[go: up one dir, main page]

JPH04349936A - Catalyst for eliminating carbon monooxide and preparation of the same - Google Patents

Catalyst for eliminating carbon monooxide and preparation of the same

Info

Publication number
JPH04349936A
JPH04349936A JP3124080A JP12408091A JPH04349936A JP H04349936 A JPH04349936 A JP H04349936A JP 3124080 A JP3124080 A JP 3124080A JP 12408091 A JP12408091 A JP 12408091A JP H04349936 A JPH04349936 A JP H04349936A
Authority
JP
Japan
Prior art keywords
base metal
layers
catalyst
layered compound
inorganic layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3124080A
Other languages
Japanese (ja)
Inventor
Toshiji Sako
利治 佐古
Masaru Yokoyama
勝 横山
Koichi Takahama
孝一 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3124080A priority Critical patent/JPH04349936A/en
Publication of JPH04349936A publication Critical patent/JPH04349936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To eliminate efficiently carbon monooxide at relatively low temperatures by introducing a transition base metal element between layers of a swelling inorganic compound of a layer form, inserting uniformly the transition base metal element between the layers. CONSTITUTION:A swelling inorganic compound of a layer form, after being mixed with water to introduce water between the layers, is added with an aqueous solution of a transition base metal salt of a given concentration, and the mixture is mixed completely. Into the mixed solution, an alkaline solution of sodium hydroxide, etc., of a given concentration is added to neutralize the solution, then the mixture is washed and centrifuged. The obtained swelling inorganic compound of a layer form being swelled, after being dried by means of drying under reduced pressure and ultra-critical drying, etc., is calcinated to obtain a catalyst for eliminating carbon monooxide. The catalyst has a structure forming a layer 1 containing the transition base metal element between layers 2, 2 of the swelling inorganic compound of a layer form. Practical examples of the transition base metal elements are Zn, Ni, Co, etc., and practical examples of the swelling inorganic compounds of a layer form include Na- montmorillonite, synthetic hectolite, synthetic smectite.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、無機多孔体を用いた
一酸化炭素除去触媒に関し、さらに、その製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a carbon monoxide removal catalyst using an inorganic porous material, and further relates to a method for producing the same.

【0002】0002

【従来の技術】空気中に存在する微量の一酸化炭素(以
下、「CO」と言うことがある)を除去する触媒は極め
て限られている。そのような触媒としては、パラジウム
、白金、ルテニウムなどの貴金属が挙げられる。これら
の貴金属は、アルミナやシリカなどの担体に担持するこ
とにより、CO除去触媒として用いられる。
BACKGROUND OF THE INVENTION Catalysts that remove trace amounts of carbon monoxide (hereinafter sometimes referred to as "CO") present in the air are extremely limited. Such catalysts include noble metals such as palladium, platinum, and ruthenium. These noble metals are used as CO removal catalysts by being supported on a carrier such as alumina or silica.

【0003】0003

【発明が解決しようとする課題】上記貴金属触媒は、高
価なので、比較的安価な材料からなるCO除去触媒が望
まれている。そこで、この発明は、比較的安価な材料か
らなる一酸化炭素除去触媒を提供することを第1の課題
とし、そのような一酸化炭素除去触媒が容易に得られる
製造方法を提供することを第2の課題とする。
[Problems to be Solved by the Invention] Since the above-mentioned noble metal catalysts are expensive, a CO removal catalyst made of relatively inexpensive materials is desired. Therefore, the first object of the present invention is to provide a carbon monoxide removal catalyst made of relatively inexpensive materials, and the first object is to provide a manufacturing method by which such a carbon monoxide removal catalyst can be easily obtained. This is the second issue.

