JPH04342911A - Manufacture of tape-like ceramic superconductive conductor - Google Patents
Manufacture of tape-like ceramic superconductive conductorInfo
- Publication number
- JPH04342911A JPH04342911A JP3145624A JP14562491A JPH04342911A JP H04342911 A JPH04342911 A JP H04342911A JP 3145624 A JP3145624 A JP 3145624A JP 14562491 A JP14562491 A JP 14562491A JP H04342911 A JPH04342911 A JP H04342911A
- Authority
- JP
- Japan
- Prior art keywords
- tape
- composite wire
- shaped
- ceramic
- shaped composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000004020 conductor Substances 0.000 title abstract description 5
- 239000002131 composite material Substances 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 42
- 238000005096 rolling process Methods 0.000 claims abstract description 30
- 239000002994 raw material Substances 0.000 claims abstract description 27
- 239000007769 metal material Substances 0.000 claims abstract description 6
- 239000002887 superconductor Substances 0.000 claims description 45
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000003825 pressing Methods 0.000 abstract description 13
- 239000000126 substance Substances 0.000 abstract description 2
- 230000000881 depressing effect Effects 0.000 abstract 2
- 239000000463 material Substances 0.000 description 11
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 229910002480 Cu-O Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 description 1
- 229910016264 Bi2 O3 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Wire Processing (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、マグネットやケーブル
用導体として好適な、超電導特性に優れたセラミックス
超電導々体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic superconductor having excellent superconducting properties and suitable as a conductor for magnets and cables.
【0002】0002
【従来の技術とその課題】近年、周知のようにY−Ba
−Cu−O系,Bi−Sr−Ca−Cu−O系,Tl−
Ba−Ca−Cu−O系等のセラミックス超電導体が見
出された。このセラミックス超電導体は、液体窒素等の
安価な冷却媒体で超電導となる臨界温度(Tc)の高い
物質である為、各分野で実用化研究が活発に進められて
いる。ところで、これらのセラミックス超電導体は脆い
為に、金属のような加工を施すことができず、これを所
定形状のセラミックス超電導々体となすには、例えばセ
ラミックス超電導体となし得る原料物質をAg製パイプ
等に充填して複合ビレットとなし、次いでこれを減面加
工して複合線材となし、次いでこの複合線材に所定の加
熱処理を施して前記原料物質をセラミックス超電導体に
反応せしめる方法が適用されている。しかしながら、こ
のようにして製造されるセラミックス超電導々体は、そ
の形状が厚さ数百μm の薄いテープ状のものでも、高
い超電導特性が得られないという問題があった。[Prior art and its problems] In recent years, as is well known, Y-Ba
-Cu-O system, Bi-Sr-Ca-Cu-O system, Tl-
Ceramic superconductors such as Ba-Ca-Cu-O system were discovered. Since this ceramic superconductor is a material with a high critical temperature (Tc) that becomes superconducting when an inexpensive cooling medium such as liquid nitrogen is used, research for practical use is actively progressing in various fields. By the way, these ceramic superconductors cannot be processed like metals because they are brittle, and in order to make them into ceramic superconductors of a predetermined shape, for example, the raw material that can be made into ceramic superconductors must be made of Ag. A method is applied in which the material is filled into a pipe or the like to form a composite billet, which is then processed to reduce its area to form a composite wire, and then this composite wire is subjected to a prescribed heat treatment to cause the raw material to react with the ceramic superconductor. ing. However, the ceramic superconductor manufactured in this manner has a problem in that high superconducting properties cannot be obtained even if the ceramic superconductor is in the form of a thin tape with a thickness of several hundred micrometers.
