 value before heating the living body and T1, T2 value images are collected to sort a region in vivo based on these images. Next, the living body is heated to obtain increase amounts of the T1 value in each region and a temperature data by heating, and by utilizing a proportional relation of both the increase amounts, a temperature of a region from the T1 value of a region, not pierced with the probe, is calculated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】 〔発明の目的〕0001 [Purpose of the invention]

【0002】0002

【産業上の利用分野】本発明は、ハイパーサーミアにお
ける加温制御等に有用な生体内部の測温方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring temperature inside a living body, which is useful for controlling heating in hyperthermia.

【0003】0003

【従来の技術】癌治療の一手法として、放射線照射とハ
イパーサーミア(加温治療)を併用する方法がある。そ
して、ハイパーサーミアに当たっては、表在性でしかも
ある程度局在化した腫瘍の加温を簡便に行う必要から、
マイクロ波加温が利用される。
2. Description of the Related Art One method of cancer treatment is the combination of radiation irradiation and hyperthermia (warming treatment). In the case of hyperthermia, it is necessary to easily heat superficial and localized tumors to some extent.
Microwave heating is used.

【0004】マイクロ波(極超短波)は、周波数が30
0MHzから30GHzの電磁波であり、さらにUHF
(周波数300MHz〜3GHz)とSHF(周波数3
GHz〜30GHz)に分けられるが、マイクロ波加温
では主にUHF帯が用いられる。
Microwaves (very short waves) have a frequency of 30
Electromagnetic waves from 0MHz to 30GHz, and even UHF
(frequency 300MHz to 3GHz) and SHF (frequency 3
GHz to 30 GHz), but the UHF band is mainly used for microwave heating.

【0005】図5は、マイクロ波加温システムの構成図
である(田坂他、「放射線医学体系特別巻3《ハイパー
サーミア》第63頁(中山書店,1987年)より)。 すなわち、オペレータは、操作パネル1を介して温度制
御回路2に指示を与え、マイクロ波発振器3からマイク
ロ波を発振させる。発振されたマイクロ波はチューニン
グおよびマッチング回路4において、周波数・位相の必
要なチューニングとマッチングを施され、アプリケータ
5から輻射される。
FIG. 5 is a configuration diagram of a microwave heating system (from Tasaka et al., "Radiology System Special Volume 3 ``Hyperthermia'', p. 63 (Nakayama Shoten, 1987)). An instruction is given to the temperature control circuit 2 through the panel 1, and the microwave oscillator 3 oscillates microwaves.The oscillated microwaves are subjected to necessary frequency and phase tuning and matching in the tuning and matching circuit 4. , is radiated from the applicator 5.

【0006】マイクロ波は、生体6に密着し冷却機能を
も兼ねた水バッグなどのボーラス7を介して効率よく生
体6内に入射し、熱に変化しながら腫瘍8を加温する。 この際腫瘍8およびその周辺組織の温度は熱電対、サー
ミスタ等の適当な温度センサ9で感知され、温度モニタ
10で測定される。温度モニタ10は、測定した温度が
腫瘍8の設定温度を越えたときは、温度制御回路2を介
してマイクロ波発振出力のフィードバック制御を行う。 また温度センサ9で感知された温度は、データ記録部1
1に適宜記録される。
[0006] The microwave efficiently enters the living body 6 through a bolus 7 such as a water bag that is in close contact with the living body 6 and also has a cooling function, and warms the tumor 8 while being converted into heat. At this time, the temperature of the tumor 8 and its surrounding tissue is sensed by a suitable temperature sensor 9 such as a thermocouple or thermistor, and measured by a temperature monitor 10. When the measured temperature exceeds the set temperature of the tumor 8, the temperature monitor 10 performs feedback control of the microwave oscillation output via the temperature control circuit 2. Furthermore, the temperature detected by the temperature sensor 9 is stored in the data recording section 1.
1 as appropriate.

