JPH04343050A - Non-destructive analysis method below the sample surface - Google Patents
Non-destructive analysis method below the sample surfaceInfo
- Publication number
- JPH04343050A JPH04343050A JP3142434A JP14243491A JPH04343050A JP H04343050 A JPH04343050 A JP H04343050A JP 3142434 A JP3142434 A JP 3142434A JP 14243491 A JP14243491 A JP 14243491A JP H04343050 A JPH04343050 A JP H04343050A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- specimen
- point
- data
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は試料に荷電粒子線とかX
線等を照射して試料から放出される二次放射を検出する
ことにより試料面の分析を行う装置によって、試料表面
より下の或る深さの部分を選択的に分析する方法に関す
る。[Industrial Application Field] The present invention provides a method for applying charged particle beams or X-rays to a sample.
The present invention relates to a method of selectively analyzing a portion at a certain depth below the surface of a sample using a device that analyzes the surface of the sample by irradiating it with a beam or the like and detecting secondary radiation emitted from the sample.
【0002】0002
【従来の技術】試料に励起線を照射して試料からの二次
放射を検出する分析装置で試料面から或る深さの所の分
析を行う場合、試料表面をイオンエッチング法等により
除去して所望深さまで削り、表面分析を行うと云う形で
分析を行っていた。[Prior Art] When performing analysis at a certain depth from the sample surface using an analyzer that irradiates the sample with excitation radiation and detects secondary radiation from the sample, the sample surface is removed by ion etching or the like. The analysis was carried out by cutting the material to a desired depth and then performing surface analysis.
【0003】しかし上述した従来方法には次のような問
題があった。まず試料面をエッチングして削るので、一
種の破壊分析となり、表面から或る元素を内部に打ち込
んだ半導体製品のような製品を非破壊で検査したいと云
う場合には適用されず、使用する分析装置が励起線照射
装置の外イオンエッチング用イオン源も付設されたもの
であることが必要である等、分析装置に制約があり、更
に励起線自体が試料表面から或る深さまで進入し、試料
からの二次放射も試料表面のみでなく、或る深さまでの
層からも放射され、従来はこのような深さ方向に分布し
て発生する二次放射を弁別せず検出していたから、分析
結果自体が試料表面から或る深さまでの平均的結果とな
っていると云う曖昧さを持っていた。However, the above-mentioned conventional method has the following problems. First, the sample surface is etched and scraped, so it is a type of destructive analysis, and it is not applicable when you want to non-destructively inspect products such as semiconductor products in which certain elements are implanted from the surface into the interior. There are limitations to the analyzer, such as the fact that the device must be equipped with an ion source for ion etching in addition to the excitation ray irradiation device, and the excitation rays themselves penetrate to a certain depth from the sample surface, causing damage to the sample. Secondary radiation is emitted not only from the surface of the sample but also from layers up to a certain depth, and conventionally, secondary radiation generated distributed in the depth direction was detected without discrimination, so the analysis results The method itself had an ambiguity in that it was an average result from the sample surface to a certain depth.
【0004】0004
【発明が解決しようとする課題】本発明は試料に励起線
を照射して、試料からの二次放射を検出する分析装置に
よって試料面から深さ方向の分析を非破壊的に行う方法
を提供するものである。[Problems to be Solved by the Invention] The present invention provides a method for non-destructively analyzing the sample surface in the depth direction using an analyzer that irradiates the sample with excitation radiation and detects secondary radiation from the sample. It is something to do.
【0005】[0005]
【課題を解決するための手段】試料励起線の線束中心線
が試料面より所定深さにある一点を通るようにして、照
射方向を変えて励起線を試料に照射し、励起線の各照射
方向毎に試料からの二次放射の検出データを採取し、そ
れらのデータから、各照射方向において共通に存在する
データと共通でないデータを選別し、共通に現れている
データを以て、試料表面から上記所定深さの点の分析デ
ータとする。[Means for solving the problem] The beam center line of the sample excitation line passes through a point at a predetermined depth from the sample surface, and the sample is irradiated with the excitation line by changing the irradiation direction, and each irradiation of the excitation line Collect detection data of secondary radiation from the sample in each direction, select data that exists in common and data that does not exist in each irradiation direction from these data, and use the data that appears in common to detect the above from the sample surface. This is analysis data at a point at a predetermined depth.
