JPH04346214A - Mask for x-ray exposure and manufacture thereof - Google Patents
Mask for x-ray exposure and manufacture thereofInfo
- Publication number
- JPH04346214A JPH04346214A JP3146587A JP14658791A JPH04346214A JP H04346214 A JPH04346214 A JP H04346214A JP 3146587 A JP3146587 A JP 3146587A JP 14658791 A JP14658791 A JP 14658791A JP H04346214 A JPH04346214 A JP H04346214A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- mask
- reflective
- multilayer film
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000007796 conventional method Methods 0.000 abstract description 3
- 238000003754 machining Methods 0.000 abstract description 2
- 238000007788 roughening Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010884 ion-beam technique Methods 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- X-Ray Techniques (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は例えば、半導体等の製造
プロセスで使用されるX線縮小露光に用いられるX線露
光用マスクに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray exposure mask used for X-ray reduction exposure used, for example, in the manufacturing process of semiconductors and the like.
【0002】0002
【従来の技術】波長の短いX線を用いたリソグラフィー
では、紫外線を用いたものでは原理的に不可能であった
高解像度が実現できる。このようなX線リソグラフィー
では、X線縮小露光用マスクとして、マスクを透過した
光をその後の光学系で結像させる透過型X線マスクと、
マスクを反射した光を結像させる反射型X線マスクとが
ある。2. Description of the Related Art Lithography using short-wavelength X-rays can achieve high resolution, which is theoretically impossible with ultraviolet rays. In such X-ray lithography, a transmission type X-ray mask is used as an X-ray reduction exposure mask, and the light transmitted through the mask is formed into an image by a subsequent optical system;
There is a reflective X-ray mask that forms an image using light reflected from a mask.
【0003】透過型X線マスクは、X線が比較的良く透
過する物質からなるメンブレン上にX線吸収物質で所望
のパターンを形成したものであるが、メンブレンは大変
壊れやすく取扱いが困難であり、前記メンブレン,吸収
物質の内部応力やX線の加熱によってパターン位置に歪
が生じる等の問題を有する。このような透過型X線マス
クの問題点を解消するものとして反射型X線マスクが用
いられるようになった。[0003] Transmission type X-ray masks are made by forming a desired pattern with an X-ray absorbing material on a membrane made of a material that transmits X-rays relatively well, but the membrane is very fragile and difficult to handle. However, there are problems such as distortion occurring in the pattern position due to the internal stress of the membrane and absorbing material and heating by X-rays. Reflection type X-ray masks have come to be used as a solution to these problems of transmission type X-ray masks.
【0004】従来用いられている反射型X線マスクは、
図8に示すように、基板3に均一に成膜されたX線反射
多層膜2の上に設けられたX線吸収体16を所定のパタ
ーンを形成するようドライエッチングあるいはウエット
エッチングを行って製作される(a)か、または、パタ
ーンの非反射部となる部分の多層膜をドライエッチング
あるいはウエットエッチングによって除去して製作され
る(b)ものである。Conventionally used reflective X-ray masks include:
As shown in FIG. 8, the X-ray absorber 16 provided on the X-ray reflective multilayer film 2 uniformly formed on the substrate 3 is manufactured by performing dry etching or wet etching to form a predetermined pattern. (a), or (b) is manufactured by removing the multilayer film in the non-reflective portion of the pattern by dry etching or wet etching.
【0005】[0005]
【発明が解決しようとする課題】X線反射鏡において、
多層膜の表面・界面の粗さが大きいほどX線の反射率は
低下するため、反射型X線マスクに使用される多層膜の
表面・界面は極めて平滑でなければならない。[Problem to be solved by the invention] In the X-ray reflecting mirror,
The rougher the surface/interface of a multilayer film, the lower the reflectance of X-rays, so the surface/interface of a multilayer film used in a reflective X-ray mask must be extremely smooth.
【0006】しかしながら、従来の反射型X線マスクで
は、その製作工程でレジストまたは多層膜自身のエッチ
ング工程が不可欠であり、このエッチング工程において
平滑に成膜された多層膜の反射表面が荒れてしまいX線
反射率が低下するという問題がある。さらに、露光用マ
スクの反射率が低いと、露光に要する時間も長くなり、
スループットが悪くなってしまうという問題等がある。However, in the manufacturing process of conventional reflective X-ray masks, an etching process of the resist or the multilayer film itself is essential, and in this etching process, the smooth reflective surface of the multilayer film becomes rough. There is a problem that the X-ray reflectance decreases. Furthermore, if the reflectance of the exposure mask is low, the time required for exposure will be longer.