【0007】ハイパーサーミアでは、治療の対象となる
腫瘍部位を一定温度、例えば42℃以上に加温し、他方
正常部位の温度は一定限界以下に保たねばならない。こ
のため、生体内部の腫瘍部位および正常部位の温度を測
定し、加温過程を制御することは根本的に重要である。 従来、生体内部の温度を測定する方式には、次の4つが
あった。
[0007] In hyperthermia, the tumor site to be treated must be heated to a certain temperature, for example, 42° C. or higher, while the temperature of the normal site must be kept below a certain limit. Therefore, it is fundamentally important to measure the temperature of tumor sites and normal sites inside the living body and to control the heating process. Conventionally, there have been four methods for measuring the temperature inside a living body:

【0008】1.探針方式;サーミスタ、熱電対、光セ
ンサなどの温度センサを装着した直径1mm以下の細い
探針数本を患部あるいはその近くに刺し入れる。最も正
確(誤差±0.1℃)である。
1. Probe method: Several thin probes with a diameter of 1 mm or less equipped with temperature sensors such as a thermistor, thermocouple, or optical sensor are inserted into or near the affected area. It is the most accurate (error ±0.1°C).

【0009】2.植込み方式;腫瘍部位の近くに温度セ
ンサを植込み、治療が終了するまでそのまま留置する。 この際皮膚は縫合し、外部への信号伝送はテレメータ方
式で行う。
2. Implantation method: A temperature sensor is implanted near the tumor site and left in place until the treatment is completed. At this time, the skin is sutured and signals are transmitted to the outside using a telemeter system.

【0010】3.無侵襲方式;体外からエネルギーを送
り、エネルギー伝播媒質としての生体の性質が温度とと
もに変化することを利用する。超音波装置、X線CT装
置、MRI装置等が使用される。無侵襲という大きな特
長を有し、空間分解能にも優れる。
3. Non-invasive method: Energy is sent from outside the body and utilizes the fact that the properties of the living body as an energy propagation medium change with temperature. Ultrasonic devices, X-ray CT devices, MRI devices, etc. are used. It has the major advantage of being non-invasive and has excellent spatial resolution.

【0011】4.監視方式;深部体温計等を用いて体内
深部温度を計測する。この方式も非侵襲的に行われる。
4. Monitoring method: Measure the deep body temperature using a core thermometer, etc. This method is also performed non-invasively.

【0012】0012

【発明が解決しようとする課題】ところで、温度計測シ
ステムの最も基本的な性能は、温度測定値の分解能(精
度)と空間分解能である。ハイパーサーミアにあっては
、温度分解能は0.1〜1℃、空間分解能は0.5〜2
cm程度の範囲で検討されることが多い。
[Problems to be Solved by the Invention] Incidentally, the most basic performance of a temperature measurement system is the resolution (accuracy) and spatial resolution of temperature measurement values. In hyperthermia, the temperature resolution is 0.1 to 1℃, and the spatial resolution is 0.5 to 2℃.
It is often considered within a range of about cm.

【0013】ところが、上述の4つの測温方式には、そ
れぞれ次のような短所がある。まず「探針方式」は、温
度測定値の分解能が高くかつ空間分解能も非常に細かい
(1mm程度)が、侵襲性がきわめて高いため、探針を
多数刺し入れることはできない。このため、各探針の間
隔が広くなり、2次元の温度分布を連続して測定できな
いという欠点がある。
However, each of the above-mentioned four temperature measurement methods has the following disadvantages. First, the "probe method" has a high resolution of temperature measurement values and a very fine spatial resolution (about 1 mm), but it is extremely invasive, so it is not possible to insert multiple probes. For this reason, the distance between each probe becomes wide, and there is a drawback that two-dimensional temperature distribution cannot be measured continuously.

【0014】「植込み方式」は、精度は探針方式と同じ
程度であるが、温度センサを移動させることができない
ため、やはり2次元の温度分布を連続して測定できない
という探針方式と同様の欠点がある。
The "implantation method" has the same accuracy as the probe method, but it is similar to the probe method in that it cannot continuously measure two-dimensional temperature distribution because the temperature sensor cannot be moved. There are drawbacks.

