JPH04341508A - Production of coupling formed body for different kinds of materials - Google Patents
Production of coupling formed body for different kinds of materialsInfo
- Publication number
- JPH04341508A JPH04341508A JP11339891A JP11339891A JPH04341508A JP H04341508 A JPH04341508 A JP H04341508A JP 11339891 A JP11339891 A JP 11339891A JP 11339891 A JP11339891 A JP 11339891A JP H04341508 A JPH04341508 A JP H04341508A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- metal
- metal composition
- materials
- filled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000463 material Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 230000008878 coupling Effects 0.000 title abstract 3
- 238000010168 coupling process Methods 0.000 title abstract 3
- 238000005859 coupling reaction Methods 0.000 title abstract 3
- 239000000843 powder Substances 0.000 claims abstract description 83
- 239000002184 metal Substances 0.000 claims abstract description 69
- 229910052751 metal Inorganic materials 0.000 claims abstract description 69
- 239000000203 mixture Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000001192 hot extrusion Methods 0.000 claims description 11
- 238000000465 moulding Methods 0.000 claims description 10
- 239000007769 metal material Substances 0.000 abstract description 41
- 239000011812 mixed powder Substances 0.000 abstract description 16
- 239000000696 magnetic material Substances 0.000 abstract description 5
- 238000002156 mixing Methods 0.000 abstract description 3
- 238000005304 joining Methods 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 9
- 239000000956 alloy Substances 0.000 description 8
- 238000007872 degassing Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 238000009849 vacuum degassing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、異種材料用の継手成形
体の製造方法に関する。詳述すれば、本発明は、異種材
料、すなわち金属材料特性の異なる2種類の金属材料、
例えば、磁性材料と非磁性材料、耐食材料と高強度材料
、耐熱材料と高靱性材料等の組合わせのように熱間変形
抵抗差および熱膨張率の大きな金属材料間の継手成形体
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing joint molded bodies for dissimilar materials. Specifically, the present invention provides dissimilar materials, that is, two types of metal materials with different metal material properties,
For example, a method for manufacturing a joint molded body between metal materials with a large difference in hot deformation resistance and a large coefficient of thermal expansion, such as combinations of magnetic materials and non-magnetic materials, corrosion-resistant materials and high-strength materials, heat-resistant materials and high-toughness materials, etc. Regarding.
【0002】0002
【従来の技術】棒や管などの金属材料は使用環境により
、あるいは部位によって異なった材料特性が要求される
。このため、異種金属材料が同時にいわゆる多機能金属
材料として使用されることがあり、それらを一体的に組
立てるには異種金属材料の継手接合が必要である。2. Description of the Related Art Metal materials such as rods and tubes are required to have different material properties depending on the usage environment or location. For this reason, dissimilar metallic materials are sometimes used simultaneously as so-called multifunctional metallic materials, and joint joining of dissimilar metallic materials is required to assemble them integrally.
【0003】特に近年は金属材料に要求される特性が多
岐にわたりかつ厳しくなってきている。そのような異種
金属材料では、溶接あるいはネジ継手による接合が困難
であったり、十分な継手接合強度が得られないなどの問
題があり、多機能金属材料の普及を制限している。この
ような現状から、異種金属材料の継手構造の改善が求め
られている。[0003] Particularly in recent years, the properties required of metal materials have become more diverse and stricter. Such dissimilar metal materials have problems such as difficulty in joining by welding or threaded joints, and insufficient joint strength, which limits the spread of multifunctional metal materials. Under these circumstances, there is a need for improvements in joint structures of dissimilar metal materials.
【0004】例えば、油井の分野などでは地中電磁波通
信用として材料特性の異なった異種金属材料が用いられ
ることがあるが、その接合が困難であるため、ネジ継手
となっている。For example, in the field of oil wells, different metal materials with different material properties are sometimes used for underground electromagnetic wave communication, but since it is difficult to join them together, threaded joints are used.
【0005】従来にあっても、棒や管の金属材料の継手
接合方法としては、一般には溶接による接合あるいはネ
ジの締め付けによる接合がある。しかし、熱膨張率差の
大きなものや、機械加工のできないものについては、こ
のような接合方法が適用できないものがある。[0005] Conventionally, methods for joining metal materials such as rods and pipes generally include joining by welding or joining by tightening screws. However, this joining method cannot be applied to some materials that have a large difference in coefficient of thermal expansion or cannot be machined.
【0006】そこで例えば、実開昭62−141985
号公報に開示されているように熱膨張率差を利用しては
め合い、冶金的に接合させる方法があるが、この方法で
は接合していない部分が残っている可能性がある。Therefore, for example, Utility Model Application No. 62-141985
As disclosed in the above publication, there is a method of fitting and metallurgically joining using the difference in thermal expansion coefficients, but with this method, there is a possibility that unjoined portions remain.
【0007】他方、金属粉末を利用したクラッド金属管
の製造方法は、例えば、特開昭52−18456 号公
報に開示されている。しかし、このようにして得られた
クラッド金属管は肉厚方向の異種材料の接合方法として
は有効であるが、いわゆる継手として軸方向の接合方法
には適用できない。On the other hand, a method for manufacturing a clad metal tube using metal powder is disclosed in, for example, Japanese Patent Laid-Open No. 18456/1983. However, although the clad metal tube thus obtained is effective as a method for joining dissimilar materials in the thickness direction, it cannot be applied as a so-called joint for joining in the axial direction.