There are problems such as poor throughput.
【0007】本発明は、上記問題を解消し、多層膜の反
射面が荒れないような製造法で、反射率の高い反射型X
線マスクを得ることを目的とする。The present invention solves the above problems and uses a manufacturing method that prevents the reflective surface of the multilayer film from becoming rough.
The aim is to obtain a line mask.
【0008】[0008]
【課題を解決するための手段】請求項1に記載の発明に
係るX線露光用反射型マスクでは、基板上に成膜された
X線反射多層膜に、X線の反射部と非反射部からなるマ
スクパターンが形成されたX線露光用反射型マスクにお
いて、前記パターンの非反射部を、X線を反射しないよ
うに加工された前記多層膜自体で構成した。[Means for Solving the Problem] In the reflective mask for X-ray exposure according to the invention described in claim 1, an X-ray reflective multilayer film formed on a substrate has an X-ray reflective part and a non-reflective part. In the reflective mask for X-ray exposure in which a mask pattern consisting of the following was formed, the non-reflective portion of the pattern was formed of the multilayer film itself processed so as not to reflect X-rays.
【0009】また、請求項2に記載の発明に係るX線露
光用反射型マスクの製造法では、基板上に成膜されたX
線反射多層膜に、集束エネルギービームを照射すること
によりマスクパターンの非反射部を形成するものである
。Further, in the method for manufacturing a reflective mask for X-ray exposure according to the second aspect of the invention, the X-ray film formed on the substrate is
The non-reflective portions of the mask pattern are formed by irradiating a linearly reflective multilayer film with a focused energy beam.
【0010】0010
【作用】本発明は、マスクパターンにおけるX線の非反
射部(以下、スペース部分と記す)の多層膜が、集束エ
ネルギービームの照射によって瞬間的にX線を反射しな
い状態に加工されたX線反射型マスクであるため、その
反射部分の多層膜表面の反射率は成膜直後と変わらず高
いものである。即ち、集束エネルギービームが照射され
た部分のみが、瞬間的に多層膜を構成する2種類の物質
同士の拡散,再結晶により、多層膜周期構造(干渉作用
)の破壊や表面に散乱面が生じて反射率が極めて小さく
なった状態に加工される。[Function] The present invention provides an X-ray mask pattern in which the multilayer film in the X-ray non-reflecting portion (hereinafter referred to as space portion) is processed so that it does not instantly reflect X-rays by irradiation with a focused energy beam. Since it is a reflective mask, the reflectance of the multilayer film surface in the reflective portion is as high as it was immediately after film formation. In other words, only the area irradiated with the focused energy beam will instantly undergo diffusion and recrystallization between the two types of materials that make up the multilayer film, causing destruction of the multilayer film periodic structure (interference effect) and the creation of scattering surfaces on the surface. The reflectance is processed to be extremely low.
【0011】従って、反射部分の多層膜表面は熱拡散等
の影響を受けることなく表面の平滑は維持されたままで
あり、そのX線反射率も成膜直後と比較してほとんど低
下しない。また、このように従来にない高い反射率のX
線露光用マスクを用いれば、露光時間の短縮化も可能で
ある。[0011] Therefore, the surface of the multilayer film in the reflective portion remains smooth without being affected by thermal diffusion, and its X-ray reflectance hardly decreases compared to immediately after film formation. In addition, in this way, the X
By using a line exposure mask, it is also possible to shorten the exposure time.
【0012】0012
【実施例】以下に、本発明の一実施例に係るX線露光用
反射型マスクとその製造法を図1〜6を用いて説明する
。図1は本発明の一実施例に係るX線露光用反射型マス
クの製造法を示す図である。[Embodiment] A reflective mask for X-ray exposure and a method of manufacturing the same according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 6. FIG. 1 is a diagram showing a method of manufacturing a reflective mask for X-ray exposure according to an embodiment of the present invention.