【0003】0003
【課題を解決する為の手段】本発明はかかる状況に鑑み
鋭意研究を行い、その原因がテープ状複合線材を減面加
工する際に、加工治具のプレス板や圧延ロール等が幅方
向に湾曲し、端部同士が接触して、前記複合線材の原料
物質が複合された中央部分が十分に圧下されなくなり、
その結果加熱処理により反応生成するセラミックス超電
導体層の密度やC軸配向性が低下することによることを
知見し、更に研究を重ねて本発明を完成するに到ったも
のである。即ち、本発明は、セラミックス超電導体とな
し得る原料物質を金属材料で被覆したテープ状複合線材
に減面加工と加熱処理の工程を所望回数施すテープ状セ
ラミックス超電導々体の製造方法において、テープ状複
合線材の減面加工を、少なくとも一方の減面加工治具の
テープ状複合線材と接触する加工面を幅方向に所定の曲
率をもって凸面状に形成して、前記テープ状複合線材の
原料物質が複合された中央部分に圧下力が加わるように
した一軸圧下法により行うことを特徴とするテープ状セ
ラミックス超電導々体の製造方法である。本発明方法は
、原料物質層を金属材料で被覆したテープ状複合線材を
プレス法や圧延ロール法等の一軸圧下法により減面加工
するに際し、前記プレス法の押圧板や圧延法の圧延ロー
ルのテープ状複合線材と接触する加工面の形状を所定の
曲率をもって凸面状に形成しておいて、テープ状複合線
材の原料物質が複合された中央部分が十分に圧下される
ようにすることを特徴とするものである。上記において
、加工治具の加工面を凸面状に形成する時の曲率Rは、
テープ状複合線材の幅が2〜3mmの場合20〜200
mm程度で、幅が広くなる程曲率Rは大きくとるように
するとよい。[Means for Solving the Problems] The present invention has conducted extensive research in view of the above circumstances, and has found that the cause of the problem is that when reducing the area of a tape-shaped composite wire, the press plate of the processing jig, the rolling roll, etc. The ends of the composite wire are bent and come into contact with each other, so that the central portion of the composite wire where the raw materials are composited is not sufficiently rolled down;
As a result, it was discovered that the density and C-axis orientation of the ceramic superconductor layer produced by reaction are reduced by heat treatment, and after further research, the present invention was completed. That is, the present invention provides a method for manufacturing a tape-shaped ceramic superconductor, in which a tape-shaped composite wire in which a raw material that can be made into a ceramic superconductor is coated with a metal material is subjected to a desired number of steps of surface reduction processing and heat treatment. The area-reducing process of the composite wire rod is performed by forming the processed surface of at least one area-reducing jig in contact with the tape-shaped composite wire rod into a convex shape with a predetermined curvature in the width direction, so that the raw material of the tape-shaped composite wire rod is This is a method for manufacturing a tape-shaped ceramic superconductor, characterized in that it is carried out by a uniaxial rolling method in which a rolling force is applied to the composite central portion. In the method of the present invention, when reducing the area of a tape-shaped composite wire whose raw material layer is coated with a metal material by a uniaxial reduction method such as a press method or a roll roll method, the method uses a press plate in the press method or a roll roll in the rolling method. The processing surface that comes into contact with the tape-shaped composite wire is formed into a convex shape with a predetermined curvature, so that the central portion where the raw materials of the tape-shaped composite wire are composited is sufficiently rolled down. That is. In the above, the curvature R when forming the machining surface of the machining jig into a convex shape is:
20 to 200 when the width of the tape-shaped composite wire is 2 to 3 mm
It is preferable that the curvature R is approximately mm, and the wider the width, the larger the curvature R is.
