JPH0433942Y2 - - Google Patents
Info
- Publication number
- JPH0433942Y2 JPH0433942Y2 JP4156085U JP4156085U JPH0433942Y2 JP H0433942 Y2 JPH0433942 Y2 JP H0433942Y2 JP 4156085 U JP4156085 U JP 4156085U JP 4156085 U JP4156085 U JP 4156085U JP H0433942 Y2 JPH0433942 Y2 JP H0433942Y2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- adsorption tower
- adsorption
- valve
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Respiratory Apparatuses And Protective Means (AREA)
- Separation Of Gases By Adsorption (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
(産業上の利用分野)
本考案は、空気中の窒素をゼオライトに吸着さ
せて酸素を供給する小型の酸素発生装置に関す
る。
(従来の技術)
医療用の酸素吸入における酸素使用量は、毎分
数立から10数立程度であり、殆んどは高圧酸素ボ
ンベの酸素を減圧して使用しており、予備の高圧
酸素ボンベを準備しておく必要がある。
また、最近、ゼオライトを吸着剤として空気中
の窒素を吸着させて酸素を得る酸素発生装置が市
販されている。
ところで、圧力スイング吸着法による空気中の
酸素分離に際しては、加圧状態において吸着剤に
窒素を吸着させて酸素を採取し、吸着された窒素
を減圧状態で脱離させて排気することによつて、
次の加圧吸着に備えての吸着剤の再生がなされ
る。この際に、窒素の脱離と排除が不完全であれ
ば、吸着剤を収容した吸着塔内に残留した窒素の
一部が次の加圧吸着段階において製品酸素に混入
して、製品の酸素濃度を低下させる。一般に、70
%以上の酸素濃度を確保するためには、吸着塔内
の残留窒素を極力排除することを要し、この手段
として製品酸素の一部を吸着塔内に逆流させる酸
素逆流入方式、あるいは吸着塔内を真空状態とす
る真空排気方式にて強制排気する必要がある。
(考案が解決しようとする問題点)
従来の真空排気方式においては、真空ポンプお
よびこれに付随する自動弁等の制御機構が必要で
あり、また真空ポンプの騒音が発生する等の問題
がある。酸素逆流入方式においては、製品として
分離された酸素を収容するガスホルダおよび該ホ
ルダと吸着塔間に複雑な弁機構を要する。
上記の事情によつて、圧力スイング吸着法によ
る酸素発生装置の低騒音化、小形軽量化、低コス
ト化を阻んでいた。
(問題点を解決するための手段)
本考案は上記の事情にかんがみてなされたもの
であり、その構成は下記の通りである。
窒素吸着性を有するゼオライトを真填した吸着
塔を用いた酸素発生装置において、第1吸着塔と
第2吸着塔との一端側を、それぞれ交互に開閉す
る空気供給弁を備えた空気供給管にて無給油圧縮
機に接続し、かつそれぞれ交互に開閉する排気弁
を介して排気管に接続し、また第1吸着塔と第2
吸着塔との他端側において、それぞれ酸素採集用
逆止逃し弁と該弁の設定圧よりは僅かに低い設定
圧で作動する酸素逆流入用逆止逃し弁とを設け、
酸素ガス供給管を接続した連通ガスホルダにて両
吸着塔を連通させた酸素発生装置である。
(作用)
無給油圧縮機を運転して、空気供給管から交互
に開閉する空気供給弁を経て第1吸着塔または第
2吸着塔へ空気を供給する。この際、交互に開閉
する排気弁のうち、空気が供給されていない吸着
塔の排気弁を開とする。
このようにすることによつて、空気が例えば第
1吸着塔に供給されていれば第1吸着塔内の圧力
が上昇し、酸素採集用逆止逃し弁の設定圧にて該
吸着塔内のゼオライトが窒素を吸着し、分離され
た酸素ガスは連通ガスホルダ内に送気される。
また、空気が供給されていない第2吸着塔にお
いては、採集用逆止逃し弁の設定圧よりは僅かに
低い設定圧で酸素逆流入用逆止逃し弁が開となつ
て、一部の酸素ガスを該吸着塔内へ逆流入させ、
吸着塔内の残留窒素は酸素ガスによつて置換され
排気弁を経て排気管へ排出されて再生工程がなさ
れる。この間に連通ガスホルダ内の酸素ガスを酸
素ガス供給管から取出して利用する。
そして、第1吸着塔と第2吸着塔とが交互に窒
素吸着工程と再生工程とを繰り返して酸素ガスを
分離して利用する。
(実施例)
本考案に係る酸素発生装置の実施例を図面に基
づいて説明する。
図において、1は第1吸着塔であり、2は第2
吸着塔である。該両塔1,2内には窒素吸着性を
有するゼオライトが充填されている。3は両吸着
塔1,2にそれぞれ連通し、製品たる酸素ガスを
貯留する連通ガスホルダである。4は無給油圧縮
機であり、両吸着塔1,2の一端側に設けたガス
給排管1a,2aにそれぞれ第1、第2の空気供
給弁1b,2bを介して空気供給管L1にて接続
している。また両ガス給排管1a,2aは、それ
ぞれ第1、第2排気弁1c,2cを介在させて排
気管L2に接続している。そして、各弁1b,1
c,2b,2cは各工程によつて表のように互に
タイマー等によつて制御される。
(Field of Industrial Application) The present invention relates to a small-sized oxygen generator that supplies oxygen by adsorbing nitrogen in the air to zeolite. (Conventional technology) The amount of oxygen used in medical oxygen inhalation ranges from a few centimeters to a dozen centimeters per minute, and in most cases oxygen from high-pressure oxygen cylinders is used at reduced pressure. need to be prepared. In addition, recently, oxygen generators have been commercially available that use zeolite as an adsorbent to adsorb nitrogen in the air to obtain oxygen. By the way, when separating oxygen from the air using the pressure swing adsorption method, oxygen is collected by adsorbing nitrogen onto an adsorbent under pressure, and the adsorbed nitrogen is desorbed and exhausted under reduced pressure. ,
The adsorbent is regenerated in preparation for the next pressurized adsorption. At this time, if the desorption and elimination of nitrogen is incomplete, some of the nitrogen remaining in the adsorption column containing the adsorbent will mix with the product oxygen in the next pressurized adsorption step, causing the product to become oxygenated. Decrease concentration. Generally, 70