【0004】0004

【課題を解決するための手段】上記第1の課題を解決す
るために、この発明の一酸化炭素除去触媒は、膨潤性無
機層状化合物の層間に卑金属の遷移元素が導入されてな
るものである。上記第2の課題を解決するために、この
発明の一酸化炭素除去触媒の製造方法は、膨潤された膨
潤性無機層状化合物を卑金属の遷移元素含有溶液に入れ
てアルカリを加えたのち、乾燥させることにより一酸化
炭素除去触媒を得るようにしている。
[Means for Solving the Problems] In order to solve the first problem, the carbon monoxide removal catalyst of the present invention is formed by introducing a base metal transition element between the layers of a swellable inorganic layered compound. . In order to solve the above second problem, the method for producing a carbon monoxide removal catalyst of the present invention includes adding a swollen swellable inorganic layered compound to a base metal transition element-containing solution, adding an alkali, and then drying the swellable inorganic layered compound. By doing this, a carbon monoxide removal catalyst is obtained.

【0005】この発明では、COを除去する触媒として
卑金属の遷移元素を用いることとし、膨潤性無機層状化
合物の層間に卑金属の遷移元素を取り込ませるのである
。卑金属の遷移元素は、たとえば、水酸化物などの化合
物の形で膨潤性無機層状化合物の中に導入されているが
、これに限定されない。また、その存在形態には特に制
限はなく、たとえば、図1にみるように、膨潤性無機層
状化合物の層2,2間に卑金属の遷移元素を含む層1を
形成している。ただし、このように膨潤性無機層状化合
物の層2,2間を完全に充填している場合に限定されず
、層2上に堆積しているだけで層間を完全には充填して
いない場合や多孔質になっている場合なども含まれる。 なお、図1では、卑金属遷移元素を含む層1が膨潤性無
機層状化合物の層2と分離しているように描かれている
が、付着していてもよい。
In the present invention, a base metal transition element is used as a catalyst for removing CO, and the base metal transition element is incorporated between the layers of the swellable inorganic layered compound. Base metal transition elements have been introduced into swellable inorganic layered compounds in the form of compounds such as, but not limited to, hydroxides. Further, there is no particular restriction on the form in which it exists, and for example, as shown in FIG. 1, a layer 1 containing a base metal transition element is formed between layers 2 of the swellable inorganic layered compound. However, this is not limited to the case where the space between layers 2 and 2 of the swellable inorganic layered compound is completely filled, and there are cases where the swelling inorganic layered compound is only deposited on layer 2 but does not completely fill the space between the layers. This also includes cases where it is porous. In addition, in FIG. 1, the layer 1 containing the base metal transition element is depicted as being separated from the layer 2 of the swellable inorganic layered compound, but they may be attached to each other.

【0006】この発明で用いる卑金属の遷移元素(以下
、「遷移金属」と言う)は、貴金属以外の遷移元素であ
り、粘土などの膨潤性無機層状化合物中に遷移金属水酸
化物などとして取り込めるもの、たとえば、加水分解し
た際に難溶性の水酸化物を沈殿する、Zn、Ni、Cu
、Fe、Coなどのうちの1種以上が用いられる。難溶
性の水酸化物を沈殿するという点からは遷移元素ではな
いがMgなども可能である。
[0006] The base metal transition element (hereinafter referred to as "transition metal") used in this invention is a transition element other than a noble metal, and can be incorporated into a swellable inorganic layered compound such as clay as a transition metal hydroxide. , for example, Zn, Ni, Cu, which precipitate poorly soluble hydroxides when hydrolyzed.
, Fe, Co, and the like. From the point of view of precipitating poorly soluble hydroxides, Mg is also possible although it is not a transition element.

【0007】膨潤性無機層状化合物としては、たとえば
、Na−モンモリロナイト、合成ヘクトライト、合成ス
メクタイト(たとえば、合成サポナイト、Na−ヘクト
ライト、Na−テニオライトが挙げられる)などのいず
れを用いてもよく、それぞれ1種を単独で使用したり、
2種以上を併用したりすることができる。膨潤性無機層
状化合物と遷移金属との比率は、たとえば、遷移金属の
水酸化物である場合には、膨潤性無機層状化合物1モル
に対してその水酸化物3モル程度までの比率とされる。 これよりも水酸化物が多いと、膨潤性無機層状化合物の
外に水酸化物が析出するおそれがあり、反対に少なすぎ
ると性能の低下のおそれがある。
As the swellable inorganic layered compound, for example, any of Na-montmorillonite, synthetic hectorite, synthetic smectite (for example, synthetic saponite, Na-hectolite, and Na-teniolite) may be used, You can use one type of each alone,
Two or more types can be used in combination. For example, in the case of a hydroxide of a transition metal, the ratio of the swellable inorganic layered compound to the transition metal is about 3 moles of the hydroxide per 1 mole of the swellable inorganic layered compound. . If the amount of hydroxide is more than this, there is a risk that the hydroxide will be precipitated outside the swellable inorganic layered compound, whereas if it is too small, there is a risk of deterioration in performance.