【0008】[0008]
【発明が解決しようとする課題】ここに、本発明の目的
は、一般的には、接合界面における材料特性の良好な傾
斜機能を備えた、異種金属材料用の継手構造とその製造
方法を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a joint structure for dissimilar metal materials and a method for manufacturing the same, which generally has a good gradient function of material properties at the joint interface. It is to be.
【0009】本発明のより具体的目的は、異種金属管ま
たは棒用であって長手方向に金属材料特性が連続的ある
いは段階的に変化した、十分な接合強度を持った継手管
または棒とその製造方法を提供することである。A more specific object of the present invention is to provide a joint tube or rod for dissimilar metal tubes or rods, which has sufficient joint strength and whose metal material properties change continuously or stepwise in the longitudinal direction. An object of the present invention is to provide a manufacturing method.
【0010】0010
【課題を解決するための手段】本発明者はかかる課題を
解決すべく種々検討を重ねた結果、(1) 異種金属材
料の継手構造としてはいわゆる傾斜機能を持った継手が
有効であること、および(2) 異種金属材料用の傾斜
機能継手の一体成形加工による製造は、粉末冶金法によ
り可能となることを知見した。[Means for Solving the Problems] As a result of various studies to solve the above problems, the present inventor has found that (1) a joint with a so-called inclined function is effective as a joint structure for dissimilar metal materials; and (2) It was discovered that the production of functionally graded joints for dissimilar metal materials by integral molding is possible using powder metallurgy.
【0011】そこで、傾斜機能特性を持った異種金属材
料の継手の粉末冶金法による一体成形加工による製造方
法の研究を行った結果、クラッド金属管では良好な接合
界面が得られる従来の粉末冶金法でも、熱間押出し成形
時に軸方向のメタルフローが材質により異なるため十分
な接合界面が得られない場合があるが、粉末冶金法によ
る一体成形加工は、被継手金属材料同士の熱間変形抵抗
、熱間変形能および熱膨張率の差が大きなものであって
も、特定条件下では容易に実現されることを知見し、本
発明を完成した。[0011] Therefore, as a result of research into a manufacturing method using integral molding processing using powder metallurgy for joints made of dissimilar metal materials with functionally graded characteristics, we found that the conventional powder metallurgy method, which provides a good joint interface for clad metal pipes, However, during hot extrusion molding, the metal flow in the axial direction varies depending on the material, so it may not be possible to obtain a sufficient bonding interface. The present invention was completed based on the finding that even large differences in hot deformability and thermal expansion coefficient can be easily achieved under specific conditions.
【0012】よって、本発明は、もっとも広義には、段
階的にあるいは連続的に金属組成を変化させた粉末充填
層の熱間押出し成形品から成る異種金属材料用継手構造
である。Accordingly, the present invention, in its broadest sense, is a joint structure for dissimilar metal materials comprising a hot extrusion molded product of a powder-filled bed in which the metal composition is changed stepwise or continuously.
【0013】より具体的には、本発明は、異種材料であ
る第一部材と第二部材用の継手成形体の製造方法であっ
て、第一部材に同一あるいは近似する第一金属組成から
第二部材に同一か近似する第二金属組成まで段階的ある
いは連続的に変化する金属組成を有する粉末充填層を形
成し、次いで該粉末充填層を押出し成形することを特徴
とする異種材料用の継手成形体の製造方法である。More specifically, the present invention provides a method for manufacturing a joint molded body for a first member and a second member that are made of different materials, wherein A joint for dissimilar materials characterized by forming a powder-filled layer having a metal composition that changes stepwise or continuously to a second metal composition that is the same or similar to that of two members, and then extruding the powder-filled layer. This is a method for manufacturing a molded object.
【0014】本発明の好適態様においては、前記成形体
は棒あるいは管であって、その金属組成が軸方向に連続
的にもしくは段階的に変化する。In a preferred embodiment of the present invention, the molded body is a rod or a tube, and the metal composition thereof changes continuously or stepwise in the axial direction.
【0015】前記第一金属組成と第二金属組成との熱間
変形抵抗比が 1.5以上の場合に効果があり、前記第
一金属組成と第二金属組成との固相線温度のうち固相線
温度の低い方の70%以上からその固相線温度以下の温
度に前記第一部材粉末充填層及び第二部材の全体を加熱
して、熱間押出し成形を行うようするとよい。It is effective when the hot deformation resistance ratio between the first metal composition and the second metal composition is 1.5 or more, and the solidus temperature of the first metal composition and the second metal composition is It is preferable to perform hot extrusion molding by heating the entire first member powder-filled layer and the second member to a temperature from 70% or more of the lower solidus temperature to below the solidus temperature.
【0016】さらに、前記粉末充填層を第一金属組成と
第二金属組成とこれら第一および第二金属組成の混合金
属組成との三層構造とし、該混合金属組成から成る充填
層の厚さを2mm以上とするようにしてもよい。Furthermore, the powder-filled layer has a three-layer structure of a first metal composition, a second metal composition, and a mixed metal composition of these first and second metal compositions, and the thickness of the filled layer made of the mixed metal composition is may be set to 2 mm or more.
【0017】[0017]
【作用】次に、本発明の作用について説明する。[Operation] Next, the operation of the present invention will be explained.