【0006】[0006]
【作用】上述構成によると、試料表面下所定深さの点を
方向を変えながら励起線で見ることになる。このように
すると、所定深さにおける分析データはどの方向から見
ても共通に見えるが、試料表面も含めて他の深さの層で
は方向によって視点が異なるため方向毎に分析データは
異なったものとなる。従って何れの方向から見ても同じ
値で検出されている分析データは、試料面から所定深さ
の点の分析データとみなすことができる。[Operation] According to the above configuration, a point at a predetermined depth below the surface of the sample is viewed with the excitation line while changing the direction. In this way, the analysis data at a given depth looks the same no matter what direction you look at, but at other depths, including the sample surface, the viewpoints differ depending on the direction, so the analysis data looks different in each direction. becomes. Therefore, analysis data detected with the same value when viewed from any direction can be regarded as analysis data at a point at a predetermined depth from the sample surface.
【0007】[0007]
【実施例】図1に本発明の一実施例を示す。この実施例
は電子線マイクロアナライザ(EPMA)に本発明を適
用したものである。図で1は電子銃、2は対物レンズで
Sが試料であり、3は試料から放射されるX線を分光す
る分光結晶、4はX線検出器であり、分光結晶3、X線
検出器4と試料の電子ビーム照射点とが一つのローラン
ド円上に位置しているように、分光結晶とX線検出器と
が移動せしめられることによりX線分光器の波長走査が
行われる。Embodiment FIG. 1 shows an embodiment of the present invention. In this embodiment, the present invention is applied to an electron beam microanalyzer (EPMA). In the figure, 1 is an electron gun, 2 is an objective lens, S is a sample, 3 is a spectroscopic crystal that separates the X-rays emitted from the sample, and 4 is an X-ray detector. The wavelength scanning of the X-ray spectrometer is performed by moving the spectroscopic crystal and the X-ray detector so that the electron beam irradiation point on the sample and the electron beam irradiation point on the sample are located on one Rowland circle.
【0008】この装置において、試料は試料ホルダ5上
に保持されてその傾きを変えることができるようになっ
ており、この傾きを変える回転の回転中心(水平)に対
する試料表面の高さ位置が変えられるようになっている
。即ち図2に示すように試料の傾きを変える回転の中心
線0は試料を照射する電子ビームの中心線と直交してお
り、中心線0から試料表面までの高さhが調節できるの
で、試料の傾きを変えると、電子ビームは試料の表面下
hの所にある0点を異なる方向から見ることになる。In this apparatus, the sample is held on a sample holder 5 so that its inclination can be changed, and the height position of the sample surface with respect to the rotation center (horizontal) of the rotation that changes the inclination can be changed. It is now possible to That is, as shown in Figure 2, the center line 0 of the rotation that changes the sample's inclination is perpendicular to the center line of the electron beam that irradiates the sample, and the height h from the center line 0 to the sample surface can be adjusted. By changing the inclination of , the electron beam will view the zero point h below the surface of the sample from different directions.
【0009】試料に入射した電子は試料内で試料構成原
子と衝突して不規則な軌道を画いて試料内を進行しエネ
ルギーを失って停止し、その間にX線を放射させる。こ
のようにして試料内に入射した電子は試料内の或る範囲
に拡散し、その広がり領域は電子の加速電圧によって異
なるがμmのオーダである。こゝで試料の周囲にコイル
6を置き、試料中に電子ビームと同方向の磁場Hを形成
しておくと、試料内に進入した電子の横方向の広がりが
抑制され、試料内電子の広がり領域は図2に示すように
試料の深さ方向に延びた細長い領域となって、その深さ
がμmのオーダとなっている。従ってhを加減すること
により、試料表面から1μm前後までの任意の深さの点
を分析することが可能となる。即ち試料の傾きを変える
と、図3に示すように細長い電子の拡散領域は0点を中
心にして交わり、0点近傍の分析データが得られること
になる。[0009] Electrons that have entered the sample collide with atoms constituting the sample within the sample, travel within the sample in an irregular trajectory, lose energy, and stop, during which time they emit X-rays. The electrons that have entered the sample in this manner are diffused within a certain range within the sample, and the spread area varies depending on the electron accelerating voltage, but is on the order of μm. If a coil 6 is placed around the sample and a magnetic field H is formed in the sample in the same direction as the electron beam, the lateral spread of the electrons entering the sample is suppressed, and the spread of the electrons in the sample is reduced. As shown in FIG. 2, the region is a long and narrow region extending in the depth direction of the sample, and its depth is on the order of μm. Therefore, by adjusting h, it becomes possible to analyze points at arbitrary depths up to about 1 μm from the sample surface. That is, when the inclination of the sample is changed, the elongated electron diffusion regions intersect around the zero point, as shown in FIG. 3, and analytical data near the zero point is obtained.