【0008】遷移金属を膨潤性無機層状化合物の層間に
挿入させるには、たとえば、次のようなやり方が採用さ
れる。すなわち、粘土など膨潤性無機層状化合物の層間
が強い酸性を示すことを利用して、膨潤性無機層状化合
物を遷移金属塩水溶液に分散させ、アルカリを滴定のと
きなどのようにゆっくり加えて中和することにより、膨
潤性無機層状化合物層間に遷移金属の水酸化物などを析
出させ、層を形成させるのである。この層の形成は、た
とえば、X線粉末回折法や蛍光X線法、脱水を行ったと
きのピークの分析などにより確認することができる。
[0008] In order to insert the transition metal between the layers of the swellable inorganic layered compound, the following method is adopted, for example. In other words, by taking advantage of the fact that the interlayers of a swellable inorganic layered compound such as clay exhibit strong acidity, the swellable inorganic layered compound is dispersed in an aqueous transition metal salt solution, and then neutralized by slowly adding alkali, such as during titration. By doing so, transition metal hydroxides and the like are precipitated between the layers of the swellable inorganic layered compound to form a layer. Formation of this layer can be confirmed by, for example, X-ray powder diffraction method, fluorescent X-ray method, or analysis of peaks when dehydration is performed.

【0009】続いて、この発明の無機多孔体の製造方法
をより具体的に工程を追って説明する。まず、主材たる
膨潤性無機層状化合物を水と混合し、層間に水を含ませ
た状態にする。ここに遷移金属塩水溶液(金属塩の濃度
はたとえば0.1M程度であるが、これに限定されない
)を加え、十分に攪拌する。このようにして得られた混
合溶液に、水酸化ナトリウム水溶液などのアルカリ溶液
(アルカリの濃度はたとえば0.1N程度であるが、こ
れに限定されない)をゆっくり加え、その後、乾燥およ
び焼成を行う。この焼成は、たとえば、100〜200
℃で行うのがよい。300℃までの温度で焼成を行うと
膨潤性無機層状化合物の外には何も出てこないが、40
0℃程度になると酸化物になって外に出てくるおそれが
ある。アルカリ溶液の添加を急激に行うと膨潤性無機層
状化合物の外に遷移金属水酸化物が析出するので、ゆっ
くりと添加を行い、膨潤性無機層状化合物の層間に析出
するようにするのがよい。アルカリにより、たとえば、
遷移金属塩水溶液が中和されるなどして遷移金属水酸化
物が析出する。
Next, the method for producing an inorganic porous body according to the present invention will be explained in more detail step by step. First, the main material, a swellable inorganic layered compound, is mixed with water to form a state in which water is impregnated between the layers. A transition metal salt aqueous solution (the concentration of the metal salt is, for example, about 0.1 M, but is not limited thereto) is added thereto and thoroughly stirred. An alkaline solution such as an aqueous sodium hydroxide solution (the concentration of the alkali is, for example, about 0.1N, but is not limited thereto) is slowly added to the mixed solution thus obtained, followed by drying and baking. This firing is, for example, 100 to 200
It is best to do this at ℃. When firing at temperatures up to 300°C, nothing comes out outside of the swellable inorganic layered compound;
When the temperature drops to around 0°C, there is a risk that it will turn into oxides and come out. If the alkaline solution is added rapidly, the transition metal hydroxide will precipitate outside the swellable inorganic layered compound, so it is better to add it slowly so that the transition metal hydroxide is precipitated between the layers of the swellable inorganic layered compound. With alkali, e.g.
A transition metal salt aqueous solution is neutralized, and a transition metal hydroxide is precipitated.