【0018】図1ないし3は、本発明にかかる方法を実
施する態様の略式説明図であって、各図において同一部
材は同一符号をもって示す。1 to 3 are schematic illustrations of a mode of carrying out the method according to the invention, in which identical parts are designated by the same reference numerals in each figure.
【0019】まず、本発明における金属材料特性の異な
る異種金属材料とは、炭素鋼、低合金鋼、フェライト系
ステンレス鋼およびマルテンサイト系ステンレス鋼等の
磁性材料とオーステナイト系ステンレス鋼およびNi基
高合金等の非磁性材料との組合せ、Ni基高合金等の耐
食材料とマルテンサイト系ステンレス鋼およびCo基高
合金等の高強度材料との組合せ、そして、Ni基高合金
等の耐熱材料と低合金鋼、炭素鋼およびフェライト系ス
テンレス鋼とを組合せ等が考えられる。First, the dissimilar metal materials having different metal material properties in the present invention include magnetic materials such as carbon steel, low alloy steel, ferritic stainless steel, and martensitic stainless steel, and austenitic stainless steel and Ni-based high alloy. combinations with non-magnetic materials such as Ni-based high alloys, combinations of corrosion-resistant materials such as Ni-based high alloys with high-strength materials such as martensitic stainless steel and Co-based high alloys, and combinations of heat-resistant materials such as Ni-based high alloys with low alloys. A combination of steel, carbon steel, and ferritic stainless steel may be considered.
【0020】図1において、このような異種金属材料第
一部材と第二部材( いずれも図示せず) にそれぞれ
同一あるいは近似する金属組成の金属粉末1および3を
金属製容器4に充填し、境界には金属粉末1および3の
適宜混合粉末2が充填されている。このように、第一部
材に同一あるいは近似する金属組成の金属粉末1から第
二部材に同一か近似する金属組成の金属粉末3にまで、
図示例では二段階に段階的に変化する金属組成を有する
粉末充填層を形成する。In FIG. 1, a metal container 4 is filled with metal powders 1 and 3 having the same or similar metal compositions to the first member and second member (both not shown) made of dissimilar metal materials, respectively. The boundary is filled with an appropriate mixed powder 2 of metal powders 1 and 3. In this way, from the metal powder 1 having the same or similar metal composition as the first member to the metal powder 3 having the same or similar metal composition to the second member,
In the illustrated example, a powder-filled layer having a metal composition that changes stepwise in two steps is formed.
【0021】本発明においてこのように、接合面の化学
成分を軸方向に連続的に変化させるのは、熱間変形抵抗
および熱膨張率の差が大きな金属材料を傾斜機能材料化
することにより応力集中をさけるためであり、傾斜機能
材料領域としては5mm以上が望ましい。In the present invention, the chemical composition of the bonding surface is continuously changed in the axial direction as described above by converting a metal material with a large difference in hot deformation resistance and thermal expansion coefficient into a functionally graded material. This is to avoid concentration, and the functionally graded material region is preferably 5 mm or more.
【0022】熱間変形抵抗比が1.5 以上ある金属材
料同士の組合わせに適用するのは、熱間押出し成形加工
温度における変形抵抗比が1.5 未満の時は傾斜機能
材料領域がなくても十分な接合強度が得られるが、その
温度の変形抵抗比が1.5 以上の時は傾斜機能材料領
域がないと、メタルフローの差により接合面に空孔を生
じるためである。[0022] This is applied to the combination of metal materials with a hot deformation resistance ratio of 1.5 or more because when the deformation resistance ratio at the hot extrusion processing temperature is less than 1.5, there is no functionally graded material region. Although sufficient bonding strength can be obtained even if the deformation resistance ratio at that temperature is 1.5 or more, if there is no functionally graded material region, pores will be generated on the bonding surface due to the difference in metal flow.
【0023】ここに、「熱間変形抵抗比」とは熱間成形
加工温度における金属材料固有の変形抵抗、つまり熱間
成形加工温度における第一部材と第二部材との変形抵抗
の比である。温度、歪速度および材質により大きく変化
する。したがって、ここで言う熱間変形抵抗比とは、同
じ歪速度、押出し成形温度における材質間の変形抵抗比
差であり、例えば1100℃、歪速度10−1secの
時、低合金鋼は8kg/mm2、ステンレス鋼は16k
g/mm2の変形抵抗であるので、熱間変形抵抗比は2
.0 である。[0023] Here, "hot deformation resistance ratio" is the deformation resistance inherent to the metal material at the hot forming temperature, that is, the ratio of the deformation resistance of the first member and the second member at the hot forming temperature. . It varies greatly depending on temperature, strain rate, and material. Therefore, the hot deformation resistance ratio referred to here is the difference in deformation resistance ratio between materials at the same strain rate and extrusion temperature. For example, at 1100°C and strain rate of 10-1 sec, low alloy steel has a deformation resistance ratio of 8 kg/mm2. , stainless steel is 16k
Since the deformation resistance is g/mm2, the hot deformation resistance ratio is 2
.. It is 0.