【0013】図1において、基板3上に成膜された多層
膜2のパターンのスペース部分に集束エネルギービーム
1が照射されることによって、瞬間的に多層膜の周期構
造の破壊,表面粗さの増加を生じさせ、マスクパターン
が形成される。図2に集束エネルギービームとしてレー
ザ光を用いた場合の実施例を示す。Si基板上に周期長
88Å、積層数50層のモリブデン(Mo)/シリコン
(Si)多層膜を成膜して形成した多層膜反射鏡4をX
ーYステージ5上に乗せる。In FIG. 1, a focused energy beam 1 is irradiated onto a space in a pattern of a multilayer film 2 formed on a substrate 3, thereby instantaneously destroying the periodic structure of the multilayer film and reducing surface roughness. A mask pattern is formed. FIG. 2 shows an example in which a laser beam is used as the focused energy beam. A multilayer film reflector 4 formed by depositing a molybdenum (Mo)/silicon (Si) multilayer film with a periodic length of 88 Å and a laminated number of 50 layers on a Si substrate is
-Place it on Y stage 5.
【0014】YAGレーザ(波長1.06μm)6のレ
ーザ光7をレンズ8で多層膜上に1μm径に集光し、レ
ーザ出力を一定に保持しながらXーYステージ5を一定
の速度で移動させることによってピッチ1μmのライン
アンドスペースのパターンが形成される。即ち、パター
ンスペース部はこのようなレーザ光による局所的熱処理
によって、多層膜のMoとSiの化合物が形成され周期
構造が破壊しX線を反射できない状態となる。Laser light 7 from a YAG laser (wavelength: 1.06 μm) 6 is focused onto the multilayer film by a lens 8 to a diameter of 1 μm, and the X-Y stage 5 is moved at a constant speed while keeping the laser output constant. By doing so, a line and space pattern with a pitch of 1 μm is formed. That is, in the pattern space portion, by such local heat treatment using laser light, a compound of Mo and Si of a multilayer film is formed, the periodic structure is destroyed, and X-rays cannot be reflected.
【0015】本実施例で製作した反射型X線マスクと従
来法で製作した反射型X線マスクとの反射率を波長12
4ÅのX線を使用して測定、比較した。その結果は、図
5に示すように、従来法による反射型X線マスクの反射
率が20%であるのに対して本実施例における反射型X
線マスクの反射率は、成膜直後の多層膜の反射率と同じ
30%であった。The reflectance of the reflective X-ray mask manufactured in this example and the reflective X-ray mask manufactured by the conventional method was determined at wavelength 12.
Measurements and comparisons were made using 4 Å X-rays. As a result, as shown in FIG. 5, the reflectance of the conventional reflective X-ray mask was 20%, while the reflective
The reflectance of the line mask was 30%, which is the same as the reflectance of the multilayer film immediately after film formation.
【0016】図6に、本実施例による反射型X線マスク
4を用いて行った露光実験を示す。放射光を分光して得
られた波長124Åの平行なX線ビーム12を反射型X
線マスク4に45°の角度で入射させ、反射したX線1
3の像をポジ型のPMMAレジストを塗布したSiウエ
ハ14上に転写した。パターンの方向は、反射面(図紙
面)に垂直である。ウエハ14上への転写は、パターン
部分が0.8μm、スペース部分が0.6μmであった
。この値は予想値と一致しており、さらに露光時間は従
来の反射型X線マスクの場合の2/3に短縮された。FIG. 6 shows an exposure experiment conducted using the reflective X-ray mask 4 according to this embodiment. A parallel X-ray beam 12 with a wavelength of 124 Å obtained by spectroscopy of synchrotron radiation is
X-ray 1 incident on the ray mask 4 at an angle of 45° and reflected
The image No. 3 was transferred onto a Si wafer 14 coated with a positive type PMMA resist. The direction of the pattern is perpendicular to the reflective surface (paper surface). The transfer onto the wafer 14 was 0.8 μm in the pattern portion and 0.6 μm in the space portion. This value is in agreement with the expected value, and furthermore, the exposure time was shortened to two-thirds of that in the case of a conventional reflective X-ray mask.