【0010】次に、膨潤している膨潤性無機層状化合物
を乾燥させる。この乾燥は、たとえば、超臨界乾燥、臨
界点乾燥、凍結乾燥、減圧乾燥、熱風乾燥などの適宜の
乾燥方法であってもよいが、超臨界乾燥が好ましい。超
臨界状態で乾燥させる場合には、たとえば、次のように
する。なお、この明細書では、超臨界状態とは、臨界点
を超えた場合のみではなく、ちょうど臨界点にある場合
も含むことがある。超臨界状態で乾燥する具体的方法と
しては、たとえば、層間に含有されている水等、膨潤性
無機層状化合物が保持含有する溶媒を直接、加熱および
/または加圧して、その臨界点以上の状態に到達させて
溶媒を除去し乾燥させるという方法がある。ただし、こ
の場合には、水などのように極めて高い臨界点(水の臨
界温度374.2℃、臨界圧217.6atm)を持つ
溶媒を用いると、特殊なオートクレーブなどの容器を用
いなければならなくなる。これを避けるためには、たと
えば、膨潤性無機層状化合物の含有する溶媒をより臨界
点の低い溶媒で置換してから超臨界乾燥させる。膨潤性
無機層状化合物が水を含有している場合、たとえば、エ
タノールで置換してエタノールの臨界点以上の温度、圧
力に加熱および/または加圧して超臨界状態を出現させ
たり、水をエタノールで置換したのち、さらに二酸化炭
素を加えて行き、徐々にエタノールを二酸化炭素に置換
しながら、二酸化炭素とエタノールの2成分系の臨界点
以上の温度、圧力に加熱加圧して超臨界状態を出現させ
たりするようにすればよい。エタノールが抽出除去され
た後、常温常圧に戻せば乾燥工程が終了する。エタノー
ルを二酸化炭素で置換する場合、臨界点以上の二酸化炭
素を系に送り込んで置換させるようにすることもできる
Next, the swollen swellable inorganic layered compound is dried. This drying may be carried out by any suitable drying method such as supercritical drying, critical point drying, freeze drying, reduced pressure drying, hot air drying, etc., but supercritical drying is preferred. When drying in a supercritical state, for example, the following procedure is performed. Note that in this specification, a supercritical state may include not only the case where the critical point is exceeded but also the case where the supercritical state is exactly at the critical point. A specific method for drying in a supercritical state is, for example, by directly heating and/or pressurizing the solvent held and contained in the swellable inorganic layered compound, such as water contained between the layers, to a state above its critical point. There is a method of removing the solvent and drying it. However, in this case, if a solvent such as water has an extremely high critical point (critical temperature of water: 374.2°C, critical pressure: 217.6 atm), a container such as a special autoclave must be used. It disappears. In order to avoid this, for example, the solvent contained in the swellable inorganic layered compound is replaced with a solvent having a lower critical point, and then supercritical drying is performed. If the swellable inorganic layered compound contains water, for example, water may be substituted with ethanol and heated and/or pressurized to a temperature and pressure higher than the critical point of ethanol to create a supercritical state, or water may be replaced with ethanol to create a supercritical state. After the substitution, carbon dioxide is further added, and while gradually replacing ethanol with carbon dioxide, the temperature and pressure of the two-component system of carbon dioxide and ethanol are heated and pressurized to a temperature and pressure above the critical point to create a supercritical state. All you have to do is to do something like this. After the ethanol has been extracted and removed, the drying process is completed by returning the temperature to normal pressure. When replacing ethanol with carbon dioxide, it is also possible to send carbon dioxide above the critical point into the system for replacement.

【0011】なお、溶媒として利用可能な流体は上記の
ものに限らない。実用の範囲で超臨界流体化することが
可能なものは、種々あるが、たとえば、エタノール、メ
タノール、二酸化炭素、ジクロロジフルオロメタン、エ
チレンなどが挙げられる。参考のために、主要な流体に
ついての臨界条件を表1に示した。
[0011]Fluids that can be used as solvents are not limited to those mentioned above. There are various substances that can be made into supercritical fluids within a practical range, and examples include ethanol, methanol, carbon dioxide, dichlorodifluoromethane, and ethylene. For reference, critical conditions for major fluids are shown in Table 1.