【0015】「無侵襲方式」は、一般に測温に用いられ
るパラメータ(MRIではT1 値)と、その組織の実
際温度とのキャリブレーション(較正)が困難で精度の
向上に難がある。またMRIを利用する場合は、一般に
図6に示すようなグラジェントフィールドエコー法のパ
ルスシーケンス(‘Magnetic Resonan
ce Imaging’p96“Measuremen
t of temperature distribu
tion ”David D. Stark, M.D
. et al,The C.V. Mosby Co
mpany, 1988)により、データ収集時間Ts
 にMR信号を受信してT1 ,T2 値を得るが、こ
のパルスシーケンスでは、撮影時間が数分かかるため、
加温直後の温度分布が血流等による放熱効果によって正
確に測定できないという欠点がある。図6中、Gs ,
Ge ,Gr は、それぞれスライス方向傾斜磁場、位
相エンコーディング傾斜磁場、読み出し傾斜磁場であり
、TRは繰返し時間、Tg はデータ収集後次の非選択
90°パルスまでの時間差を示す。
[0015] In the "non-invasive method", it is difficult to calibrate the parameter (T1 value in MRI) used for temperature measurement with the actual temperature of the tissue, making it difficult to improve accuracy. Furthermore, when using MRI, the pulse sequence of the gradient field echo method ('Magnetic Resonance') is generally used as shown in Fig.
ce Imaging'p96“Measuremen
to of temperature distribution
tion ”David D. Stark, M.D.
.. et al, The C. V. Mosby Co
mpany, 1988), the data collection time Ts
MR signals are received to obtain T1 and T2 values, but this pulse sequence requires several minutes of imaging time, so
There is a drawback that the temperature distribution immediately after heating cannot be accurately measured due to the heat dissipation effect due to blood flow and the like. In FIG. 6, Gs,
Ge and Gr are a slice direction gradient magnetic field, a phase encoding gradient magnetic field, and a readout gradient magnetic field, respectively, TR is a repetition time, and Tg is a time difference from data collection to the next non-selected 90° pulse.

【0016】「監視方式」は、深部体温計を使うため、
深部温度というだけで、体内のどの部分の温度を測って
いるかが不明であるという欠点がある。
[0016] The "monitoring method" uses a core thermometer, so
The drawback is that it is unclear which part of the body is being measured, just because it measures the core temperature.

【0017】本発明は上記事情に鑑みてなされたもので
、ハイパーサーミアにおける加温過程の制御に有用な、
温度・空間分解能に優れ、かつ侵襲性の低い生体内部の
測温方法を提供することを目的とする。 〔発明の構成〕
The present invention has been made in view of the above circumstances, and is useful for controlling the heating process in hyperthermia.
The purpose of this invention is to provide a method for measuring temperature inside a living body that has excellent temperature and spatial resolution and is less invasive. [Structure of the invention]

【0018】[0018]

【課題を解決するための手段】本発明は上記課題を解決
するために、(1)温度センサを装着した探針を生体内
部に刺し入れ、生体加温前の温度デ−タを収集する工程
と、(2)超高速MRI装置においてEPI法のパルス
シーケンスにより生体加温前のT1 値およびT1 ,
T2 値画像を収集する工程と、(3)前記T1 ,T
2 値画像を基に生体内部の領域を区分けし、これらの
領域と探針の位置を対応づける工程と、(4)生体を加
温し、この加温の直後にEPI法のパルスシーケンスに
よるT1 値画像と前記温度センサによる温度デ−タを
収集して、加温による各領域のT1 値の増分と温度デ
−タの増分を求める工程と、(5)前記加温による各領
域のT1 値の増分と温度デ−タの増分の比例関係を利
用し、探針を刺し入れていない領域のT1 値からその
領域の温度を算出する工程を含む生体内部の測温方法を
提供する。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides (1) a step of inserting a probe equipped with a temperature sensor into a living body and collecting temperature data before heating the living body; and (2) the T1 value and T1,
(3) collecting a T2 value image; and (3) the T1, T
(4) heating the living body, and immediately after heating, T1 pulse sequence using the EPI method; a step of collecting a value image and temperature data from the temperature sensor to obtain an increment in the T1 value of each region due to heating and an increment in the temperature data; (5) a step of determining the T1 value of each region due to the heating; The present invention provides a method for measuring temperature inside a living body, which includes a step of calculating the temperature of a region from the T1 value of the region into which a probe has not been inserted, using the proportional relationship between the increment of the temperature data and the increment of the temperature data.