【0004】次にテープ状複合線材を減面加工する方法
を図を参照して具体的に説明する。図1はプレス法によ
る減面加工の態様例を示す斜視説明図である。上下2枚
の押圧板1,2の上方の押圧板1の加工面が幅方向に所
定の曲率をもって凸面状に形成されている。このプレス
機によれば、上下の押圧板1,2が端部で接触し合うこ
とがなく、テープ状複合線材3の中央部分が前記凸面状
の押圧板1の頂部に当たるようにしてプレスすることに
より原料物質層4の圧下が十分になされる。尚、このプ
レス法ではテープ状複合線材3を押圧板1,2間に順次
ラップさせながら連続的に送り込むことにより厚さ一様
の長尺材を減面加工することができる。図2イ,ロは、
圧延法による減面加工の態様例を示すそれぞれ縦,横断
面説明図である。上下2本の圧延ロール5,6のうちの
下方の圧延ロール6の加工面を幅方向に所定の曲率をも
って凸面状に形成したもので、2本の圧延ロール5,6
は端部で接触し合うようなことがなく、前記凸状の圧延
ロール6の頂部がテープ状複合線材3の中央部に当たる
ように圧延することにより、原料物質層4が十分に圧下
される。以上、上下対の押圧板又は圧延ロールの一方の
加工面を凸面状に形成した場合について説明したが、上
下両方を凸面状に形成したものを用いても差支えない。
本発明方法において、減面加工と加熱処理の工程は2回
以上施すのが、又前記加熱処理は原料物質が焼結する程
度の温度で施すのが、得られるセラミックス超電導々体
の特性が向上して好ましい。又最終工程の加熱処理は酸
素含有雰囲気中でなされ、原料物質を焼結するとともに
、原料物質をセラミックス超電導体に反応させるもので
、その加熱温度はBi系超電導体の場合で800℃〜8
70℃の高温度でなされる。Next, a method for reducing the area of a tape-shaped composite wire will be specifically explained with reference to the drawings. FIG. 1 is a perspective explanatory view showing an example of an aspect of surface reduction processing using a press method. The processed surface of the upper pressing plate 1 of the upper and lower pressing plates 1 and 2 is formed into a convex shape with a predetermined curvature in the width direction. According to this press machine, the upper and lower pressing plates 1 and 2 do not come into contact with each other at their ends, and the tape-shaped composite wire 3 is pressed so that the center portion thereof hits the top of the convex pressing plate 1. As a result, the raw material layer 4 is sufficiently reduced. In addition, in this pressing method, by continuously feeding the tape-shaped composite wire 3 while sequentially wrapping it between the press plates 1 and 2, it is possible to reduce the area of a long material having a uniform thickness. Figure 2 A and B are
FIG. 2 is a longitudinal and cross-sectional explanatory view showing an example of an aspect of area reduction processing by a rolling method, respectively. The processed surface of the lower roll 6 of the two upper and lower rolls 5, 6 is formed into a convex shape with a predetermined curvature in the width direction.
By rolling so that the top of the convex rolling roll 6 hits the center of the tape-shaped composite wire 3 without contacting each other at the ends, the raw material layer 4 is sufficiently rolled down. The case where one of the processed surfaces of the pair of upper and lower press plates or rolling rolls is formed in a convex shape has been described above, but it is also possible to use one in which both the upper and lower surfaces are formed in a convex shape. In the method of the present invention, the characteristics of the obtained ceramic superconductor are improved by performing the steps of area reduction and heat treatment two or more times, and by performing the heat treatment at a temperature that is high enough to sinter the raw material. It is preferable. The heat treatment in the final step is performed in an oxygen-containing atmosphere to sinter the raw material and react the raw material to the ceramic superconductor, and the heating temperature is 800°C to 800°C in the case of Bi-based superconductors.
This is done at a high temperature of 70°C.
【0005】本発明方法において、テープ状複合線材は
例えば金属製パイプ内にセラミックス超電導体となし得
る原料物質を充填し、これを伸延加工することにより作
製することができる。前記セラミックス超電導体となし
得る原料物質には前述のBi系、Y系等のセラミックス
超電導体そのものに加えてセラミックス超電導体の構成
元素をそれぞれ含有する酸化物や炭酸塩等の化合物の混
合体からセラミックス超電導体に合成されるまでの中間
体、例えばセラミックス超電導体構成元素の化合物又は
上記構成元素の合金等が使用可能で、これらの前駆物質
は酸素含有雰囲気中で加熱処理することによりセラミッ
クス超電導体に反応するものである。又前記原料物質を
充填する為の金属製パイプの材質には熱及び電気伝導性
に富む任意の金属材料が用いられるが、とりわけAg及
びAg合金は酸素透過性に優れていて好ましい。又、前
記原料物質を金属製パイプ内に充填する方法は、粉末状
の原料物質をそのままタップ充填するか、又は原料粉末
をCIP等の静水圧法により所定形状に成形したもの、
或いはこの成形体を焼結して充填する等の方法が用いら
れる。又複合線材化に用いる金属製成形体、例えば金属
製パイプの形状は断面円形、角形等任意の形状のものが
用いられ、穿孔数は複数であっても差支えない。又、前
記原料物質を金属製成形体の穿孔内に充填して得られる
複合ビレットをテープ状複合線材に伸延加工するには、
熱間押出し,スエージング,圧延,引抜き,HIP,C
