[go: up one dir, main page]

JPH043516A - Inverting circuit - Google Patents

Inverting circuit

Info

Publication number
JPH043516A
JPH043516A JP2103845A JP10384590A JPH043516A JP H043516 A JPH043516 A JP H043516A JP 2103845 A JP2103845 A JP 2103845A JP 10384590 A JP10384590 A JP 10384590A JP H043516 A JPH043516 A JP H043516A
Authority
JP
Japan
Prior art keywords
channel
effect transistor
field effect
type field
type transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2103845A
Other languages
Japanese (ja)
Inventor
Yosuke Fujimoto
洋介 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP2103845A priority Critical patent/JPH043516A/en
Publication of JPH043516A publication Critical patent/JPH043516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To prevent deterioration in the yield in the electric characteristic inspection of ICs by connecting a gate of a 2nd N-channel transistor(TR) and a source of a 1st P-channel TR and extracting an output from a connecting point between a drain of a 2nd P-channel TR and a drain of a 1st N-channel TR. CONSTITUTION:A 2nd P-channel TR is connected between a source 5 of a p-channel TR 1 of an inverter and a power supply line 7, a 2nd N-channel TR is connected between a source 4 of an N-channel TR 2 and a ground line 6, a gate of the 2nd N-channel TR is connected to a source of the 2nd P-channel TR and a gate of the 2nd P-channel TR connects to the source of the 2nd N-channel TR. Thus, the effect of noise onto VDD and GND is hardly caused. Thus, deterioration in performance and malfunction due to noise onto VDD and GND in the electric characteristic inspection of ICs is prevented by an IC tester.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路(以後ICと称す。)で使用
される反転回路(以後インバータと称す。)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inverting circuit (hereinafter referred to as an inverter) used in a semiconductor integrated circuit (hereinafter referred to as an IC).

〔従来の技術〕[Conventional technology]

従来ICに於ては、入力電圧と逆位相の電力電圧を得る
為に、第2図の如き、P型の電界効果型トランジスタ(
以後トランジスタと略す)lとN型トランジスタ2とが
、電源線7と接続線6との間で直列接続されたインバー
タを用いていた。
In conventional ICs, in order to obtain a power voltage with the opposite phase to the input voltage, a P-type field effect transistor (as shown in Fig. 2) is used.
An inverter was used in which an N-type transistor 2 (hereinafter abbreviated as a transistor) and an N-type transistor 2 were connected in series between a power supply line 7 and a connection line 6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

最近、ICチップの面積が大きくなり、チップ内の電源
線(以後vDつと称す。)や接地線(以後GNDと称す
。)の引き廻しが長くなり、V9つやGND自体の抵抗
が大きくなっている。かつ、多数の出力回路を有する為
、同時に多数、出力回路がオンする場合、VDDから大
きな電流が流れ、また、GNDへ大きな電流が流れ込み
、VDD自体、またGND自体にノイズが発生してしま
い、ICの電気的特性検査に於て、性能悪化或いは誤動
作による歩留低下を起こす様になってきた。
Recently, the area of IC chips has become larger, and the power lines (hereinafter referred to as VD) and ground wires (hereinafter referred to as GND) within the chip have become longer, and the resistance of V9 and GND themselves has become larger. . In addition, since it has a large number of output circuits, if many output circuits are turned on at the same time, a large current will flow from VDD and also to GND, which will generate noise in VDD and GND itself. In testing the electrical characteristics of ICs, yields have been reduced due to performance deterioration or malfunctions.