【0010】試料面の傾きを変えることにより、図3に
示すように試料の0点を2方向A,Bから電子ビームで
照射したときの各X線分光スペクトルから、次のように
して0点近傍の分析データを得る。A方向に対するX線
分光スペクトルにおいて検出される元素をa,b,c,
dとし、B方向でも同じ元素a,b,c,dが検出され
るとする。このとき、各元素の特性X線ピーク強度を方
向Aに対してPa,Pb,Pc,Pd、B方向に対して
Qa,Qb,Qc,Qdとし、元素bについてはPb=
Qbであり、他の元素a,c,dについては方向AとB
とでピーク強度が異なっていたとする。この場合0点に
あるのは元素bと判定される。それは方向A,Bにおい
て、元素bは電子ビームの照射条件も、特性X線が試料
表面まで出て検出される条件も同じだから両方向で同じ
強さで検出されるからであり、他の元素はA方向の電子
拡散領域内により多く存在していてもB方向の電子拡散
領域では少なく存在しており、或はその逆となって、A
,B両方向の電子拡散領域で同じ濃度で分布していると
云う確率は少ないから、両方向で異なる強さで検出され
るのである。By changing the inclination of the sample surface, the zero point is determined from each X-ray spectrum when the zero point of the sample is irradiated with an electron beam from two directions A and B as shown in FIG. Obtain neighborhood analysis data. The elements detected in the X-ray spectra in the A direction are a, b, c,
d, and the same elements a, b, c, and d are also detected in the B direction. At this time, the characteristic X-ray peak intensity of each element is set as Pa, Pb, Pc, Pd in direction A, and Qa, Qb, Qc, Qd in direction B, and for element b, Pb=
Qb, and directions A and B for other elements a, c, and d
Suppose that the peak intensities were different between and. In this case, the element at point 0 is determined to be element b. This is because in directions A and B, element b is detected with the same intensity in both directions because the electron beam irradiation conditions and the conditions under which characteristic X-rays reach the sample surface and are detected are the same. Even if more electrons exist in the electron diffusion region in the A direction, fewer exist in the electron diffusion region in the B direction, or vice versa.
, B is unlikely to be distributed at the same concentration in the electron diffusion regions in both directions, so they are detected with different intensities in both directions.
【0011】このようにして、二つの方向で全く同じ元
素の組合せが検出される場合であっても、所定深さにお
ける存在元素を特定することができる。A方向で検出さ
れ、B方向で検出されない元素はもちろん0点に存在し
ない元素である。この方法をSiウエハ内の不純物の検
出に適用する場合、主体元素であるSiの特性X線はど
の方向からでも同じ強さで検出されるが、主体元素がS
iと判明しているから、Siの特性X線ピークは除外し
て上述した所を適用するのである。[0011] In this way, even if the exact same combination of elements is detected in two directions, the elements present at a predetermined depth can be specified. An element detected in the A direction but not detected in the B direction is, of course, an element that does not exist at the 0 point. When this method is applied to the detection of impurities in Si wafers, the characteristic X-rays of Si, the main element, are detected with the same intensity from any direction;
Since it is known that i, the characteristic X-ray peak of Si is excluded and the above-mentioned procedure is applied.
【0012】上述した測定結果のデータ処理は次のよう
にすることもできる。A方向照射時の分光スペクトルを
A(λ)、B方向照射時の分光スペクトルをB(λ)と
し、F(λ)として
F(λ)={A(λ)+B(λ)}/|A
(λ)+B(λ)|を算出し、F(λ)が所定値例えば
5以上である特性X線波長λの元素が0点近傍領域にあ
るとする。或る元素がA方向で検出され、B方向で検出
されなければ、上記F(λ)はその元素の特性X線波長
において1となる。
A,B両方向で同じ強さで検出される元素ではその特性
X線波長においてF(λ)は無限大となる。実際上無限
大になることはないが、この波長でF(λ)の式の分子
はA(λ)の2倍となり、分母である両方の差は0に近
くなるので、0点に存在する元素ではF(λ)の値は大
へん大きくなる。The data processing of the above-mentioned measurement results can also be carried out as follows. The spectrum when irradiated in the A direction is A(λ), the spectrum when irradiated in the B direction is B(λ), and F(λ) is F(λ)={A(λ)+B(λ)}/|A
(λ)+B(λ)| is calculated, and it is assumed that an element with a characteristic X-ray wavelength λ for which F(λ) is a predetermined value, for example, 5 or more is in a region near the 0 point. If a certain element is detected in the A direction but not in the B direction, the above F(λ) becomes 1 at the characteristic X-ray wavelength of that element. For an element that is detected with the same intensity in both directions A and B, F(λ) becomes infinite at its characteristic X-ray wavelength. Although it is not actually infinite, at this wavelength the numerator of the formula for F(λ) is twice that of A(λ), and the difference between both denominators is close to 0, so it exists at the 0 point. For elements, the value of F(λ) becomes very large.