IP等任意の加工法が適用される。In the method of the present invention, the tape-shaped composite wire can be produced, for example, by filling a metal pipe with a raw material that can be made into a ceramic superconductor, and then stretching the material. In addition to the above-mentioned Bi-based, Y-based, etc. ceramic superconductors themselves, the raw materials that can be used as the ceramic superconductor include ceramics from mixtures of compounds such as oxides and carbonates containing constituent elements of the ceramic superconductors. Intermediates before being synthesized into superconductors, such as compounds of the constituent elements of ceramic superconductors or alloys of the above constituent elements, can be used, and these precursors can be converted into ceramic superconductors by heat treatment in an oxygen-containing atmosphere. It is something that reacts. Further, as the material of the metal pipe for filling the raw material, any metal material having high thermal and electrical conductivity can be used, but Ag and Ag alloys are particularly preferable because they have excellent oxygen permeability. Further, the method of filling the raw material into the metal pipe includes tapping the powdered raw material as it is, or molding the raw material powder into a predetermined shape by a hydrostatic method such as CIP,
Alternatively, a method such as sintering and filling this molded body may be used. Further, the metal molded body used for forming a composite wire, for example, a metal pipe, may have any shape such as circular or square cross section, and the number of holes may be plural. In addition, in order to stretch the composite billet obtained by filling the raw material into the perforations of the metal molded body into a tape-shaped composite wire,
Hot extrusion, swaging, rolling, drawing, HIP, C
Any processing method such as IP may be applied.
【0006】[0006]
【作用】本発明方法では、セラミックス超電導体となし
得る原料物質を金属材料で被覆したテープ状複合線材に
減面加工と加熱処理の工程を所望回数施すテープ状セラ
ミックス超電導々体の製造方法において、テープ状複合
線材の減面加工を、少なくとも一方の減面加工治具のテ
ープ状複合線材と接触する加工面を幅方向に所定の曲率
をもって凸面状に形成して、前記テープ状複合線材の原
料物質が複合された中央部分に圧下力が加わるような一
軸圧下法により行うようにしたので、得られるテープ状
複合線材を酸素含有雰囲気中で加熱処理して製造される
セラミックス超電導々体は、セラミックス超電導体層が
高密度で且つC軸配向していて、超電導特性が高い値の
ものとなる。[Operation] In the method of the present invention, a tape-shaped composite wire made of a raw material that can be made into a ceramic superconductor and coated with a metal material is subjected to a desired number of steps of area reduction and heat treatment. The area-reducing process of the tape-shaped composite wire is carried out by forming the processed surface of at least one area-reducing jig that contacts the tape-shaped composite wire into a convex shape with a predetermined curvature in the width direction, thereby reducing the area of the raw material of the tape-shaped composite wire. Since the process was carried out using a uniaxial rolling method in which a rolling force is applied to the central part where the substances are composited, the ceramic superconductor produced by heat-treating the obtained tape-shaped composite wire in an oxygen-containing atmosphere is a ceramic superconductor. The superconductor layer has a high density and is C-axis oriented, and has high superconducting properties.
【0007】[0007]
【実施例】以下に本発明を実施例により詳細に説明する
。
実施例1
Bi2 O3 ,PbO,SrCO3 ,CaCO3
,CuOの粉体をBi:Pb:Sr:Ca:Cuが原子
比で1.8:0.4:2:2:3になるように配合し混
合したのち、得られた混合粉体を大気中で800℃×5
0時間仮焼成し、この仮焼成体を粉砕して平均粒径5μ
m の仮焼成粉となし、次いでこの仮焼成粉を外径25
mmφ、内径15mmφのAg製パイプ内に充填して、
複合ビレットを作製した。次にこの複合ビレットをスエ
ージング加工して3mmφの複合素材となし、次いでこ
れを圧延加工して幅5mm,厚さ0.5mmのテープ状
複合線材となした。次いでこの複合線材を100mmの
長さに切り出し、これを上下2枚の押圧板によりプレス
して厚さ0.2mm,長さ約250mmの減面加工材と
なしたのち、大気中で830℃×100時間加熱処理し
てテープ状セラミックス超電導々体を製造した。尚、上
記の上下2枚の押圧板のうち、上方の押圧板は、その加
工面を種々の曲率で凸状に形成したものを用いた。又下
方の押圧板は加工面がフラットなものを用いた。[Examples] The present invention will be explained in detail below using examples. Example 1 Bi2 O3, PbO, SrCO3, CaCO3
, CuO powder is mixed so that the atomic ratio of Bi:Pb:Sr:Ca:Cu is 1.8:0.4:2:2:3, and the resulting mixed powder is exposed to the atmosphere. Inside 800℃ x 5
Calcinate for 0 hours, and crush this calcined body to an average particle size of 5μ.
m of calcined powder, and then this calcined powder with an outer diameter of 25 mm.