【0012】0012

【表1】[Table 1]

【0013】膨潤性無機層状化合物の乾燥を超臨界乾燥
により行うと、膨潤性無機層状化合物中での溶媒の凝縮
、膨潤性無機層状化合物同士の凝集などが阻止され、乾
燥前の構造をうまく保持しつつ、花弁状ないしセミの羽
状のものがカードハウス状ないしスポンジ状に寄せ集ま
った集合体の無機多孔体が得られる。このため、超臨界
乾燥を用いた場合には、熱風乾燥、あるいは、凍結乾燥
を用いた場合に比べ、より細孔容積の大きな多孔体が得
られる。
When the swellable inorganic layered compound is dried by supercritical drying, condensation of the solvent in the swellable inorganic layered compound and aggregation of the swellable inorganic layered compounds with each other are prevented, and the structure before drying is well maintained. At the same time, an inorganic porous material is obtained, which is an aggregate of petal-like or cicada-like feathers gathered together like a house of cards or a sponge. Therefore, when supercritical drying is used, a porous body with a larger pore volume can be obtained than when hot air drying or freeze drying is used.

【0014】[0014]

【作用】膨潤性無機層状化合物の層間に遷移金属を導入
することにより、一酸化炭素除去機能を有する無機多孔
体が得られる。ここで使用される遷移金属は、貴金属以
外の遷移元素であり、安価である。遷移金属を含む層は
、たとえば、遷移金属の水酸化物からなる。この水酸化
物を膨潤性無機層状化合物の中に入れず単独で使っても
、CO除去機能は出ないが、膨潤性無機層状化合物の中
に入れるとCO除去機能を発揮する。
[Operation] By introducing a transition metal between the layers of a swellable inorganic layered compound, an inorganic porous body having a carbon monoxide removal function can be obtained. The transition metal used here is a transition element other than a noble metal and is inexpensive. The layer containing a transition metal is made of, for example, a hydroxide of a transition metal. If this hydroxide is used alone without being included in the swellable inorganic layered compound, it will not have a CO removal function, but if it is included in the swellable inorganic layered compound, it will exhibit the CO removal function.

【0015】[0015]

【実施例】以下に、この発明の具体的な実施例および比
較例を示すが、この発明は下記実施例に限定されない。 −実施例1− 膨潤性無機層状化合物であるNa−モンモリロナイト(
クニミネ工業株式会社製)を水に分散させ、Na−モン
モリロナイトを0.8wt%の割合で含む分散液を調製
し、この分散液に0.1M−CoCl2 ・H2 Oを
添加して充分に混合した。さらにこの溶液に0.1N−
NaOHをゆっくりとN2 雰囲気下で滴定することに
より中和した。滴定後(NaOHをCoCl2 3モル
に対して6モルの割合となるように入れた時)、水で洗
浄し遠心分離を行うという操作を数回繰り返し、すばや
く減圧乾燥し、100℃で2時間焼成した。これにより
一酸化炭素除去触媒を得た。
[Examples] Specific examples and comparative examples of the present invention are shown below, but the present invention is not limited to the following examples. -Example 1- Na-montmorillonite (swellable inorganic layered compound)
Kunimine Kogyo Co., Ltd.) was dispersed in water to prepare a dispersion containing 0.8 wt% Na-montmorillonite, and 0.1M-CoCl2.H2O was added to this dispersion and thoroughly mixed. . Furthermore, 0.1N-
NaOH was neutralized by slow titration under N2 atmosphere. After titration (when NaOH was added at a ratio of 6 moles to 3 moles of CoCl2), the procedure of washing with water and centrifugation was repeated several times, quickly dried under reduced pressure, and baked at 100°C for 2 hours. did. As a result, a carbon monoxide removal catalyst was obtained.