【0017】次に、図3に集束エネルギービームとして
イオンビームを用いた場合の実施例を示す。真空容器9
内において、図2の場合と同様の多層膜反射鏡4をXー
Yステージ5上に乗せ、イオンビーム10を多層膜上に
1μmに集光させる。イオンビーム10の加速電圧およ
び加速電流を一定に保持しながらXーYステージ5を一
定の速度で移動させることによってピッチ1μmのライ
ンアンドスペースのパターンが形成される。Next, FIG. 3 shows an embodiment in which an ion beam is used as the focused energy beam. Vacuum container 9
Inside, a multilayer film reflecting mirror 4 similar to that shown in FIG. 2 is placed on an XY stage 5, and the ion beam 10 is focused onto the multilayer film to a diameter of 1 μm. A line-and-space pattern with a pitch of 1 μm is formed by moving the XY stage 5 at a constant speed while keeping the accelerating voltage and accelerating current of the ion beam 10 constant.
【0018】図3に示した実施例による反射型X線マス
クの反射率を波長124ÅのX線を使用して測定したと
ころ、27%とほとんど成膜直後の多層膜の反射率から
低下していない。更に、図6の露光実験を行った結果、
ウエハ14上への転写はパターン部分が0.8μm、ス
ペース部分が0.6μmで予想値と一致しており、その
露光時間は従来の反射型X線マスクの場合の2/3に短
縮された。When the reflectance of the reflective X-ray mask according to the embodiment shown in FIG. 3 was measured using X-rays with a wavelength of 124 Å, it was 27%, which is almost lower than the reflectance of the multilayer film immediately after deposition. do not have. Furthermore, as a result of the exposure experiment shown in Figure 6,
The transfer onto the wafer 14 was 0.8 μm for the pattern portion and 0.6 μm for the space portion, which matched the expected values, and the exposure time was shortened to 2/3 of that using a conventional reflective X-ray mask. .
【0019】図4は、集束エネルギービームとして電子
ビームを用いた場合の実施例を示したものである。真空
容器9内において、図2の場合と同様の多層膜反射鏡4
上に電子ビーム11を集光し、ピッチ0.5μmのライ
ンアンドスペースのパターンを形成した。FIG. 4 shows an embodiment in which an electron beam is used as the focused energy beam. Inside the vacuum container 9, a multilayer mirror 4 similar to that shown in FIG.
An electron beam 11 was focused on it to form a line-and-space pattern with a pitch of 0.5 μm.
【0020】図4に示した実施例による反射型X線マス
クの反射率を波長125ÅのX線を使用して測定した結
果30%であり、成膜直後の多層膜の反射率と同じであ
った。更に、図6の露光実験を行った結果、ウエハ14
上への転写はパターン部分が0.4μm、スペース部分
が0.3μmで予想値と一致しており、その露光時間は
従来の反射型X線マスクの場合の2/3に短縮された。The reflectance of the reflective X-ray mask according to the embodiment shown in FIG. 4 was measured using X-rays with a wavelength of 125 Å and was 30%, which is the same as the reflectance of the multilayer film immediately after deposition. Ta. Furthermore, as a result of conducting the exposure experiment shown in FIG.
The upward transfer was 0.4 μm for the pattern portion and 0.3 μm for the space portion, which matched the expected values, and the exposure time was shortened to 2/3 of that for a conventional reflective X-ray mask.
【0021】なお、以上の図2〜4で説明した実施例に
おいて、熱の拡散を防ぐためにワークホルダーを液体窒
素で冷却してある。また、実際のプロセス中においては
、図7に示すように反射型X線マスク4で反射したX線
13を、多層膜ミラーで構成された光学系15によって
像を1/10程度に縮小して微細なパターンの転写を行
う。In the embodiments described above with reference to FIGS. 2 to 4, the work holder is cooled with liquid nitrogen to prevent heat diffusion. In addition, during the actual process, as shown in FIG. 7, the image of the X-rays 13 reflected by the reflective X-ray mask 4 is reduced to about 1/10 by an optical system 15 composed of a multilayer mirror. Transfers fine patterns.