【0024】粉末充填層は加工性の良好な金属容器内に
設けられるが、この加工性の良好な金属容器とは、鉄、
炭素鋼、合金鋼およびステンレス鋼のように常温および
熱間押出し成形加工温度において展延性の良好な金属で
容器の肉厚は1〜4mmが望ましい。これは熱間押出成
形加工時にダイスとマンドレルとの接触が金属容器で起
こり、この金属容器の熱間展延性が押出し成形体の成形
性に影響を及ぼすためである。[0024] The powder-filled bed is provided in a metal container with good workability, and this metal container with good workability is made of iron, iron,
The wall thickness of the container is preferably 1 to 4 mm using a metal that has good malleability at room temperature and hot extrusion processing temperature, such as carbon steel, alloy steel, and stainless steel. This is because during the hot extrusion process, contact between the die and the mandrel occurs in the metal container, and the hot malleability of the metal container affects the formability of the extruded product.
【0025】次に、例えば金属材料粉末Aと金属材料粉
末Bの間に充填する混合粉末の充填方法としては、金属
材料粉末Aと金属材料粉末Bを体積割合でA:B=20
:80〜A:B=80:20で混合したものを充填する
か、あるいは金属材料粉末Aと金属材料粉末Bの混合割
合を段階的に変化させて軸方向にほぼ連続的に層状に粉
末充填すると良い。この時、混合粉末層の厚さは2mm
以上が望ましい。この理由は、熱間押出し成形加工した
ときにメタルフロー差が生じるが、これらの充填方法を
満足していなければ接合面に空孔が発生するためである
。Next, for example, as a method for filling the mixed powder between the metal material powder A and the metal material powder B, the volume ratio of the metal material powder A and the metal material powder B is A:B=20.
:80 to A:B = 80:20, or the mixing ratio of metal material powder A and metal material powder B is changed stepwise to fill the powder almost continuously in the axial direction in a layered manner. That's good. At this time, the thickness of the mixed powder layer is 2 mm.
The above is desirable. The reason for this is that metal flow differences occur during hot extrusion processing, but if these filling methods are not satisfied, pores will be generated at the joint surface.
【0026】このようにして金属製容器4内に金属粉末
充填終了後には脱気管5を経て内部の脱気を行う。この
とき、1×10−1mmHg以上の真空度で常温から6
00 ℃までの温度範囲で10分以上保持する真空脱気
処理が望ましい。これは粉末表面の吸着ガスおよび吸着
水を効率よく除去するためであり、これにより製品の品
質の向上が図れる。脱気後、脱気管5の封口を行うが、
封口は真空状態で行い脱気管5の空孔中への空気混入は
避けることが望ましい。After filling the metal powder into the metal container 4 in this way, the inside is degassed through the degassing pipe 5. At this time, at a vacuum level of 1 x 10-1 mmHg or higher,
A vacuum degassing treatment in which the temperature is maintained at a temperature up to 00°C for 10 minutes or more is desirable. This is to efficiently remove adsorbed gas and water on the powder surface, thereby improving the quality of the product. After degassing, the degassing pipe 5 is sealed.
It is desirable that the sealing be performed in a vacuum state to avoid air intrusion into the pores of the degassing tube 5.
【0027】粉末ビレットは熱間押出し成形前に加熱す
るが、その手段として電気炉またはガス炉により均熱加
熱を行うか、あるいは急速加熱により短時間で保持温度
まで加熱できる高周波誘導加熱を行うと良い。この時、
高周波誘導加熱がスムーズに行えるように、予め粉末ビ
レットを金属材料の固相線温度の50〜90%で予備焼
結を行うか、あるいは高周波加熱前に粉末ビレットを冷
間静水圧プレスにより金属材料粉末の充填相対密度を7
5%以上にして高周波誘導加熱時の粉末ビレットの温度
分布の不均一性を小さくする必要がある。[0027] The powder billet is heated before hot extrusion molding, and the method for this is soaking in an electric furnace or gas furnace, or high-frequency induction heating, which can heat the billet to the holding temperature in a short time by rapid heating. good. At this time,
In order to perform high-frequency induction heating smoothly, the powder billet is pre-sintered at 50 to 90% of the solidus temperature of the metal material, or the powder billet is cold isostatically pressed before high-frequency heating. Powder packing relative density is 7
It is necessary to set it to 5% or more to reduce the non-uniformity of the temperature distribution of the powder billet during high-frequency induction heating.
【0028】熱間押出し成形前の加熱温度を金属材料の
固相線温度の70%以上から固相線温度以下に限定して
いるのは、固相線温度の70%未満の温度では金属材料
粉末の変形抵抗が増大し、金属材料粉末の塑性変形が起
こりにくくなり、押出せずに途中でつまったり、押出せ
ても成形性が保てないためである。また、固相線温度を
越えると一部で溶融したりして偏析が起こり、成形性の
良好な棒および管が得られないためである。The reason why the heating temperature before hot extrusion is limited from 70% or more of the solidus temperature of the metal material to below the solidus temperature is because the metal material This is because the deformation resistance of the powder increases, making it difficult for the metal material powder to undergo plastic deformation, resulting in it not being able to be extruded and becoming clogged in the middle, or being unable to maintain formability even if it is extruded. Furthermore, if the solidus temperature is exceeded, some parts may melt and segregation may occur, making it impossible to obtain rods and tubes with good formability.