【0016】なお、各成分の配合比は、モル比でモンモ
リロナイト:CoCl2 ・H2 O:NaOH=1:
3:6であった。 −実施例2− 実施例1において、Na−モンモリロナイトの代わりに
合成スメクタイトの1つである合成サポナイト(クニミ
ネ工業株式会社製スメクトンSA)を使用したこと以外
は、実施例1と同様にして一酸化炭素除去触媒を得た。
[0016] The blending ratio of each component is as follows in molar ratio: montmorillonite:CoCl2.H2O:NaOH=1:
The ratio was 3:6. -Example 2- Monoxide was produced in the same manner as in Example 1, except that synthetic saponite (Smecton SA manufactured by Kunimine Kogyo Co., Ltd.), which is one of the synthetic smectites, was used instead of Na-montmorillonite. A carbon removal catalyst was obtained.

【0017】−実施例3− 実施例1において、CoCl2 ・H2 Oの代わりに
Ni(NO3)2 を使用したこと以外は、実施例1と
同様にして一酸化炭素除去触媒を得た。 −実施例4− 実施例1において、洗浄時に水の代わりにエタノールを
用いたこと、および、減圧乾燥の代わりに比較的臨界点
の低い二酸化炭素(CO2 )を添加しながら40℃、
80atm で8時間かけて超臨界乾燥を行ったこと以
外は、実施例1と同様にして一酸化炭素除去触媒を得た
-Example 3- A carbon monoxide removal catalyst was obtained in the same manner as in Example 1 except that Ni(NO3)2 was used instead of CoCl2.H2O. -Example 4- In Example 1, ethanol was used instead of water during washing, and instead of vacuum drying, carbon dioxide (CO2), which has a relatively low critical point, was added while drying at 40°C.
A carbon monoxide removal catalyst was obtained in the same manner as in Example 1, except that supercritical drying was performed at 80 atm for 8 hours.

【0018】−実施例5− 実施例4において、乾燥を臨界点(温度:31.1℃、
圧力:72.8atm。これは、二酸化炭素の臨界点で
ある)で8時間かけて行ったこと以外は、実施例4と同
様にして一酸化炭素除去触媒を得た。 −実施例6− 実施例1において、乾燥を凍結乾燥により行ったこと以
外は、実施例1と同様にして一酸化炭素除去触媒を得た
-Example 5- In Example 4, drying was carried out at the critical point (temperature: 31.1°C,
Pressure: 72.8 atm. A carbon monoxide removal catalyst was obtained in the same manner as in Example 4, except that this was carried out for 8 hours at the critical point of carbon dioxide. -Example 6- A carbon monoxide removal catalyst was obtained in the same manner as in Example 1 except that drying was performed by freeze drying.

【0019】−実施例7− 実施例1において、Na−モンモリロナイトの代わりに
合成ヘクトライトを用いたこと以外は、実施例1と同様
にして一酸化炭素除去触媒を得た。 −比較例1− 実施例1において、Na−モンモリロナイトを水に分散
させた後、0.1M−CoCl2 ・H2 Oも0.1
N−NaOHも加えなかったこと以外は、実施例1と同
様にして無機多孔体を得た。
Example 7 A carbon monoxide removal catalyst was obtained in the same manner as in Example 1, except that synthetic hectorite was used instead of Na-montmorillonite. - Comparative Example 1 - In Example 1, after dispersing Na-montmorillonite in water, 0.1 M-CoCl2 .H2 O was also dispersed.
An inorganic porous body was obtained in the same manner as in Example 1 except that N-NaOH was not added.

【0020】−比較例2− 実施例1で用いた、0.1M−CoCl2 ・H2 O
と0.1N−NaOHを用いてCo(OH)2を析出さ
せた。 −比較例3− 実施例3で用いた、0.1M−Ni(NO3)2 と0
.1N−NaOHを用いてNi(OH)2を析出させた
- Comparative Example 2 - 0.1M-CoCl2 .H2 O used in Example 1
and 0.1N-NaOH to precipitate Co(OH)2. - Comparative Example 3 - 0.1M-Ni(NO3)2 and 0 used in Example 3
.. Ni(OH)2 was precipitated using 1N-NaOH.