【0013】上例は試料面の垂線に対し対称的な二方向
から励起線を照射するものであるが、照射方向はこのよ
うな二方向に限定されず、更に色々な方向から照射する
ようにしてもよく、データ処理の方法も上述した所に限
られない。また上例は励起線として電子ビームを用いて
いるが、X線を励起線として、蛍光X線を分光する場合
でも本発明が適用できることは云うまでもない。この場
合、励起X線は分析深さよりも細く絞っておく必要があ
るが、電子ビームを用いるよりも深い所まで分析できる
。[0013] In the above example, the excitation line is irradiated from two symmetrical directions with respect to the perpendicular to the sample surface, but the irradiation direction is not limited to these two directions, and it is possible to irradiate from various directions. However, the data processing method is not limited to the above-mentioned method. Furthermore, although the above example uses an electron beam as the excitation line, it goes without saying that the present invention is also applicable to the case of spectroscopy of fluorescent X-rays using X-rays as the excitation line. In this case, the excitation X-ray must be narrower than the analysis depth, but it is possible to analyze deeper than using an electron beam.
【0014】図4に試料ホルダ5の詳細を示す。51は
試料ホルダの台部で水平に回転軸52が取り付けてあり
、手で回すことができる。回転軸の端面に試料ホルダの
本体53が固定されている。本体53は一つの筒であっ
て、上端のねじ部54にキャップ55が螺着され、キャ
ップ55は環状で内向きに張り出した縁56を有し、試
料Sを本体53の下から入れてその上面をこの張り出し
縁56の下面に当接させるようにしてある。本体53の
下部内側のねじ57に底ねじ58を螺入し、ばね59を
介して試料Sをキャップ55の縁56に当接させる。
キャップ55の外周にはマイクロメータの目盛が刻んで
あり、目盛の読みを0に合わせたとき、縁56の下面が
回転軸52の中心線の高さになるようにしてある。従っ
てこの目盛の読みは試料表面からどれだけ下った位置が
軸52の中心線と一致しているかを示す。軸52は手動
で回すことができるから、その回転中心線を中心として
試料を傾けることができ、傾きの角度は軸52に取り付
けてあるつまみ59の角度目盛により読み取ることがで
きる。台部51の下面はEPMAの試料ステージの上面
の蟻溝に嵌合する突条が設けてあって、試料ステージに
取り付けられるようにしてある。FIG. 4 shows details of the sample holder 5. Reference numeral 51 denotes the base of the sample holder, and a rotating shaft 52 is horizontally attached thereto, and can be rotated by hand. A main body 53 of the sample holder is fixed to the end face of the rotating shaft. The main body 53 is a cylinder, and a cap 55 is screwed onto a threaded portion 54 at the upper end, and the cap 55 has an annular edge 56 projecting inward. The upper surface is brought into contact with the lower surface of this projecting edge 56. The bottom screw 58 is screwed into the screw 57 inside the lower part of the main body 53, and the sample S is brought into contact with the edge 56 of the cap 55 via the spring 59. A micrometer scale is carved on the outer periphery of the cap 55, and when the scale is set to zero, the lower surface of the edge 56 is at the height of the center line of the rotating shaft 52. Therefore, the reading on this scale indicates how far down from the sample surface the centerline of axis 52 coincides. Since the shaft 52 can be manually rotated, the sample can be tilted about its rotation center line, and the angle of tilt can be read from the angle scale of a knob 59 attached to the shaft 52. The lower surface of the platform 51 is provided with a protrusion that fits into a dovetail groove on the upper surface of the sample stage of the EPMA, so that it can be attached to the sample stage.