【0029】ここに、「固相線温度」とは、金属粉末を
構成する合金成分のうちの最も低い固相線温度を有する
もののそれである。合金材料は全て固相線 (部分的に
溶融を開始する温度) と液相線 (材料全体が溶融し
終わる温度) がある。この固相線、液相線は成分によ
り温度が大きく異なる。したがって、ここで言う固相線
はミクロ的に部分的に溶融を開始する温度である。[0029] Here, the "solidus temperature" refers to the one having the lowest solidus temperature among the alloy components constituting the metal powder. All alloy materials have a solidus (the temperature at which parts of the material begin to melt) and a liquidus (the temperature at which the entire material finishes melting). The temperature of this solidus line and liquidus line differs greatly depending on the components. Therefore, the solidus line referred to here is the temperature at which microscopic partial melting begins.
【0030】金属材料の表面を覆っている金属容器は酸
洗あるいは機械加工により除去すると良い。また、必要
に応じて熱間押出し成形後に熱処理を行い使用環境に適
した特性を持たせることが望ましい。The metal container covering the surface of the metal material is preferably removed by pickling or machining. Further, if necessary, it is desirable to perform heat treatment after hot extrusion molding to impart properties suitable for the usage environment.
【0031】図2および図3は、金属管継手を製造する
場合の例を示すものであり、金属管4の替わりに、同心
状に二重管壁を備えた金属管9を用いる。金属粉末6、
8の境界には混合粉末層7が設けられているが、図示例
ではこの混合粉末層7はさらに多段層となっており、各
層で少し粉末組成を変えて、混合粉末層7全体である傾
斜をもって粉末組成が変化するようにしてある。脱気管
10による脱気、封口操作などは図1に同じである。こ
の場合にも多段層となった混合粉末層7を合計して2m
m以上の厚さとするのが好ましい。FIGS. 2 and 3 show an example of manufacturing a metal pipe joint, in which a metal pipe 9 having concentric double pipe walls is used instead of the metal pipe 4. metal powder 6,
A mixed powder layer 7 is provided at the boundary of 8, but in the illustrated example, this mixed powder layer 7 is further multi-layered, and the powder composition is slightly changed in each layer, so that the entire mixed powder layer 7 has a slope. The powder composition is made to change depending on the temperature. The degassing and sealing operations using the degassing tube 10 are the same as those shown in FIG. In this case, the total of the mixed powder layers 7, which are multi-layered, is 2 m.
It is preferable that the thickness be 1 m or more.
【0032】図3は、図2の場合の金属粉末の金属組成
を何種類か変化させ多機能化して行う例を示すもので、
金属組成は金属粉末11、金属粉末13、金属粉末15
および金属粉末17で異なり、各部位で独立した機能を
持たせ、それぞれの混合粉末層12、14、16におい
てそれらの間の金属組成が傾斜的に変化している。この
ように多段にすれば多機能管の製造ができる。各混合粉
末層は厚さ2mm以上とするのが好ましい。FIG. 3 shows an example in which the metal powder shown in FIG. 2 is multi-functionalized by changing several types of metal composition.
Metal composition: metal powder 11, metal powder 13, metal powder 15
The mixed powder layers 12, 14, and 16 each have an independent function, and the metal composition between them changes in a gradient manner. By creating multiple stages in this way, a multifunctional tube can be manufactured. It is preferable that each mixed powder layer has a thickness of 2 mm or more.
【0033】各金属粉末の混合割合、各金属粉末層の厚
さ、などはどのように金属特性を傾斜させるかによって
決定すればよく、これまでの説明から当業者であれば適
宜決定できる。The mixing ratio of each metal powder, the thickness of each metal powder layer, etc. may be determined depending on how to incline the metal properties, and can be appropriately determined by a person skilled in the art based on the above explanation.
【0034】このようにして製造された機能傾斜継手管
(棒) は、さらに必要により端部にネジを切ったり
して、あるいは溶接を行うなどして相手部材に接合され
、継手として使用される。[0034] The functionally inclined joint pipe (rod) manufactured in this way is further joined to a mating member by cutting a thread at the end or by welding, if necessary, and used as a joint. .
【0035】[0035]
【実施例1】本例では図1に示す態様で図示寸法(mm
)の棒状の継手を押出し成形した。[Example 1] In this example, the illustrated dimensions (mm
) was extruded into a rod-shaped joint.
【0036】表1中の試料A の化学成分の水アトマイ
ズ粉末1 (平均粒径250 μm 以下) を図1の
低炭素鋼容器4の中に充填し、この粉末1の上に表1中
の試料A の粉末と試料B の化学成分のN2ガスアト
マイズ粉末( 平均粒径250 μm 以下) を30
:70〜70:30の体積割合で混合した粉末2を1〜
10mmの高さに充填し、さらにこの混合粉末2の上に
表1中の試料B の粉末を充填し、脱気管5より、1×
10−2mmHgの真空脱気を常温で1hr行い封口し
、粉末ビレットとした。Water atomized powder 1 having the chemical composition of sample A in Table 1 (average particle size 250 μm or less) was filled into the low carbon steel container 4 shown in FIG. N2 gas atomized powder (average particle size 250 μm or less) containing the powder of sample A and the chemical composition of sample B was mixed for 30 minutes.
: Powder 2 mixed at a volume ratio of 70 to 70:30 to 1 to
Fill the powder to a height of 10 mm, then fill the powder of sample B in Table 1 on top of this mixed powder 2, and then
It was vacuum degassed at 10-2 mmHg for 1 hr at room temperature and sealed to form a powder billet.