【0019】[0019]

【作用】本発明に係る生体内部の測温方法は、精度のよ
り探針方式と無侵襲でしかも撮影時間の短い(数十ミリ
秒)超高速MRI装置を用いたEPI(エコープラナー
イメージング)法を組合せたもので、生体加温の前後に
おいて、それぞれ探針方式による測温デ−タと、EPI
法によるT1 値画像デ−タを収集する。探針方式によ
る測温デ−タは測定点数を多くとれないが、一方T1値
はT1 値画像デ−タのすべての領域のものが得られる
。そこで、加温によるT1 値の増分と温度デ−タの増
分の比例関係を利用し、探針のある領域における両者間
の比例定数を算出して、これを探針のない領域における
T1 値に適用する。こうして、精度の高い探針方式の
測温デ−タによって、MRIによる測温デ−タを較正し
ながら、体内の2次元温度分布デ−タを得ることができ
る。
[Operation] The method of measuring temperature inside a living body according to the present invention is the EPI (echo planar imaging) method, which uses a highly accurate probe method and an ultra-high-speed MRI device that is non-invasive and has a short imaging time (several tens of milliseconds). It is a combination of temperature measurement data using a probe method and EPI data before and after biological warming.
Collect T1 value image data using the method. Temperature measurement data using the probe method cannot obtain a large number of measurement points, but on the other hand, T1 values can be obtained from all regions of T1 value image data. Therefore, by using the proportional relationship between the increment in T1 value due to heating and the increment in temperature data, we calculated the proportionality constant between the two in the region where the probe is located, and calculated this as the T1 value in the region without the probe. Apply. In this way, two-dimensional temperature distribution data within the body can be obtained while calibrating temperature measurement data obtained by MRI using highly accurate probe-based temperature measurement data.

【0020】[0020]

【実施例】以下図1ないし図4を参照して本発明の実施
例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

【0021】図1は、本発明の方法を実施する測温シス
テムの構成図である。すなわち、体の数箇所に探針を刺
し入れられた被検者Pは、超高速MRI装置の磁石20
内に横たわる。また被検者Pには、加温のためのマイク
ロ波用アンテナを内蔵したアプリケータ21を装着させ
る。アプリケータ21はアンプ22を介してマイクロ波
発振器23に接続され、マイクロ波を給電される。
FIG. 1 is a block diagram of a temperature measurement system that implements the method of the present invention. That is, the subject P, who has had probes inserted into several places on his body, is exposed to the magnet 20 of the ultra-high-speed MRI device.
lie within. Furthermore, the subject P is made to wear an applicator 21 having a built-in microwave antenna for heating. The applicator 21 is connected to a microwave oscillator 23 via an amplifier 22 and is supplied with microwave power.

【0022】一方、被検者PからのMR信号を受信する
RFプローブ24はプリアンプ25aを介してデ−タ収
集用のコンピュータに接続し、他方被検者Pに刺し入れ
られた探針も探針方式の測温装置26とプリアンプ25
bを介して同じくデ−タ収集用のコンピュータに接続す
る。なお送信用のRFプローブはここでは図示していな
い。
On the other hand, the RF probe 24 that receives the MR signal from the subject P is connected to a computer for data collection via a preamplifier 25a, and the probe inserted into the subject P is also probed. Needle type temperature measuring device 26 and preamplifier 25
It is also connected to a computer for data collection via b. Note that the RF probe for transmission is not shown here.

【0023】図2は、被検者Pの腹部断面図である。こ
の被検者Pは腹部に5本の探針30a〜30eが刺し入
れられ、探針30a〜30eの腹部内の先端にはサーミ
スタ、熱電対、光センサなどの温度センサ31a〜31
eが装着される。このうち、温度センサ31eは、腫瘍
組織Xに位置し、他の温度センサ31a〜31dはそれ
ぞれ正常組織A〜Dに位置する。なお、探針30a〜3
0eが刺し入れられた体表には、刺し入れ地点を明瞭に
識別できるように、PVA(ポリ酢酸ビニル)のゲルマ
ーカ32を塗布する。
FIG. 2 is a sectional view of the abdomen of the subject P. Five probes 30a to 30e are inserted into the abdomen of this subject P, and temperature sensors 31a to 31 such as thermistors, thermocouples, and optical sensors are attached to the tips of the probes 30a to 30e in the abdomen.
e is attached. Among these, temperature sensor 31e is located in tumor tissue X, and other temperature sensors 31a to 31d are located in normal tissues A to D, respectively. Note that the probes 30a to 3
A PVA (polyvinyl acetate) gel marker 32 is applied to the body surface where Oe has been inserted so that the insertion point can be clearly identified.