Filled in an Ag pipe with mmφ and inner diameter of 15mmφ,
A composite billet was produced. Next, this composite billet was swaged to form a composite material having a diameter of 3 mm, which was then rolled to form a tape-shaped composite wire material having a width of 5 mm and a thickness of 0.5 mm. Next, this composite wire was cut into a length of 100 mm, which was pressed with two upper and lower press plates to form a reduced-area material with a thickness of 0.2 mm and a length of approximately 250 mm, and then heated at 830°C in the atmosphere. A tape-shaped ceramic superconductor was produced by heat treatment for 100 hours. Incidentally, of the above-mentioned two upper and lower pressing plates, the upper pressing plate had a processed surface formed into a convex shape with various curvatures. In addition, the lower pressing plate used had a flat processed surface.
【0008】実施例2
実施例1で用いたのと同じ3mmφの複合素材を圧延加
工して幅5mm,厚さ0.8mmのテープ状複合線材と
なし、これに大気中で830℃×50時間加熱処理を施
したのち、得られた複合線材を100mmの長さに切り
出し、実施例1と同じ方法により減面加工と加熱処理を
施してテープ状セラミックス超電導々体を製造した。
実施例3
実施例2と同様にして作製した幅5mm,厚さ0.8m
mのテープ状複合線材に大気中で830℃×50時間加
熱処理を施したのち、更に厚さが0.5mmになるよう
に圧延加工を施し、次いで、再び大気中で830℃×5
0時間加熱処理を施したのち、得られたテープ状複合線
材を100mm長さに切り出し、実施例2と同じ方法に
より減面加工と加熱処理を施してテープ状セラミックス
超電導々体を製造した。
実施例4
実施例3と同様にして作製した、大気中で830℃×5
0時間加熱処理後の、厚さ0.5mm,長さ1mのテー
プ状複合線材を、実施例3で用いた上下2枚の押圧板間
に順次ラップさせながら連続的に送り込みプレスする方
法により、厚さ0.2mm,長さ2.5mの長尺のテー
プ状セラミックス超電導々体を製造した。Example 2 The same 3 mmφ composite material used in Example 1 was rolled into a tape-shaped composite wire with a width of 5 mm and a thickness of 0.8 mm, and this was heated in the atmosphere at 830°C for 50 hours. After the heat treatment, the obtained composite wire was cut into a length of 100 mm, and subjected to area reduction processing and heat treatment in the same manner as in Example 1 to produce a tape-shaped ceramic superconductor. Example 3 Width 5 mm and thickness 0.8 m manufactured in the same manner as Example 2
After heating a tape-shaped composite wire rod of 830° C. for 50 hours in the air, it was further rolled to a thickness of 0.5 mm, and then heated again in the air at 830° C. for 50 hours.
After heat treatment for 0 hours, the obtained tape-shaped composite wire was cut into a length of 100 mm, and subjected to area reduction processing and heat treatment in the same manner as in Example 2 to produce a tape-shaped ceramic superconductor. Example 4 Produced in the same manner as Example 3, heated at 830°C x 5 in the atmosphere.
After 0 hours of heat treatment, a tape-shaped composite wire with a thickness of 0.5 mm and a length of 1 m was sequentially wrapped between the two upper and lower pressing plates used in Example 3 while being continuously fed and pressed. A long tape-shaped ceramic superconductor having a thickness of 0.2 mm and a length of 2.5 m was manufactured.