【0037】この粉末ビレットをガス加熱炉に装入して
1200℃に加熱後、ユジーン式熱間押出し機により押
出し比10、押出し温度1150℃の条件で成形加工を
行い機能傾斜金属棒を作製した。[0037] This powder billet was charged into a gas heating furnace and heated to 1200°C, and then molded using a Eugene hot extruder at an extrusion ratio of 10 and an extrusion temperature of 1150°C to produce a functionally graded metal rod. .
【0038】この得られた棒を機械加工して低炭素鋼容
器を除去した。これにより得られた棒の継手特性を表2
の試験 Run No.1 〜5およびRun No.
10 、13に示す。The resulting bar was machined to remove the low carbon steel vessel. Table 2 shows the joint characteristics of the rod obtained in this way.
Test Run No. 1 to 5 and Run No.
10 and 13.
【0039】[0039]
【実施例2】本例では図2に示す態様で図示寸法(mm
)の管状の継手を押出し成形した。[Example 2] In this example, the illustrated dimensions (mm
) tubular fittings were extruded.
【0040】表1中の試料C の化学成分のN2ガスア
トマイズ粉末6(500μm 以下) を図2の低炭素
鋼容器9の中に充填し、この粉末6の上に表1中の試料
C の粉末と試料Dの化学成分のArガスアトマイズ粉
末(500μm 以下) を4:1、3:2、2:3、
1:4の割り合いで混合した粉末7を下より1mmずつ
で高さ合計4mmの層状に充填し、さらにこの混合粉末
7の上に表1中の試料D の粉末を充填し、脱気管10
より、1×10−2mmHgの真空脱気を400 ℃×
30min 行い封口した。N2 gas atomized powder 6 (500 μm or less) having the chemical composition of sample C in Table 1 is filled into the low carbon steel container 9 shown in FIG. and Ar gas atomized powder (500 μm or less) of chemical components of sample D at 4:1, 3:2, 2:3,
Powder 7 mixed at a ratio of 1:4 is filled in a layer with a total height of 4 mm, 1 mm apart from the bottom, and the powder of sample D in Table 1 is further filled on top of this mixed powder 7, and the degassing tube 10 is filled.
1 x 10-2 mmHg vacuum degassing at 400 °C x
The tube was sealed for 30 minutes.
【0041】この粉末ビレットの一部のものについては
冷間静水圧プレスにより4000気圧の加圧を行い粉末
充填密度を高めた。この粉末ビレットをロータリー式ガ
ス炉で800 ℃まで予熱し、これに引き続いて更に1
200℃まで高周波誘導加熱炉にて加熱後、ユジーン式
熱間押出し機により押出比7、押出し温度1150℃の
条件で成形加工し管を作製した。A portion of this powder billet was pressurized to 4,000 atmospheres by cold isostatic pressing to increase the powder packing density. This powder billet was preheated to 800 °C in a rotary gas furnace, followed by an additional 1
After heating to 200° C. in a high frequency induction heating furnace, a tube was produced by molding using a Eugene hot extruder at an extrusion ratio of 7 and an extrusion temperature of 1150° C.
【0042】他の粉末ビレットについては電気炉にて1
000〜1200℃に加熱後、ユジーン式熱間押出し機
により押出し比7、押出し温度 950〜1150℃の
条件で成形加工し管を作製した。For other powder billets, 1
After heating to 000 to 1200°C, the tube was molded using a Eugene hot extruder at an extrusion ratio of 7 and an extrusion temperature of 950 to 1150°C.
【0043】以上のようにして得られた管を機械加工し
て低炭素鋼容器を除去した。これにより得られた管の継
手特性を表2に試験 Run No.6 〜8に示す。The tube thus obtained was machined to remove the low carbon steel container. Table 2 shows the joint characteristics of the pipes obtained in this way. Shown in 6 to 8.
【0044】[0044]
【実施例3】本例では図3に示す態様で図示寸法(mm
)の管状の継手を押出し成形した。[Example 3] In this example, the illustrated dimensions (mm
) tubular fittings were extruded.
【0045】表1中の試料A の化学成分の水アトマイ
ズ粉末11(250μm 以下) を図3の低炭素鋼容
器18の中に充填し、この粉末11の上に表1中の試料
A の粉末と試料D の化学成分のArガスアトマイズ
粉末(500μm 以下) を50:50の割り合いで
混合した粉末12を5mmの高さに充填し、さらにこの
混合粉末12の上に表1中の試料D の粉末13を充填
する。Water atomized powder 11 (250 μm or less) having the chemical composition of sample A in Table 1 is filled into the low carbon steel container 18 in FIG. Powder 12, which is a 50:50 mixture of Ar gas atomized powder (500 μm or less) having the chemical components of sample D, was filled to a height of 5 mm, and on top of this mixed powder 12, samples of sample D in Table 1 were placed. Fill with powder 13.
【0046】この充填方法を繰り返して行う。すなわち
、粉末13の上に試料A の粉末と試料D の粉末を5
0:50の割り合いで混合した粉末14を5mmの高さ
に充填し、混合粉末14の上に試料A の粉末15を充
填する。さらに粉末15の上に試料A の粉末と試料B
の化学成分のN2ガスアトマイズ粉末(250μm 以
下) を50:50の割り合いで混合した粉末16を5
mmの高さに充填し、混合粉末16の上に試料B の粉
末17を充填する。This filling method is repeated. That is, 5 powders of sample A and sample D are placed on top of powder 13.