【0021】実施例1〜7の一酸化炭素除去触媒および
比較例1の無機多孔体の比表面積、細孔容積を測定した
。比表面積および細孔容積は、窒素吸着法におけるBE
T法を利用して調べた。測定結果を表2に示した。実施
例1〜7の一酸化炭素除去触媒および比較例1の無機多
孔体、ならびに、比較例2,3の金属水酸化物について
CO除去機能を次のようにして調べた。反応系内を一酸
化炭素含有(2%)の空気が流れるようにしておくとと
もに、反応系内にCO除去触媒として、実施例1〜7の
一酸化炭素除去触媒および比較例1の無機多孔体、なら
びに、比較例2,3の金属水酸化物を80℃に加熱しな
がら置いておき、系内から出てきた空気中の一酸化炭素
濃度をガスクロマトグラフィーを用いて測定した。この
測定値から一酸化炭素除去率を計算して結果を表2に示
した。ただし、実施例3および比較例3では触媒を25
0℃に加熱して測定を行った。
The specific surface area and pore volume of the carbon monoxide removal catalyst of Examples 1 to 7 and the inorganic porous material of Comparative Example 1 were measured. The specific surface area and pore volume are BE in the nitrogen adsorption method.
This was investigated using the T method. The measurement results are shown in Table 2. The CO removal function of the carbon monoxide removal catalysts of Examples 1 to 7, the inorganic porous body of Comparative Example 1, and the metal hydroxides of Comparative Examples 2 and 3 was investigated as follows. Air containing carbon monoxide (2%) was allowed to flow through the reaction system, and the carbon monoxide removal catalyst of Examples 1 to 7 and the inorganic porous material of Comparative Example 1 were used as a CO removal catalyst in the reaction system. , and the metal hydroxides of Comparative Examples 2 and 3 were left while being heated to 80° C., and the concentration of carbon monoxide in the air coming out of the system was measured using gas chromatography. The carbon monoxide removal rate was calculated from this measured value and the results are shown in Table 2. However, in Example 3 and Comparative Example 3, the catalyst was
The measurement was performed after heating to 0°C.

【0022】[0022]

【表2】[Table 2]

【0023】表2にみるように、実施例1〜7の一酸化
炭素除去触媒は一酸化炭素除去機能を示したが、比較例
1〜3のものは一酸化炭素除去機能を示さなかった。特
に、モンモリロナイトの層間に水酸化コバルトを挿入し
た一酸化炭素除去触媒は、100℃以下の低温でもCO
除去触媒として最も性能が良かった。また、乾燥を超臨
界状態で行った場合には、より効果的に触媒の機能が発
揮できた。
As shown in Table 2, the carbon monoxide removal catalysts of Examples 1 to 7 exhibited a carbon monoxide removal function, but those of Comparative Examples 1 to 3 did not exhibit a carbon monoxide removal function. In particular, a carbon monoxide removal catalyst with cobalt hydroxide inserted between the layers of montmorillonite can remove CO even at low temperatures below 100°C.
It had the best performance as a removal catalyst. Moreover, when drying was performed in a supercritical state, the catalyst function was more effectively exhibited.

【0024】[0024]

【発明の効果】この発明によれば、貴金属を用いずにC
Oを除去する機能を有する触媒が得られる。この発明の
製造方法によれば、触媒担持法よりも触媒である卑金属
の遷移元素が均一に層間内に挿入されており、十分な機
能を発揮できる一酸化炭素除去触媒が得られる。
[Effect of the invention] According to this invention, C without using precious metals.
A catalyst having the function of removing O is obtained. According to the manufacturing method of the present invention, the base metal transition element serving as the catalyst is more uniformly inserted between the layers than in the catalyst supporting method, and a carbon monoxide removal catalyst that can exhibit sufficient functionality can be obtained.

【0025】この発明では、膨潤性無機層状化合物の層
間に導入された卑金属の遷移元素がコバルトである場合
には、一酸化炭素除去触媒は、70〜80℃の比較的低
温で効率良くCOを除去することができる。
In the present invention, when the base metal transition element introduced between the layers of the swellable inorganic layered compound is cobalt, the carbon monoxide removal catalyst efficiently removes CO at a relatively low temperature of 70 to 80°C. Can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一酸化炭素除去触媒の1実施例を模
式的に表す部分拡大図である。
FIG. 1 is a partially enlarged view schematically showing one embodiment of the carbon monoxide removal catalyst of the present invention.