【0024】したがって、この測温システムによれば、
まず被検者Pをマイクロ波で加温する前に、温度センサ
31a〜31eを用いて各組織(領域)の温度を計測す
る。すなわち、温度センサ31a〜31eで検知された
温度は探針30a〜30eを通じて探針方式の測温装置
26で計測され、プリアンプ25bを経てデ−タ収集用
のコンピュータへ送られる。
[0024] Therefore, according to this temperature measurement system,
First, before heating the subject P with microwaves, the temperature of each tissue (region) is measured using the temperature sensors 31a to 31e. That is, the temperatures detected by the temperature sensors 31a to 31e are measured by the probe type temperature measuring device 26 through the probes 30a to 30e, and sent to the data collection computer via the preamplifier 25b.

【0025】他方、超高速MRI装置では、EPI法に
より、数十ミリ秒という短時間のうちに1フレーム分の
T1 ,T2 値画像を得る。EPI法は、図3のパル
スシーケンスに示すように、高頻度で多重エコーを発生
させ、それぞれフーリエ空間でのデ−タ収集を行う。こ
のEPI法は、全イメージをつくるデ−タを1秒未満の
一励磁のうちに、単一か数個の自由誘導減衰(FID)
の中から収集する。EPI法は傾斜磁場の超高速のスイ
ッチングとサンプリングが必要でシステムに苛酷な負荷
がかかるため、特殊なハードウェアを備えた超高速MR
I装置において行われる。
On the other hand, an ultrahigh-speed MRI apparatus uses the EPI method to obtain one frame's worth of T1 and T2 value images in a short period of several tens of milliseconds. The EPI method generates multiple echoes at high frequency, as shown in the pulse sequence of FIG. 3, and collects data in Fourier space for each echo. This EPI method collects the data that makes up the entire image using one or several free induction decays (FIDs) in one excitation of less than 1 second.
Collect from among. Since the EPI method requires ultra-high-speed switching and sampling of gradient magnetic fields, which places a severe load on the system, ultra-high-speed MR equipped with special hardware is required.
This is done in the I device.

【0026】そしてEPI法のパルスシーケンス間の遅
れ時間Td を変化させた2枚の画像から、RFパルス
の「選択不要照射過程(Selective Irra
diation Process)」を考慮して補正す
れば、体動アーチファクトに起因する誤差を伴わない正
確なT1 値画像が得られる(P. Mansfiel
d et al. “Measurement of 
 T1 by echo−planarimaging
 and the construction of 
computer−generated images
 ”Phys.Med. Biol., 1986, 
Vol.31, No.2, pp113−124)。
From the two images in which the delay time Td between the pulse sequences of the EPI method was changed, the ``selective irradiation process'' of the RF pulse was determined.
If the correction is taken into account, an accurate T1 value image without errors caused by body motion artifacts can be obtained (P. Mansfield).
d et al. “Measurement of
T1 by echo-planarimaging
and the construction of
computer-generated images
"Phys. Med. Biol., 1986,
Vol. 31, No. 2, pp113-124).

【0027】この場合、RFプローブ24で収集された
MR信号はプリアンプ25aを経てデ−タ収集用コンピ
ュータに送られ、検波されてT1 値とT2 値が求め
られる。このT1 値とT2 値を基に画像を再構成す
れば、先の図2に示すような画像が得られるため、温度
センサ31a〜31eがどこに位置し、どの領域に属す
るかが分かる。
In this case, the MR signal collected by the RF probe 24 is sent to the data collection computer via the preamplifier 25a, where it is detected and the T1 value and T2 value are determined. If an image is reconstructed based on the T1 value and T2 value, an image as shown in FIG. 2 can be obtained, so it can be seen where the temperature sensors 31a to 31e are located and to which region they belong.