Powder 14 mixed at a ratio of 0:50 is filled to a height of 5 mm, and powder 15 of sample A is filled on top of mixed powder 14. Furthermore, powder of sample A and sample B are placed on top of powder 15.
Powder 16, which is a 50:50 mixture of N2 gas atomized powder (250 μm or less) with the chemical composition of
The sample B powder 17 is filled on top of the mixed powder 16.
【0047】この粉末ビレットの脱気管19より、1×
10−2mmHgの真空脱気を400 ℃×1hr行い
封口した。この粉末ビレットを電気炉に入れて1200
℃に加熱後、ユジーン式熱間押出し機により押出比7、
押出し温度1150℃の条件で成形加工を行い管を作製
した。From the degassing pipe 19 of this powder billet, 1×
Vacuum degassing at 10-2 mmHg was performed at 400° C. for 1 hr and the container was sealed. This powder billet was put into an electric furnace for 1200
After heating to ℃, the extrusion ratio was 7 using a Eugene hot extruder.
A tube was produced by molding at an extrusion temperature of 1150°C.
【0048】以上のようにして得られた管を機械加工し
て低炭素鋼容器を除去した。これにより得られた管の継
手特性を表2の試験 Run No.9 に示す。The tube thus obtained was machined to remove the low carbon steel container. The joint characteristics of the pipes obtained in this manner were evaluated according to the test Run No. 2 shown in Table 2. 9.
【0049】[0049]
【表1】[Table 1]
【0050】[0050]
【表2】[Table 2]
【0051】次に、表2のRun No.4の粉末組成
、成形条件を基準にしてそれぞれ加熱温度、熱間変形抵
抗比、そして混合粉末層厚さを変化させたときの材料特
性を評価し、それらの結果を図4ないし図6にまとめて
示す。Next, Run No. in Table 2. The material properties were evaluated when the heating temperature, hot deformation resistance ratio, and mixed powder layer thickness were changed based on the powder composition and molding conditions of 4, and the results are summarized in Figures 4 to 6. Shown.
【0052】[0052]
【発明の効果】本発明によれば、接合界面の良好な金属
材料特性の異なる傾斜機能材料継手構造が容易に製造で
きる。According to the present invention, it is possible to easily manufacture a joint structure of functionally graded materials having different metal material properties and having a good joining interface.
【図1】本発明に用いる傾斜機能材料粉末ビレットの実
施例の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of an example of a powder billet of functionally graded material used in the present invention.
【図2】本発明に用いる傾斜機能材料粉末ビレットの実
施例の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of an example of a powder billet of functionally graded material used in the present invention.
【図3】本発明に用いる傾斜機能材料粉末ビレットの実
施例の縦断面図である。FIG. 3 is a longitudinal cross-sectional view of an example of a powder billet of functionally graded material used in the present invention.
【図4】本発明の実施例の結果をまとめて示すグラフで
ある。FIG. 4 is a graph summarizing the results of Examples of the present invention.
【図5】本発明の実施例の結果をまとめて示すグラフで
ある。FIG. 5 is a graph summarizing the results of Examples of the present invention.
【図6】本発明の実施例の結果をまとめて示すグラフで
ある。FIG. 6 is a graph summarizing the results of Examples of the present invention.
Claims (5)
の継手成形体の製造方法であって、第一部材に同一ある
いは近似する第一金属組成から第二部材に同一か近似す
る第二金属組成まで段階的あるいは連続的に変化する金
属組成を有する粉末充填層を形成し、次いで該粉末充填
層を押出し成形することを特徴とする異種材料用の継手
成形体の製造方法。1. A method for manufacturing a joint molded body for a first member and a second member that are made of different materials, the method comprising forming a first metal composition that is the same or similar to that of the first member to a second member that is the same or similar to that of the second member. 1. A method for manufacturing a joint molded article for dissimilar materials, comprising forming a powder-filled layer having a metal composition that changes stepwise or continuously up to a two-metal composition, and then extruding the powder-filled layer.
て、その金属組成が軸方向に連続的にもしくは段階的に
変化する請求項1記載の方法。2. The method according to claim 1, wherein the joint molded body is a rod or a tube, and the metal composition thereof changes continuously or stepwise in the axial direction.
熱間変形抵抗比が 1.5以上である請求項1または2
記載の方法。3. A hot deformation resistance ratio between the first metal composition and the second metal composition is 1.5 or more.
Method described.
相線温度のうち低い固相線温度の70%以上からその固
相線温度以下の温度に前記粉末充填層を加熱して、熱間
押出し成形を行う請求項1ないし3のいずれかに記載の
方法。4. Heating the powder packed bed from 70% or more of the lower solidus temperature of the first metal composition and the second metal composition to a temperature below the solidus temperature, The method according to any one of claims 1 to 3, wherein hot extrusion molding is carried out.