【符号の説明】[Explanation of symbols]

1  卑金属の遷移元素を含む層 2  膨潤性無機層状化合物の層 1 Layer containing base metal transition elements 2 Layer of swellable inorganic layered compound

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  膨潤性無機層状化合物の層間に卑金属
の遷移元素が導入されてなる一酸化炭素除去触媒。
1. A carbon monoxide removal catalyst comprising a base metal transition element introduced between layers of a swellable inorganic layered compound.
【請求項2】  卑金属の遷移元素がコバルトである請
求項1記載の一酸化炭素除去触媒。
2. The carbon monoxide removal catalyst according to claim 1, wherein the base metal transition element is cobalt.
【請求項3】  膨潤された膨潤性無機層状化合物を卑
金属の遷移元素含有溶液に入れてアルカリを加えたのち
、乾燥させる一酸化炭素除去触媒の製造方法。
3. A method for producing a carbon monoxide removal catalyst, in which a swollen inorganic layered compound is put into a base metal transition element-containing solution, an alkali is added thereto, and then dried.
JP3124080A 1991-05-28 1991-05-28 Catalyst for eliminating carbon monooxide and preparation of the same Pending JPH04349936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3124080A JPH04349936A (en) 1991-05-28 1991-05-28 Catalyst for eliminating carbon monooxide and preparation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3124080A JPH04349936A (en) 1991-05-28 1991-05-28 Catalyst for eliminating carbon monooxide and preparation of the same

Publications (1)

Publication Number Publication Date
JPH04349936A true JPH04349936A (en) 1992-12-04

Family

ID=14876434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3124080A Pending JPH04349936A (en) 1991-05-28 1991-05-28 Catalyst for eliminating carbon monooxide and preparation of the same

Country Status (1)

Country Link
JP (1) JPH04349936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080313A (en) * 2006-09-29 2008-04-10 Nichias Corp Metal oxide catalyst powder, method for producing the same, purification filter, method for decomposing volatile organic solvent, and method for decomposing nitrogen oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080313A (en) * 2006-09-29 2008-04-10 Nichias Corp Metal oxide catalyst powder, method for producing the same, purification filter, method for decomposing volatile organic solvent, and method for decomposing nitrogen oxide

Similar Documents

Publication Publication Date Title
Rodríguez-Reinoso et al. Platinum catalysts supported on activated carbons: I. Preparation and characterization
JP2544872B2 (en) Method for producing inorganic porous body and method for producing inorganic material supporting metal particles
US20080312070A1 (en) Method for Making a Material
PL83915B1 (en)
JP2000061306A (en) Supported catalysts usable in conversion reactions of organic compounds
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
KR100400591B1 (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
JPS62210057A (en) Catalyst and its production
JP2008504117A (en) Catalyst and process for the selective hydrogenation of acetylenes and dienes in light olefin feedstocks
GB2047556A (en) Process for preparing a catalyst composition containing oxides of copper zinc and aluminum
US5268091A (en) Method for removing arsenic and phosphorus contained in liquid hydrocarbon cuts, nickel based retaining material
KR0169725B1 (en) Nickel-based absorbents for arsenic and phosphor removal from liquid hydrocarbon fractions, its preparation and its use
EP0044118A2 (en) A method of preparing a catalyst
UA69409C2 (en) Catalyst for the production of vinyl acetate, comprising unadulterated palladium, copper and gold (variants) and method for its production
US3149082A (en) Calcium phosphate catalysts and method of production
WO1996033014A1 (en) Formed compositions
JPH04349936A (en) Catalyst for eliminating carbon monooxide and preparation of the same
JPH0810619A (en) Ozone decomposing catalyst and decomposing method
JP3311361B2 (en) Method for regenerating anthraquinone during the synthesis process of hydrogen peroxide
TW425424B (en) Stable pillared clays and their use as catalysts for hydroconversion of waxy feeds
JPS6339287B2 (en)
EP0019674A1 (en) Process for the production of a hollow catalyst carrier made of transition-alumina
JP2921517B2 (en) Nitrogen oxide decomposition catalyst
UA72543C2 (en) Combination comprising lead compounds upstream of the copper-containing catalyst, and method for carrying out the catalytic reaction using the catalyst
JPH059136B2 (en)