【0009】実施例5
実施例1と同様にして作製した、厚さ0.5mm,幅約
5mmのテープ状複合線材をロール圧延法により減面加
工して厚さ0.2mmの減面加工材となした他は、実施
例1と同じ方法によりセラミックス超電導々体を製造し
た。
尚、圧延ロールには、外径200mmの圧延ロールを用
い、圧延速度を5m/min とし、下方の圧延ロール
には加工面に幅方向に種々の曲率を持たせたものを用い
た。
尚、上方の圧延ロールの加工面はフラットなままとした
。
実施例6
実施例2で作製した0.8mm厚さのテープ状複合線材
を大気中で830℃×50時間加熱処理したのち、この
テープ状複合線材に実施例5と同じ方法により減面加工
と加熱処理を施してテープ状セラミックス超電導々体を
製造した。
実施例7
実施例3で作製した0.5mm厚さのテープ状複合線材
を大気中で830℃×50時間加熱処理したのち、この
テープ状複合線材に実施例5と同じ方法により減面加工
と加熱処理を施して0.2mm厚さのセラミックス超電
導々体を製造した。
実施例8
実施例3で作製した0.5mm厚さのテープ状複合線材
を大気中で830℃×50時間加熱処理したのち、この
テープ状複合線材に上下両方の圧延ロールの加工面を凸
面状に形成した圧延ロールを用いて減面加工した他は、
実施例5と同じにしてテープ状セラミックス超電導々体
を製造した。Example 5 A tape-shaped composite wire material with a thickness of 0.5 mm and a width of about 5 mm, produced in the same manner as in Example 1, was subjected to area reduction processing by roll rolling to obtain an area reduction processed material with a thickness of 0.2 mm. A ceramic superconductor was manufactured by the same method as in Example 1, except for the following. The rolling rolls had an outer diameter of 200 mm, the rolling speed was 5 m/min, and the lower rolling rolls had various curvatures in the width direction on their processed surfaces. Note that the processed surface of the upper rolling roll was left flat. Example 6 The tape-shaped composite wire with a thickness of 0.8 mm produced in Example 2 was heat-treated in the atmosphere at 830°C for 50 hours, and then the tape-shaped composite wire was subjected to area reduction processing by the same method as in Example 5. A tape-shaped ceramic superconductor was produced by heat treatment. Example 7 The tape-shaped composite wire with a thickness of 0.5 mm produced in Example 3 was heat-treated in the atmosphere at 830°C for 50 hours, and then the tape-shaped composite wire was subjected to area reduction processing by the same method as in Example 5. A ceramic superconductor having a thickness of 0.2 mm was produced by heat treatment. Example 8 The tape-shaped composite wire with a thickness of 0.5 mm produced in Example 3 was heat-treated in the atmosphere at 830°C for 50 hours, and then the processed surfaces of both the upper and lower rolling rolls were made convex on this tape-shaped composite wire. In addition to surface reduction processing using a rolling roll formed in
A tape-shaped ceramic superconductor was manufactured in the same manner as in Example 5.
【0010】比較例1
実施例1〜4において、テープ状複合線材を加工面がフ
ラットな2枚の押圧板を用いて減面加工した他は、それ
ぞれ実施例1〜4と同じ方法によりテープ状セラミック
ス超電導々体を製造した。
比較例2
実施例5〜8において、テープ状複合線材を上下の圧延
ロールとも加工面がフラットな圧延ロールを用いて減面
加工した他は、それぞれ実施例5〜8と同じ方法により
テープ状セラミックス超電導々体を製造した。このよう
にして得られた各々のテープ状セラミックス超電導々体
について液体窒素中(77K)、0磁場下でJcを測定
した。結果は実施例1〜4と比較例1を表1に、実施例
5〜8と比較例2を表2に主な製造条件を併記して示し
た。Comparative Example 1 In Examples 1 to 4, the tape-shaped composite wire material was processed into a tape shape by the same method as in Examples 1 to 4, except that the tape-shaped composite wire material was subjected to surface reduction processing using two pressing plates with flat processing surfaces. A ceramic superconductor was manufactured. Comparative Example 2 In Examples 5 to 8, tape-shaped ceramics were produced in the same manner as in Examples 5 to 8, except that the tape-shaped composite wire rod was subjected to surface reduction processing using rolling rolls with flat processing surfaces for both the upper and lower rolling rolls. A superconductor was manufactured. Jc of each tape-shaped ceramic superconductor thus obtained was measured in liquid nitrogen (77K) under zero magnetic field. The results are shown in Table 1 for Examples 1 to 4 and Comparative Example 1, and in Table 2 for Examples 5 to 8 and Comparative Example 2, together with the main manufacturing conditions.