金属組成とこれら第一および第二金属組成の混合金属組
成との三層構造とし、該混合金属組成から成る充填層の
厚さを2mm以上とする請求項1ないし4のいずれかに
記載の方法。5. The powder-filled layer has a three-layer structure of a first metal composition, a second metal composition, and a mixed metal composition of these first and second metal compositions, and the thickness of the filled layer made of the mixed metal composition is 5. The method according to claim 1, wherein: 2 mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11339891A JPH04341508A (en) | 1991-05-17 | 1991-05-17 | Production of coupling formed body for different kinds of materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11339891A JPH04341508A (en) | 1991-05-17 | 1991-05-17 | Production of coupling formed body for different kinds of materials |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04341508A true JPH04341508A (en) | 1992-11-27 |
Family
ID=14611291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11339891A Withdrawn JPH04341508A (en) | 1991-05-17 | 1991-05-17 | Production of coupling formed body for different kinds of materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04341508A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5455000A (en) * | 1994-07-01 | 1995-10-03 | Massachusetts Institute Of Technology | Method for preparation of a functionally gradient material |
JP2001123233A (en) * | 1999-10-21 | 2001-05-08 | Tohoku Tokushuko Kk | METHOD FOR PRODUCING TiAl BASE ALLOY AUTOMOTIVE ENGINE VALVE |
WO2018097188A1 (en) | 2016-11-22 | 2018-05-31 | 大阪冶金興業株式会社 | Method for metal powder injection molding |
JP2021021119A (en) * | 2019-07-29 | 2021-02-18 | 日立Geニュークリア・エナジー株式会社 | Method for manufacturing transition piece and transition piece |
CN114830429A (en) * | 2020-04-07 | 2022-07-29 | 株式会社Lg新能源 | Electrode lead made of dissimilar metal and method of manufacturing the same |
CN114846693A (en) * | 2020-03-31 | 2022-08-02 | 株式会社Lg新能源 | HV bus bar made of dissimilar metal and method of manufacturing the same |
-
1991
- 1991-05-17 JP JP11339891A patent/JPH04341508A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5455000A (en) * | 1994-07-01 | 1995-10-03 | Massachusetts Institute Of Technology | Method for preparation of a functionally gradient material |
JP2001123233A (en) * | 1999-10-21 | 2001-05-08 | Tohoku Tokushuko Kk | METHOD FOR PRODUCING TiAl BASE ALLOY AUTOMOTIVE ENGINE VALVE |
WO2018097188A1 (en) | 2016-11-22 | 2018-05-31 | 大阪冶金興業株式会社 | Method for metal powder injection molding |
US11040396B2 (en) | 2016-11-22 | 2021-06-22 | Osaka Yakin Kogyo Co., Ltd. | Method for metal powder injection molding |
JP2021021119A (en) * | 2019-07-29 | 2021-02-18 | 日立Geニュークリア・エナジー株式会社 | Method for manufacturing transition piece and transition piece |
US11684976B2 (en) | 2019-07-29 | 2023-06-27 | Hitachi-Ge Nuclear Energy, Ltd. | Method of manufacturing transition piece and transition piece |
CN114846693A (en) * | 2020-03-31 | 2022-08-02 | 株式会社Lg新能源 | HV bus bar made of dissimilar metal and method of manufacturing the same |
CN114846693B (en) * | 2020-03-31 | 2024-01-23 | 株式会社Lg新能源 | HV bus bar made of dissimilar metals and method of manufacturing same |
US12148954B2 (en) | 2020-03-31 | 2024-11-19 | Lg Energy Solution, Ltd. | HV busbar made of dissimilar metals and method of manufacturing the same |
CN114830429A (en) * | 2020-04-07 | 2022-07-29 | 株式会社Lg新能源 | Electrode lead made of dissimilar metal and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5564064A (en) | Integral porous-core metal bodies and in situ method of manufacture thereof | |
KR101370751B1 (en) | Composite preform having a controlled fraction of porosity in at least one layer and methods for manufacture and use | |
JP3647453B2 (en) | Methods for manufacturing composite metal products | |
US4731115A (en) | Titanium carbide/titanium alloy composite and process for powder metal cladding | |
EP0372999B1 (en) | Process for manufacturing clad metal tubing | |
EP0202735B1 (en) | Process for making a composite powder metallurgical billet | |
CA1075502A (en) | Powdered metal consolidation method | |
EP0388968B1 (en) | Method of producing clad metals | |
JPS597497A (en) | Manufacture of dispersed reinforced metallic body and its product | |
JP2003105411A (en) | Process for manufacturing compound sintered article | |
EP0283877A1 (en) | Method of producing clad metal tubes. | |
US5445787A (en) | Method of extruding refractory metals and alloys and an extruded product made thereby | |
Chen et al. | Fabrication of composite pipes by multi-billet extrusion technique | |
JPH04341508A (en) | Production of coupling formed body for different kinds of materials | |
US4143208A (en) | Method of producing tubes or the like and capsule for carrying out the method as well as blanks and tubes according to the method | |
US4323186A (en) | Manufacture of high performance alloy in elongated form | |
JP6864922B2 (en) | Manufacturing method of aluminum-based clad mold material | |
JPH0438829B2 (en) | ||
JPH02258903A (en) | Manufacture of clad metal tube | |
JP2580099B2 (en) | Hot isostatic pressing method | |
US20100005847A1 (en) | Wire-Like Product with Composite Core and Process for Producing the Same | |
JPH02179802A (en) | Metal powder clad pipe extruded billet and insulated steel pipe | |
US3418112A (en) | Method for forming seamless pressure vessels | |
JPS60135503A (en) | Manufacture of dispersion strengthened metal body and product | |
JPH02182806A (en) | Method for extruding powder metallurgical material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980806 |