第2図、第3図、第4図を用いて、更に詳細に説明する
。上述した第2図のインバータでは、VDD7に第3図
に示したvDつノイズが発生した場合、vnbとゲート
端子3に印加される電圧v1(入力高レベル電圧)との
差は7を基準にすると、VDDにノイズ電圧v2を加算
し、それからvlを減算して、V 3= V Dn +
 V 2  V 1となり、ノイズ電圧分だけ差が増大
するため、ノイズ電圧v2の大きさの度合により、ゲー
ト端子3に印加された高レベル電圧は低レベル電圧とな
り、出力端子8には低レベル電圧ではなく、高レベル電
圧が出力される。同様にGND6に第4図に示したGN
Dノイズが発生した場合、ゲート端子3に印加される電
圧は6を基準にするとV4(入力低レベル電圧)とV5
(GNDノイズ電圧)を加算して、V6=V4+V、と
なり、ノイズ電圧分だけ電位差が増大するため、ノイズ
電圧v5の大きさにより、ゲート端子3に印加された低
レベル電圧は、高レベル電圧となり、出力端子8には高
レベル電圧ではなく、低レベル電圧が出力され、前者と
同様に性能悪化或いは場合によって誤動作してしまう欠
点があった。
This will be explained in more detail using FIGS. 2, 3, and 4. In the inverter shown in FIG. 2 described above, when vD noise shown in FIG. 3 occurs on VDD7, the difference between vnb and the voltage v1 (input high level voltage) applied to the gate terminal 3 is based on 7. Then, by adding noise voltage v2 to VDD and subtracting vl from it, V 3 = V Dn +
V 2 V 1, and the difference increases by the noise voltage. Therefore, depending on the magnitude of the noise voltage v2, the high level voltage applied to the gate terminal 3 becomes a low level voltage, and the low level voltage is applied to the output terminal 8. Instead, a high level voltage is output. Similarly, GND6 is connected to the GN shown in Figure 4.
When D noise occurs, the voltage applied to the gate terminal 3 will be V4 (input low level voltage) and V5 with reference to 6.
(GND noise voltage) becomes V6 = V4 + V, and the potential difference increases by the noise voltage. Therefore, depending on the magnitude of the noise voltage v5, the low level voltage applied to the gate terminal 3 becomes a high level voltage. , a low level voltage is outputted to the output terminal 8 instead of a high level voltage, and like the former, there is a drawback that performance deteriorates or malfunction occurs in some cases.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、第2図に於るインバータのP型トランジスタ
1のソース端子5と電源線7との間に、第2のP型トラ
ンジスタを接続し、更に、N型トランジスタ2のソース
端子4と接地線6との間に、第2のN型トランジスタを
接続し、更に、該第2のP型トランジスタのソース端子
に該第2のN型トランジスタのゲート端子を接続し、更
に、該第2のN型トランジスタのソース端子に該第2の
P型トランジスタのゲート端子を接続する事を骨子とす
る。
The present invention connects a second P-type transistor between the source terminal 5 of the P-type transistor 1 and the power supply line 7 of the inverter shown in FIG. A second N-type transistor is connected between the ground line 6, a gate terminal of the second N-type transistor is connected to a source terminal of the second P-type transistor, and a gate terminal of the second N-type transistor is connected to the second P-type transistor. The main point is to connect the gate terminal of the second P-type transistor to the source terminal of the second N-type transistor.

〔実施例〕〔Example〕

第1図は、本発明による一実施例である。第2図で説明
した従来例と比較すると、トランジスタ1のソース端子
5と電源線7との間に第2のN型トランジスタ9のドレ
イン/ソース端子を接続し、トランジスタ2のソース端
子4と接地線6との間に第2のN型トランジスタ10の
ドレイン/ソース端子を接続し、該第2のN型トランジ
スタ10ノケート端子と該第2のP型トランジスタ9の
ソース端子とを接続し、該第2のP型トランジスタ9の
ゲート端子と該第2のN型トランジスタ10のソース端
子とを接続した所に特徴がある。
FIG. 1 shows an embodiment according to the present invention. Compared to the conventional example explained in FIG. The drain/source terminal of the second N-type transistor 10 is connected between the line 6, the node terminal of the second N-type transistor 10 and the source terminal of the second P-type transistor 9, and the The feature is that the gate terminal of the second P-type transistor 9 and the source terminal of the second N-type transistor 10 are connected.

第3図の如きvnnノイズが第1図のVDD7に発生し
た場合、従来例で説明した如く、ゲート端子3に印加さ
れた入力高電圧とVゆとの差は、ノイズ電圧72分だけ
大きくなり、等価的にP型トランジスタ9のコンダクタ
ンスg、a9、P型トランジスタ1のコンダクタンスg
3.は大きくなる。一方、N型トランジスタ10のゲー
ト端子12には、vnnとvDDノイズが直接印加され
る為、接地線6とゲート端子12間の電圧はノイズ電圧
72分だけ加算され、等価的にN型トランジスタ10の
フンダクタンスgア、。は大きくなる。同様に、第4図
の如きGNDノイズが、第1図のGND6に発生した場
合、ゲート端子3に印加された入力低電圧とGNDとの
差はノイズ電圧分V6分だけ大きくなり、等価的にN型
トランジスタ10のコンダクタンスgm+o、N型トラ
ンジスタ2のコンダクタンスgm2は大きくなる。一方
、P型トランジスタ9のゲート端子11には、GNDノ
イズが直接印加される為、電源線7とゲート端子11間
の電圧はノイズ電圧76分だけ加算され、等価的にP型
トランジスタ9のコンダクタンスg1は大キくする。P
型トランジスタ1のコンダクタンスをg+a+、N型ト
ランジスタ2のコンダクタンスをgm2とすると、P型
トランジスタ1,9の直列コンダクタンス 1 と、N型トランジスタ2,10の直列gl   g
+se となる。VDD、GNDノイズによる論理スレショルド
電圧の変動をおさえるためには、レシオ比gイ。
When vnn noise as shown in FIG. 3 occurs at VDD7 in FIG. 1, as explained in the conventional example, the difference between the input high voltage applied to the gate terminal 3 and VDD increases by the noise voltage of 72. , equivalently, the conductance g of the P-type transistor 9, a9, the conductance g of the P-type transistor 1
3. becomes larger. On the other hand, since the vnn and vDD noises are directly applied to the gate terminal 12 of the N-type transistor 10, the voltage between the grounding line 6 and the gate terminal 12 is added by the noise voltage 72, equivalently to the N-type transistor 10. Funductance g a. becomes larger. Similarly, when GND noise as shown in Fig. 4 occurs at GND6 in Fig. 1, the difference between the input low voltage applied to the gate terminal 3 and GND increases by the noise voltage V6, equivalently The conductance gm+o of the N-type transistor 10 and the conductance gm2 of the N-type transistor 2 become larger. On the other hand, since GND noise is directly applied to the gate terminal 11 of the P-type transistor 9, the voltage between the power supply line 7 and the gate terminal 11 is added by 76 noise voltages, which equivalently increases the conductance of the P-type transistor 9. Increase g1. P
If the conductance of type transistor 1 is g+a+ and the conductance of N type transistor 2 is gm2, then the series conductance of P type transistors 1 and 9 is 1, and the series conductance of N type transistors 2 and 10 is gl g
+se. In order to suppress fluctuations in the logic threshold voltage due to VDD and GND noise, the ratio ratio g is set.