【0011】[0011]
【表1】[Table 1]
【0012】0012
【表2】[Table 2]
【0013】表1及び表2より明らかなように、本発明
方法品(NO1〜17,NO25 〜41)はJcが高
い値のものとなった。中でも減面加工途中に加熱処理を
入れる程Jcは向上した。これは加熱処理により生成し
た超電導体相が次の減面加工により粉砕し微細に分布し
た為と考えられる。又加工治具の加工面の曲率は200
mmまでは大きい程Jcが高く、これは曲率が大きい程
原料物質層の圧下が均一になされた為である。曲率が2
00mmを超えると低下し始めたのは、加工面がフラッ
トな状態に近くなって凸面状となした効果が薄れた為で
ある。又プレス法にあってはプレス圧力が高い程、ロー
ル圧延法にあっては上下両方の圧延ロールに曲率を設け
たものがJcがより高い値となった。これに対し、比較
例品(NO18〜24,NO42 〜44)はいずれも
Jcが低く、これは押圧板又は圧延ロールが湾曲して複
合線材の中央部分に十分な圧下力が掛からず、得られる
セラミックス超電導体層の密度及びC軸配向性が低下し
た為である。As is clear from Tables 1 and 2, the products produced by the method of the present invention (NO1-17, NO25-41) had high Jc values. Above all, Jc improved as the heat treatment was performed during the area reduction process. This is thought to be because the superconductor phase generated by the heat treatment was pulverized and finely distributed in the subsequent area reduction process. Also, the curvature of the processing surface of the processing jig is 200
Up to mm, the larger the curvature, the higher the Jc, and this is because the larger the curvature, the more uniform the reduction of the raw material layer. Curvature is 2
The reason why it started to decrease when it exceeded 00 mm is because the machined surface became nearly flat and the effect of creating a convex surface diminished. In addition, in the case of the press method, the higher the press pressure, the higher the value of Jc in the case of the roll rolling method, in which both the upper and lower rolling rolls were provided with curvature. On the other hand, the comparative example products (NO18 to 24, NO42 to 44) all have low Jc, and this is because the pressing plate or rolling roll is curved and insufficient rolling force is not applied to the central part of the composite wire. This is because the density and C-axis orientation of the ceramic superconductor layer decreased.
【0014】[0014]
【効果】以上述べたように本発明方法によれば、セラミ
ックス超電導体層が高密度で且つC軸配向性に優れ、依
ってJc等の超電導特性の高いセラミックス超電導々体
が得られ、工業上顕著な効果を奏する。[Effects] As described above, according to the method of the present invention, a ceramic superconductor layer having a high density and excellent C-axis orientation can be obtained, and therefore a ceramic superconductor having high superconducting properties such as Jc can be obtained, and it can be used industrially. It has a remarkable effect.
【図1】本発明方法における減面加工法のプレス法によ
る態様例を示す斜視説明図である。FIG. 1 is a perspective explanatory view showing an example of an embodiment of the pressing method of the surface reduction processing method in the method of the present invention.
【図2】本発明方法における減面加工法の圧延法による
態様例を示す縦・横断面説明図である。FIG. 2 is an explanatory view in longitudinal and transverse sections showing an embodiment of the rolling method of the area reduction method in the method of the present invention.