【0028】さて、こうして被検者Pの加温前における
、温度センサによる測温デ−タおよび全イメージ領域の
T1 値とT2 値が得られたら、次はマイクロ波発振
器23からマイクロ波を発振させる。このマイクロ波は
アンプ22を経てアプリケータ21から被検者Pに入射
し、被検者Pの体内は加温される。
Now, when the temperature data measured by the temperature sensor and the T1 and T2 values of the entire image area are obtained before heating the subject P, the next step is to oscillate microwaves from the microwave oscillator 23. let This microwave enters the subject P from the applicator 21 via the amplifier 22, and the inside of the subject P's body is heated.

【0029】本実施例では、この加温がなされると、直
ちに温度センサ31a〜31eで測温を開始する一方、
EPI法によっても加温前と同様にT1 値を収集する
。 こうして、正常組織A〜Dと腫瘍組織Xにおいて、それ
ぞれ温度センサが刺し入れられた地点の加温前後の温度
t1 ,t2 が得られ、これらの地点における加温前
後のT1 値、T1 (t1 )とT1 (t2 )も
分かる。
In this embodiment, as soon as this heating is performed, the temperature sensors 31a to 31e start measuring the temperature, and
T1 values are also collected using the EPI method in the same manner as before heating. In this way, the temperatures t1 and t2 before and after heating at the point where the temperature sensor was inserted are obtained for normal tissues A to D and tumor tissue X, respectively, and the T1 values before and after heating at these points, T1 (t1) and T1 (t2) can also be seen.

【0030】ところで、スピン−格子緩和過程の時定数
T1 値は、温度に影響されることが知られているが、
図4に示すように、各領域におけるT1 値の増分と温
度の増分の間には、回帰線a,b,c(それぞれ異なる
領域における回帰線である)で示されるような比例関係
がある(‘Magnetic Resonance I
maging’p97 “Measure−ment 
of temperature distributi
on  ”David D. Stark, M.D.
 et al, The C.V.Mosby Com
pany, 1988 )。すなわち、
By the way, it is known that the time constant T1 value of the spin-lattice relaxation process is influenced by temperature;
As shown in FIG. 4, there is a proportional relationship between the increment of T1 value and the increment of temperature in each region as shown by regression lines a, b, and c (regression lines in different regions). 'Magnetic Resonance I
maging'p97 “Measure-ment
of temperature distribution
on ”David D. Stark, M.D.
et al, The C. V. Mosby Com
Pany, 1988). That is,

【0031】[0031]

【数1】[Math 1]

【0032】である。[0032]

【0033】そこで、本実施例においては、この時点で
各組織A〜DおよびXについて、式(1)の両辺の値、
および両者の比例定数α(=(t2 −t1 )/{T
1 (t2 )−T1 (t1 )})を求める。
Therefore, in this example, at this point, for each tissue A to D and X, the values on both sides of equation (1),
and the proportionality constant α(=(t2 −t1)/{T
1 (t2)-T1 (t1)}).

【0034】そして、加温後の各組織A〜DおよびXに
ついて、温度センサの刺し入れられていない任意の箇所
のT1 値を
[0034] Then, for each tissue A to D and

【0035】[0035]

【外1】[Outside 1]

【0036】とすると、その点での温度[0036] Then, the temperature at that point is

【0037】[0037]

【外2】[Outside 2]

【0038】[℃]は、次の式(2)で計算される。[°C] is calculated using the following equation (2).

【0039】[0039]

【数2】[Math 2]

【0040】本実施例においては、各領域の温度を反映
したパラメータT1値が、精度のよい探針方式による測
温デ−タで較正され、このT1 値により正確な温度が
得られることになる。こうして各組織について異なるα
を適用して、同一組織内の多数の地点で
In this embodiment, the parameter T1 value, which reflects the temperature of each region, is calibrated using temperature measurement data using a highly accurate probe method, and accurate temperature can be obtained from this T1 value. . Thus, α is different for each organization.
applied at many locations within the same organization.