【0022】[0022]
【発明の効果】本発明は以上説明したとおり、マスクパ
ターンのスペース部分の多層膜に、集束エネルギービー
ムを照射して瞬間的にX線を反射しない状態に加工した
X線反射型マスクであるため、その反射部分の多層膜表
面の反射率は成膜直後と変わらず高いものである。即ち
、集束エネルギービームが照射された部分のみが、瞬間
的に多層膜を構成する2種類の物質同士の拡散,再結晶
により多層膜周期構造の破壊や表面粗さの増加が生じて
反射率が極めて小さくなった状態に加工される。[Effects of the Invention] As explained above, the present invention is an X-ray reflective mask in which the multilayer film in the space portion of the mask pattern is irradiated with a focused energy beam so that it does not momentarily reflect X-rays. , the reflectance of the multilayer film surface in the reflective portion is as high as it was immediately after the film was formed. In other words, only the part irradiated with the focused energy beam instantaneously causes the two types of materials that make up the multilayer film to diffuse and recrystallize, causing the periodic structure of the multilayer film to break and surface roughness to increase, resulting in a decrease in reflectance. Processed into an extremely small size.
【0023】従って、反射部分の多層膜表面は熱拡散等
の影響を受けることなく、成膜直後の表面の平滑は維持
されたままであり、そのX線反射率も成膜直後と比較し
てほとんど低下しない。また、このように従来にない反
射率の高いX線露光用マスクを用いれば、露光時間の短
縮化も可能である。Therefore, the surface of the multilayer film in the reflective area is not affected by thermal diffusion, etc., and the surface smoothness immediately after film formation is maintained, and its X-ray reflectance is almost the same as that immediately after film formation. Does not decrease. Further, by using an X-ray exposure mask with a higher reflectance than ever before, it is also possible to shorten the exposure time.
【0024】さらに、大気中でも使用可能なレーザを用
いれば、簡単な装置でマスクを作成でき、コストの低減
も図れる。また、従来法で製作したマスクパターンでス
ペース部分に加工ミスがあった場合、本発明の方法を応
用し、パターンミス部に集束エネルギービームを照射し
てマスクの修正を行うことも可能である等の効果を有す
る。Furthermore, if a laser that can be used even in the atmosphere is used, a mask can be created with a simple device, and costs can be reduced. Furthermore, if there is a machining error in a space part of a mask pattern produced using a conventional method, it is also possible to apply the method of the present invention and correct the mask by irradiating the pattern error part with a focused energy beam. It has the effect of
【図1】本発明の一実施例に係る反射型X線マスクの製
造法を説明する図である。FIG. 1 is a diagram illustrating a method for manufacturing a reflective X-ray mask according to an embodiment of the present invention.
【図2】本発明の一実施例であるレーザ光による反射型
X線マスク製造法の説明図である。FIG. 2 is an explanatory diagram of a method for manufacturing a reflective X-ray mask using laser light, which is an embodiment of the present invention.
【図3】本発明の一実施例であるイオンビームによる反
射型X線マスク製造法の説明図である。FIG. 3 is an explanatory diagram of a reflective X-ray mask manufacturing method using an ion beam, which is an embodiment of the present invention.
【図4】本発明の一実施例である電子ビームによる反射
型X線マスク製造法の説明図である。FIG. 4 is an explanatory diagram of a method for manufacturing a reflective X-ray mask using an electron beam, which is an embodiment of the present invention.
【図5】本発明の実施例による反射型X線マスクと従来
のものとの波長124ÅにおけるX線反射率を示す図で
ある。FIG. 5 is a diagram showing the X-ray reflectance at a wavelength of 124 Å of a reflective X-ray mask according to an embodiment of the present invention and a conventional mask.
【図6】本発明の実施例による反射型X線マスクを用い
た露光実験系の構成図である。FIG. 6 is a configuration diagram of an exposure experiment system using a reflective X-ray mask according to an embodiment of the present invention.
【図7】反射型X線マスクと多層膜ミラーを用いた縮小
投影露光装置の構成図である。FIG. 7 is a configuration diagram of a reduction projection exposure apparatus using a reflective X-ray mask and a multilayer mirror.
【図8】従来の反射型X線マスクの説明図である。FIG. 8 is an explanatory diagram of a conventional reflective X-ray mask.