1,2 押圧板 3 テープ状複合線材 4 原料物質層 5,6 圧延ロール 1, 2 Press plate 3 Tape-shaped composite wire 4 Raw material layer 5,6 Rolling roll
Claims (1)
物質を金属材料で被覆したテープ状複合線材に減面加工
と加熱処理の工程を所望回数施すテープ状セラミックス
超電導々体の製造方法において、テープ状複合線材の減
面加工を、少なくとも一方の減面加工治具のテープ状複
合線材と接触する加工面を幅方向に所定の曲率をもって
凸面状に形成して、前記テープ状複合線材の原料物質が
複合された中央部分に圧下力が加わるようにした一軸圧
下法により行うことを特徴とするテープ状セラミックス
超電導々体の製造方法。Claim 1. A method for producing a tape-shaped ceramic superconductor, in which a tape-shaped composite wire made of a metal material coated with a raw material that can be made into a ceramic superconductor is subjected to a desired number of steps of surface reduction processing and heat treatment. The area-reducing process of the wire rod is performed by forming the processed surface of at least one area-reducing jig in contact with the tape-shaped composite wire into a convex shape with a predetermined curvature in the width direction, so that the raw material of the tape-shaped composite wire is composite. A method for manufacturing a tape-shaped ceramic superconductor, characterized in that the process is carried out by a uniaxial rolling method in which a rolling force is applied to the rolled central portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3145624A JPH04342911A (en) | 1991-05-21 | 1991-05-21 | Manufacture of tape-like ceramic superconductive conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3145624A JPH04342911A (en) | 1991-05-21 | 1991-05-21 | Manufacture of tape-like ceramic superconductive conductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04342911A true JPH04342911A (en) | 1992-11-30 |
Family
ID=15389319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3145624A Pending JPH04342911A (en) | 1991-05-21 | 1991-05-21 | Manufacture of tape-like ceramic superconductive conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04342911A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0710993A1 (en) * | 1994-11-07 | 1996-05-08 | Hitachi, Ltd. | Oxide system superconducting tape-shaped wire and method of manufacturing the same |
US5830828A (en) * | 1994-09-09 | 1998-11-03 | Martin Marietta Energy Systems, Inc. | Process for fabricating continuous lengths of superconductor |
-
1991
- 1991-05-21 JP JP3145624A patent/JPH04342911A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5830828A (en) * | 1994-09-09 | 1998-11-03 | Martin Marietta Energy Systems, Inc. | Process for fabricating continuous lengths of superconductor |
US6055446A (en) * | 1994-09-09 | 2000-04-25 | Martin Marietta Energy Systems, Inc. | Continuous lengths of oxide superconductors |
US6385835B1 (en) | 1994-09-09 | 2002-05-14 | Ut Battelle | Apparatus for fabricating continuous lengths of superconductor |
EP0710993A1 (en) * | 1994-11-07 | 1996-05-08 | Hitachi, Ltd. | Oxide system superconducting tape-shaped wire and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2914331B2 (en) | Method for producing composite oxide ceramic superconducting wire | |
US5360784A (en) | Method for manufacturing an oxide superconducting tape | |
US5635456A (en) | Processing for Bi/Sr/Ca/Cu/O-2223 superconductors | |
EP0308892A2 (en) | Flaky oxide superconductor and method of manufacturing the same | |
JPH04342911A (en) | Manufacture of tape-like ceramic superconductive conductor | |
EP0308326B1 (en) | A process for producing an elongated superconductor | |
WO1994000886A1 (en) | High tc superconductor and method of making | |
JP3034255B2 (en) | Superconductor, superconductor wire, and method of manufacturing superconducting wire | |
JP2895495B2 (en) | Manufacturing method of oxide superconducting conductor | |
JP3029153B2 (en) | Manufacturing method of multilayer ceramic superconductor | |
JP3108543B2 (en) | Manufacturing method of multilayer ceramic superconductor | |
JPH0554731A (en) | Multicore ceramics superconducting wire rod and manufacture thereof | |
JP3011962B2 (en) | Method for manufacturing multi-core or multilayer ceramic superconductor | |
JPH05151843A (en) | Manufacture of angular cross-section type multilayer ceramic superconductive conductor | |
JPH01163914A (en) | Manufacture of oxide superconductive wire | |
JP2903527B2 (en) | Sintering heat treatment equipment for long ceramic superconductors | |
JPH0589729A (en) | Manufacture of high strength ceramic superconductive conductor | |
JPH03173017A (en) | Oxide superconducting wire-rod manufacture and coil manufacture | |
JPH05266734A (en) | Manufacture of ceramic superconducting conductor | |
JPH01320711A (en) | Manufacture of superconductive compact in oxide line | |
JPH05166426A (en) | Manufacture for ceramics superconductor | |
JPH07232960A (en) | Method for manufacturing oxide superconductor | |
JPH04363816A (en) | Manufacture of ceramic superconducting material | |
JPH04181613A (en) | Manufacture of tape like oxide superconductor | |
JPH04249812A (en) | Manufacture of tape-shaped ceramic superconducting wire rod |