【0015】[0015]
【発明の効果】本発明によれば試料表面をエッチングし
ないで試料表面から下の部分の分析ができ、その方法は
試料の励起線に対する傾きを変えるだけであるから、イ
オンエッチングの装置が必要でなく、従来の分析装置を
そのまゝ使うことができ、安価にかつ非破壊的に試料内
部の分析ができる。[Effects of the Invention] According to the present invention, it is possible to analyze the portion below the sample surface without etching the sample surface, and the method involves simply changing the inclination of the sample with respect to the excitation line, so an ion etching device is not required. Therefore, conventional analysis equipment can be used as is, and the inside of the sample can be analyzed non-destructively and at low cost.
【図1】 本発明方法を実施する装置の側面図[Figure 1] Side view of an apparatus for carrying out the method of the present invention
【図2
】 本発明の作用説明図[Figure 2
】 Explanatory diagram of the action of the present invention
【図3】 電子ビームで照射したときの作用説明図[Figure 3] Diagram explaining the effect when irradiated with an electron beam
【
図4】試料ホルダの一例の側面図
1 電子銃
2 対物レンズ
3 分光結晶
4 X線検出器
5 試料ホルダ
S 試料[
Figure 4: Side view of an example of a sample holder 1 Electron gun 2 Objective lens 3 Spectroscopic crystal 4 X-ray detector 5 Sample holder S Sample
Claims (1)
る二次放射を検出する分析装置を用い、試料表面から下
の所定深さの点を中心にして励起線照射の方向を変え、
各方向における二次放射検出データで同じ検出強度を与
えている成分を索出することを特徴とする試料表面下の
非破壊的分析法。Claim 1: Using an analyzer that irradiates a sample with an excitation line and detects secondary radiation emitted from the sample, the direction of the excitation line irradiation is changed around a point at a predetermined depth below the sample surface. ,
A non-destructive analysis method below the surface of a sample, characterized by finding components that give the same detection intensity in secondary radiation detection data in each direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3142434A JPH04343050A (en) | 1991-05-17 | 1991-05-17 | Non-destructive analysis method below the sample surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3142434A JPH04343050A (en) | 1991-05-17 | 1991-05-17 | Non-destructive analysis method below the sample surface |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04343050A true JPH04343050A (en) | 1992-11-30 |
Family
ID=15315225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3142434A Pending JPH04343050A (en) | 1991-05-17 | 1991-05-17 | Non-destructive analysis method below the sample surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04343050A (en) |
-
1991
- 1991-05-17 JP JP3142434A patent/JPH04343050A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6891158B2 (en) | Nondestructive characterization of thin films based on acquired spectrum | |
US6800852B2 (en) | Nondestructive characterization of thin films using measured basis spectra | |
US6882739B2 (en) | Method and apparatus for rapid grain size analysis of polycrystalline materials | |
KR101275528B1 (en) | High-resolution x-ray diffraction measurement with enhanced sensitivity | |
RU2397481C1 (en) | X-ray spectrometre | |
US9983152B1 (en) | Material characterization using ion channeling imaging | |
JPH07325052A (en) | Scanning and high-resolution electronic spectroscopy and image pickup device | |
JP2016213189A (en) | Adaptive scanning for particle size using directed beam signal analysis | |
US7202475B1 (en) | Rapid defect composition mapping using multiple X-ray emission perspective detection scheme | |
US20030080291A1 (en) | System and method for characterization of thin films | |
US7449682B2 (en) | System and method for depth profiling and characterization of thin films | |
EP1579170B1 (en) | Nondestructive characterization of thin films using measured basis spectra and/or based on acquired spectrum | |
KR101231731B1 (en) | Multifunction x-ray analysis system | |
JPH04343050A (en) | Non-destructive analysis method below the sample surface | |
JP3323042B2 (en) | Method and apparatus for measuring three-dimensional element concentration distribution | |
JP2004500542A (en) | Chemical analysis of defects using electron appearance spectroscopy | |
JP3950642B2 (en) | X-ray analyzer with electronic excitation | |
JP2000193613A (en) | X-ray fluorescence analyzer | |
JPS59163505A (en) | Method and device for measuring dimension of fine groove | |
US20030222215A1 (en) | Method for objective and accurate thickness measurement of thin films on a microscopic scale | |
JP2000097889A (en) | Sample analysis method and sample analyzer | |
JPS62113052A (en) | Element analysis | |
JP3591231B2 (en) | Auger electron spectroscopy | |
JP2006132975A (en) | Thin layer analysis method and apparatus | |
JP2023178856A (en) | Spatial distribution evaluation method, spatial distribution evaluation device, spatial distribution evaluation system, and spatial distribution evaluation program |