1:集束エネルギービーム 2:多層膜 3:基板 4:反射型X線マスク 5:XーYステージ 7:レーザ光 9:真空容器 10:イオンビーム 11:電子ビーム 12:X線ビーム 13:反射X線 14:Siウエハ 1: Focused energy beam 2: Multilayer film 3: Substrate 4: Reflective X-ray mask 5: X-Y stage 7: Laser light 9: Vacuum container 10: Ion beam 11: Electron beam 12: X-ray beam 13: Reflected X-ray 14:Si wafer
Claims (2)
、X線の反射部と非反射部とからなるマスクパターンが
形成されたX線露光用反射型マスクにおいて、前記パタ
ーンの非反射部が、X線を反射しないように加工された
前記多層膜自体であることを特徴とするX線露光用反射
型マスク。1. A reflective mask for X-ray exposure, in which a mask pattern consisting of an X-ray reflective part and a non-reflective part is formed on an X-ray reflective multilayer film formed on a substrate, in which the non-reflective part of the pattern is A reflective mask for X-ray exposure, characterized in that the reflective portion is the multilayer film itself processed so as not to reflect X-rays.
、集束エネルギービームを照射することにより、マスク
パターンの非反射部を形成することを特徴とするX線露
光用反射型マスクの製造法。2. A reflective mask for X-ray exposure, characterized in that a non-reflective part of a mask pattern is formed by irradiating an X-ray reflective multilayer film formed on a substrate with a focused energy beam. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3146587A JPH04346214A (en) | 1991-05-23 | 1991-05-23 | Mask for x-ray exposure and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3146587A JPH04346214A (en) | 1991-05-23 | 1991-05-23 | Mask for x-ray exposure and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04346214A true JPH04346214A (en) | 1992-12-02 |
Family
ID=15411088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3146587A Pending JPH04346214A (en) | 1991-05-23 | 1991-05-23 | Mask for x-ray exposure and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04346214A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0671658A3 (en) * | 1994-03-02 | 1996-03-13 | Canon Kk | Exposure apparatus and reflection type mask to be used in the same. |
US7906257B2 (en) | 2007-02-05 | 2011-03-15 | Kabushiki Kaisha Toshiba | Photomask manufacturing method and semiconductor device manufacturing method |
-
1991
- 1991-05-23 JP JP3146587A patent/JPH04346214A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0671658A3 (en) * | 1994-03-02 | 1996-03-13 | Canon Kk | Exposure apparatus and reflection type mask to be used in the same. |
US7906257B2 (en) | 2007-02-05 | 2011-03-15 | Kabushiki Kaisha Toshiba | Photomask manufacturing method and semiconductor device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12222639B2 (en) | Extreme ultraviolet mask and method of manufacturing the same | |
JP4397496B2 (en) | Reflective exposure mask and EUV exposure apparatus | |
US11774844B2 (en) | Extreme ultraviolet mask and method of manufacturing the same | |
JP3219502B2 (en) | Reflection mask and method of manufacturing the same, and exposure apparatus and method of manufacturing a semiconductor device | |
KR100675782B1 (en) | Non-absorbent reticle and method of making same | |
US5572564A (en) | Reflecting photo mask for x-ray exposure and method for manufacturing the same | |
US7078136B2 (en) | Thermally-generated mask pattern | |
US5147742A (en) | Photomask and fabrication of the same | |
JP3167074B2 (en) | SOR exposure system and mask manufactured using the same | |
US11435660B2 (en) | Photomask and method of fabricating a photomask | |
JPH04346214A (en) | Mask for x-ray exposure and manufacture thereof | |
JPH0588355A (en) | Reflection type mask and exposure device using the same | |
TWI792538B (en) | Lithography method, lithography process and lithography system | |
JPH09326347A (en) | Fine pattern transfer method and apparatus | |
JP2004273926A (en) | Aligner | |
JPH02177532A (en) | Mild x-ray reflection type exposure mask and manufacture thereof | |
JPS5915380B2 (en) | Fine pattern transfer device | |
JP3618853B2 (en) | X-ray generator, and exposure apparatus and device production method using the same | |
TW202424654A (en) | Euv light uniformity control apparatus, euv exposure equipment including the same, and euv light uniformity control method by using the control apparatus | |
US5552247A (en) | Method for patterning an X-ray master mask | |
JPH04206812A (en) | Formation of fine pattern | |
JPS63304250A (en) | Formation of fine resist pattern | |
JP2004327786A (en) | Exposure method and aligner | |
JPH09190963A (en) | Mask, and device production method using this, and exposure device | |
JPH0376740B2 (en) |