【0041】[0041]

【外3】[Outer 3]

【0042】を求め、これらのFind these

【0043】[0043]

【外4】[Outside 4]

【0044】を対応する輝度で表して2次元画像とする
。このとき、同一組織(超高速MRIで求めたT1 値
、T2 値や解剖学的知見から判定される)の温度は一
括して較正される。こうして本実施例によれば、侵襲性
がきわめて低いにも拘らず、2次元の連続した温度分布
が正確にかつ短時間で測定できる。
[0044] is expressed by the corresponding brightness to form a two-dimensional image. At this time, the temperatures of the same tissue (determined from T1 and T2 values determined by ultra-high-speed MRI and anatomical findings) are calibrated all at once. In this way, according to this embodiment, a continuous two-dimensional temperature distribution can be measured accurately and in a short time, although the invasiveness is extremely low.

【0045】さらに本実施例の方法によれば、温度分布
の作成に利用するMR画像1フレーム分のすべてT1 
値が数十ミリ秒で収集できるため、このT1 値は血流
による放熱の影響がなく、加温直後の正確な値となる。 また体動アーチファクトによるエラーもない状態で測温
が可能になる。
Furthermore, according to the method of this embodiment, all T1 of one frame of MR image used for creating the temperature distribution
Since the value can be collected in tens of milliseconds, this T1 value is not affected by heat dissipation due to blood flow and is an accurate value immediately after heating. Furthermore, it is possible to measure temperature without errors caused by body movement artifacts.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
侵襲性がつとめて少ない状態で体内の2次元的に連続し
た温度分布が、体動によるアーチファクトや放熱の影響
なしに、正確にかつ短時間で得られる。したがって、ハ
イパーサーミアにおいては、この温度分布デ−タを基に
適切な加温制御を行うことができる。
[Effects of the Invention] As explained above, according to the present invention,
A two-dimensional continuous temperature distribution inside the body can be obtained accurately and in a short time in a minimally invasive manner without artifacts caused by body movements or the effects of heat radiation. Therefore, in hyperthermia, appropriate heating control can be performed based on this temperature distribution data.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係る方法を実施する測温シ
ステムの構成図。
FIG. 1 is a configuration diagram of a temperature measurement system that implements a method according to an embodiment of the present invention.

【図2】上記測温システムで測温される被検者の腹部断
面図。
FIG. 2 is a cross-sectional view of the abdomen of a subject whose temperature is measured by the temperature measurement system.

【図3】本発明の一実施例に係る方法で実施されるEP
I法のパルスシーケンスを示す図。
FIG. 3: EP performed by a method according to an embodiment of the present invention
The figure which shows the pulse sequence of I method.

【図4】生体各領域におけるT1 値の増分と温度の増
分の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the increment in T1 value and the increment in temperature in each region of the living body.

【図5】マイクロ波加温システムの構成図。FIG. 5 is a configuration diagram of a microwave heating system.

【図6】従来のMRIによる測温方法で使用されるパル
スシーケンスを示す図。
FIG. 6 is a diagram showing a pulse sequence used in a conventional temperature measurement method using MRI.

【符号の説明】 20  超高速MRI装置の磁石 21  アプリケータ 22  マイクロ波発振装置 24  RFプローブ 26  探針方式の測温装置[Explanation of symbols] 20 Ultra-high-speed MRI device magnet 21 Applicator 22 Microwave oscillation device 24 RF probe 26 Probe type temperature measuring device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  (1)温度センサを装着した探針を生
体内部に刺し入れ、生体加温前の温度デ−タを収集する
工程と、(2)超高速MRI装置においてEPI法のパ
ルスシーケンスにより生体加温前のT1 値およびT1
 ,T2 値画像を収集する工程と、(3)前記T1 
,T2 値画像を基に生体内部の領域を区分けし、これ
らの領域と探針の位置を対応づける工程と、(4)生体
を加温し、この加温の直後にEPI法のパルスシーケン
スによるT1 値画像と前記温度センサによる温度デ−
タを収集して、加温による各領域のT1 値の増分と温
度デ−タの増分を求める工程と、(5)前記加温による
各領域のT1 値の増分と温度デ−タの増分の比例関係
を利用し、探針を刺し入れていない領域のT1 値から
その領域の温度を算出する工程を含む生体内部の測温方
法。
Claim 1: (1) a step of inserting a probe equipped with a temperature sensor into the inside of a living body and collecting temperature data before heating the living body; and (2) a pulse sequence of the EPI method in an ultra-high-speed MRI device. T1 value before biological warming and T1
, T2 value images; (3) the T1 value image;
, the step of dividing the internal regions of the living body based on the T2 value image and associating these regions with the position of the probe, and (4) heating the living body, and immediately after this heating, applying a pulse sequence of the EPI method. T1 value image and temperature data from the temperature sensor
(5) determining the increment in the T1 value and the increment in the temperature data of each region due to the heating; A method for measuring temperature inside a living body, which includes the step of calculating the temperature of an area from the T1 value of the area where a probe is not inserted, using a proportional relationship.
JP3125981A 1991-05-29 1991-05-29 In vivo temperature measuring method Pending JPH04352971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3125981A JPH04352971A (en) 1991-05-29 1991-05-29 In vivo temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3125981A JPH04352971A (en) 1991-05-29 1991-05-29 In vivo temperature measuring method