が変動しない様にすれば良い。It is best to make sure that it does not change.

したがって、gml。(gm++gm、)=gm*(g
+2十gmto)つまり、g m lo・g 、、==
 g van @g atとなる様にチャンネル長とチ
ャンネル幅を各々設計すれば、VDD、GNDノイズに
よる論理スレッショルド電圧の変動は大略不変となり、
第1図に示されたインバーターにおいて、ゲート端子3
に印加された高レベル電圧は低レベル電圧と誤認されず
、又、低レベル電圧は高レベル電圧と誤認されずに、正
しく出力端子6に伝達される。
Therefore, gml. (gm++gm,)=gm*(g
+20 gmto) In other words, g m lo・g ,,==
If the channel length and channel width are designed so that g van @g at, the fluctuation of the logic threshold voltage due to VDD and GND noise will remain almost unchanged.
In the inverter shown in FIG.
The high level voltage applied to the output terminal 6 is not mistaken as a low level voltage, and the low level voltage is not mistaken as a high level voltage and is correctly transmitted to the output terminal 6.

〔発明の効果〕〔Effect of the invention〕

本発明によると、N型トランジスタ1個、P型トランジ
スタ1個追加する事で、VI)Dノイズ。
According to the present invention, by adding one N-type transistor and one P-type transistor, VI) D noise can be reduced.