Publications (1)

Publication Number Publication Date
JPH04352971A true JPH04352971A (en) 1992-12-08

Family

ID=14923773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125981A Pending JPH04352971A (en) 1991-05-29 1991-05-29 In vivo temperature measuring method

Country Status (1)

Country Link
JP (1) JPH04352971A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270463B1 (en) 1999-11-23 2001-08-07 Medrad, Inc. System and method for measuring temperature in a strong electromagnetic field
US6886978B2 (en) * 2001-06-18 2005-05-03 Omron Corporation Electronic clinical thermometer
JP2016502434A (en) * 2012-11-19 2016-01-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Temperature distribution determination device
JP2016522696A (en) * 2013-04-18 2016-08-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Energy deposition treatment system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270463B1 (en) 1999-11-23 2001-08-07 Medrad, Inc. System and method for measuring temperature in a strong electromagnetic field
US6886978B2 (en) * 2001-06-18 2005-05-03 Omron Corporation Electronic clinical thermometer
JP2016502434A (en) * 2012-11-19 2016-01-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Temperature distribution determination device
US10004479B2 (en) 2012-11-19 2018-06-26 Koninklijke Philips N.V. Temperature distribution determining apparatus
JP2016522696A (en) * 2013-04-18 2016-08-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Energy deposition treatment system
US10010723B2 (en) 2013-04-18 2018-07-03 Profound Medical Inc. Therapy system for depositing energy

Similar Documents

Publication Publication Date Title
Winter et al. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions
US5109853A (en) Remote temperature monitoring apparatus and technique
Denis de Senneville et al. Magnetic resonance temperature imaging
Gellermann et al. Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system
Chung et al. Optimization of spoiled gradient‐echo phase imaging for in vivo localization of a focused ultrasound beam
Bohris et al. Quantitative MR temperature monitoring of high-intensity focused ultrasound therapy
Wlodarczyk et al. Comparison of four magnetic resonance methods for mapping small temperature changes
Cline et al. Simultaneous magnetic resonance phase and magnitude temperature maps in muscle
EP2467729B1 (en) Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
JP3160351B2 (en) Magnetic resonance diagnostic equipment
US20050065429A1 (en) Method for three plane interleaved acquisition for three dimensional temperature monitoring with MRI
Harth et al. Determination of laser‐induced temperature distributions using echo‐shifted TurboFLASH
US10076249B2 (en) Proton density and T1 weighted zero TE MR thermometry
Han et al. Quantifying temperature‐dependent T 1 changes in cortical bone using ultrashort echo‐time MRI
US20060064002A1 (en) Method for monitoring thermal heating during magnetic resonance imaging
Mittal et al. Evaluation of an ingestible telemetric temperature sensor for deep hyperthermia applications
Mulkern et al. Temperature monitoring of ultrasonically heated muscle with RARE chemical shift imaging
JPH04352971A (en) In vivo temperature measuring method
JP3519486B2 (en) Magnetic resonance diagnostic equipment
JP2889871B1 (en) Magnetic resonance diagnostic equipment
Han et al. Assessing temperature changes in cortical bone using variable flip-angle ultrashort echo-time MRI
Bolomey et al. Recent trends in noninvasive thermal control
Mietzsch et al. Non-invasive temperature imaging of muscles with magnetic resonance imaging using spin-echo sequences
US20240353514A1 (en) Systems and methods for magnetic resonance based skull thermometry
JPH0880290A (en) Magnetic resonance diagnostic instrument