GNDノイズの影響を受けにくくする事が出来、ICテ
スターによるICの電気的特性検査に於て、vnnノイ
ズ、GNDノイズによる性能悪化・誤動作を防ぐことが
出来、検査歩留りを向上する事が出来、原価低減に寄与
出来る効果を有する。
It can be made less susceptible to the influence of GND noise, and when inspecting the electrical characteristics of ICs using an IC tester, it is possible to prevent performance deterioration and malfunction due to VNN noise and GND noise, and it is possible to improve the inspection yield. It has the effect of contributing to cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による反転回路を示し、第2図は従来
の反転回路を示す。第3図、第4図はVDD。 GNDノイズ説明の為の図面である。 第1図、第2図に於て、 1・・・・・・P型トランジスタ、2・・・・・・N型
トランジスタ、3・・・・・・ゲート端子、4・・・・
・・ソース端子、5・・・・・・ソース端子、6・・・
・・・接地線(GND)、7・・・・・・電源線(VD
D)、8・・・・・・出力端子、9・・・・・・P型ト
ランジスタ、10・・・・・・N型トランジスタ、11
・・・・・・ゲート端子、12・・・・・・ゲート端子
、13・・・・・・ソース端子、14・・・・・・ソー
ス端子第3図、第4図に於て、 Vl・・・・・・ゲート端子3に印加される高レベル電
圧、■4・・・・・・ゲート端子4に印加される低レベ
ル電圧、v2・・・・・・VDDノイズ電圧値、■、・
・・・・・GNDノイズ電圧値、v3・・・・・・VD
Dとv2との差、V6・・・・・・v4と■、との和。 代理人 弁理士  内 原   晋 第1図 第3図
FIG. 1 shows an inversion circuit according to the present invention, and FIG. 2 shows a conventional inversion circuit. Figures 3 and 4 are VDD. This is a drawing for explaining GND noise. In Figures 1 and 2, 1...P-type transistor, 2...N-type transistor, 3...gate terminal, 4...
...Source terminal, 5...Source terminal, 6...
...Ground wire (GND), 7...Power wire (VD)
D), 8... Output terminal, 9... P-type transistor, 10... N-type transistor, 11
...... Gate terminal, 12... Gate terminal, 13... Source terminal, 14... Source terminal In Figures 3 and 4, Vl ...High level voltage applied to gate terminal 3, ■4...Low level voltage applied to gate terminal 4, v2...VDD noise voltage value, ■,・
...GND noise voltage value, v3...VD
Difference between D and v2, V6...sum of v4 and ■. Agent: Susumu Uchihara, patent attorney Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 第1のP型電界効果トランジスタのドレイン端子と第2
のP型電界効果型トランジスタのソース端子が接続され
、該第2のP型トランジスタのドレイン端子が第1のN
型電界効果型トランジスタのドレイン端子と接続され、
該第1のN型電界効果型トランジスタのソース端子が、
第2のN型電界効果型トランジスタのドレイン端子に接
続され、該第1のP型電界効果型トランジスタのソース
端子が電源線に接続され、該第2のN型電界効果型トラ
ンジスタのソース端子が接地線に接続され、該第1のP
型電界効果型トランジスタのゲート端子と該第2のN型
電界効果型トランジスタのソース端子とが接続され、該
第2のP型電界効果型トランジスタのゲート端子と該第
1のN型電界効果型トランジスタのゲート端子とが接続
され、該第2のN型電界効果型トランジスタのゲート端
子と該第1のP型電界効果型トランジスタのソース端子
とが接続され、該第2のP型電界効果型トランジスタの
ドレイン端子と該第1のN型電界効果型トランジスタの
ドレイン端子の接続点から出力を取り出す構成を有する
事を特徴とする反転回路。
The drain terminal of the first P-type field effect transistor and the second
The source terminal of the second P-type field effect transistor is connected to the first N field-effect transistor, and the drain terminal of the second P-type transistor is connected to the first
connected to the drain terminal of a type field effect transistor,
The source terminal of the first N-type field effect transistor is
The drain terminal of the second N-type field effect transistor is connected to the drain terminal, the source terminal of the first P-type field effect transistor is connected to the power supply line, and the source terminal of the second N-type field effect transistor is connected to the power supply line. connected to the ground wire, and the first P
The gate terminal of the type field effect transistor and the source terminal of the second N type field effect transistor are connected, and the gate terminal of the second P type field effect transistor and the first N type field effect transistor are connected to each other. the gate terminal of the second N-type field effect transistor is connected to the source terminal of the first P-type field effect transistor; An inverting circuit characterized in that it has a configuration in which an output is taken out from a connection point between a drain terminal of a transistor and a drain terminal of the first N-type field effect transistor.
JP2103845A 1990-04-19 1990-04-19 Inverting circuit Pending JPH043516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2103845A JPH043516A (en) 1990-04-19 1990-04-19 Inverting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2103845A JPH043516A (en) 1990-04-19 1990-04-19 Inverting circuit

Publications (1)

Publication Number Publication Date
JPH043516A true JPH043516A (en) 1992-01-08

Family

ID=14364772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2103845A Pending JPH043516A (en) 1990-04-19 1990-04-19 Inverting circuit

Country Status (1)

Country Link
JP (1) JPH043516A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230220A (en) * 1986-03-31 1987-10-08 Toshiba Corp Complementary insulation gate type logic circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230220A (en) * 1986-03-31 1987-10-08 Toshiba Corp Complementary insulation gate type logic circuit

Similar Documents

Publication Publication Date Title
KR940001816B1 (en) Slew Rate Speed Sup Circuit
JPS6153799B2 (en)
JPH04355298A (en) Data output driver for obtaining high output gain
US4346310A (en) Voltage booster circuit
US5095230A (en) Data output circuit of semiconductor device
JPH0252889B2 (en)
US5773872A (en) Semiconductor device having an integrated differential circuit with an improved common-mode rejection ratio (CMRR)
KR100310284B1 (en) Cmos integrated circuit
JPH043516A (en) Inverting circuit
JPS6070822A (en) Semiconductor integrated circuit
US5309043A (en) Compound logic circuit having NAND and NOR gate outputs and two transistors connected within both gate circuits
KR100283870B1 (en) Microcomputer
JPH02192221A (en) Inverting circuit
JP3628820B2 (en) Complementary current source
JPH03179814A (en) Level shift circuit
CN110022145B (en) Latch and isolation circuit
JPH0213490B2 (en)
JP3106593B2 (en) Differential amplifier circuit
JPH0541091A (en) Semiconductor integral circuit
JPH04103215A (en) Input circuit for semiconductor integrated circuit
JPH04347929A (en) Output circuit
JPH08307243A (en) Current mode semiconductor integrated circuit
JPS62249521A (en) Semiconductor integrated circuit device
JPH0750562A (en) Semiconductor integrated circuit device
JPH04213916A (en) Input circuit