% or more, it is necessary to eliminate residual nitrogen in the adsorption tower as much as possible.To do this, a part of the product oxygen is flowed back into the adsorption tower using an oxygen backflow method, or an adsorption tower It is necessary to forcefully evacuate the inside using a vacuum evacuation method. (Problems to be Solved by the Invention) The conventional vacuum evacuation method requires a vacuum pump and an accompanying control mechanism such as an automatic valve, and there are also problems such as noise generated by the vacuum pump. The oxygen backflow system requires a gas holder that accommodates the separated oxygen product and a complicated valve mechanism between the holder and the adsorption tower. The above circumstances have prevented the reduction in noise, size, weight, and cost of oxygen generators using the pressure swing adsorption method. (Means for Solving the Problems) The present invention has been made in view of the above circumstances, and its configuration is as follows. In an oxygen generator using an adsorption tower filled with zeolite having nitrogen adsorption properties, one end side of the first adsorption tower and the second adsorption tower is connected to an air supply pipe equipped with an air supply valve that opens and closes alternately. The first adsorption tower and the second adsorption tower
At the other end of the adsorption tower, a check relief valve for oxygen collection and a check relief valve for oxygen backflow that operate at a set pressure slightly lower than the set pressure of the valve are provided, respectively.
This is an oxygen generator in which both adsorption towers are connected to each other through a communication gas holder connected to an oxygen gas supply pipe. (Function) The oil-free compressor is operated to supply air from the air supply pipe to the first adsorption tower or the second adsorption tower via the air supply valve that opens and closes alternately. At this time, among the exhaust valves that are alternately opened and closed, the exhaust valve of the adsorption tower to which air is not supplied is opened. By doing this, if air is being supplied to the first adsorption tower, for example, the pressure inside the first adsorption tower will rise, and the pressure inside the adsorption tower will rise at the set pressure of the oxygen collection check relief valve. The zeolite adsorbs nitrogen, and the separated oxygen gas is sent into a communicating gas holder. In addition, in the second adsorption tower to which air is not supplied, the check relief valve for oxygen backflow opens at a set pressure slightly lower than the set pressure of the collection check relief valve, and some of the oxygen causing the gas to flow back into the adsorption tower;
Residual nitrogen in the adsorption tower is replaced by oxygen gas and discharged to the exhaust pipe via the exhaust valve to perform the regeneration process. During this time, the oxygen gas in the communication gas holder is taken out from the oxygen gas supply pipe and used. Then, the first adsorption tower and the second adsorption tower alternately repeat the nitrogen adsorption step and the regeneration step to separate and utilize the oxygen gas. (Example) An example of the oxygen generator according to the present invention will be described based on the drawings. In the figure, 1 is the first adsorption tower and 2 is the second adsorption tower.
It is an adsorption tower. Both columns 1 and 2 are filled with zeolite having nitrogen adsorption properties. Reference numeral 3 designates a communicating gas holder that communicates with both adsorption towers 1 and 2, respectively, and stores oxygen gas as a product. 4 is an oil-free compressor, and an air supply pipe L 1 is connected to gas supply and exhaust pipes 1a and 2a provided at one end of both adsorption towers 1 and 2 via first and second air supply valves 1b and 2b , respectively. It is connected at. Further, both gas supply and exhaust pipes 1a and 2a are connected to an exhaust pipe L2 through first and second exhaust valves 1c and 2c, respectively. And each valve 1b, 1
c, 2b, and 2c are mutually controlled by a timer or the like in each step as shown in the table.
【表】
両吸着塔1,2と連通ガスホルダ3との間に
は、両吸着塔1,2から連通ガスホルダ3へ定圧
にて開位置をとる両酸素採集用逆止逃し弁1d,
2dおよび連通ガスホルダ3から両吸着塔1,2
へ定圧にて開位置をとり、両該逆止逃し弁1d,
2dの設定圧よりも僅かに低い圧力(0.2〜0.5
Kg/cm2G低圧側)に設定された酸素逆流入用逆止
逃し弁1e,2eを設けてある。L3は連通ガス
ホルダ3に接続されて製品たる酸素ガスを外部に
供給する酸素ガス供給管であり、5は絞り弁であ
る。
次に作用について説明する。
第1空気供給弁1bを開、第1排気弁1cを
閉、第2空気供給弁2bを閉、第2排気弁2cを
開として無給油圧縮機4を運転すれば、空気は第
1吸着塔1のみに供給され、第1吸着塔1内の空
気圧が上昇して該塔1内のゼオライトは窒素を吸
着し始める。第1吸着塔1内のゼオライトが窒素
を吸着し、かつ該塔1内の圧力が酸素採集用逆止
逃し弁1dの設定圧になれば、該弁1dは開位置
を採つて酸素ガスは連通ホルダ3へ採集される。
連通ホルダ3内の圧力が酸素採集用逆止逃し弁1
d,2dの設定圧よりも僅かに低い圧力に到達す
ると第2排気弁2cが開とされている第2吸着塔
2内へ酸素逆流入用逆止逃し弁2eを経て連通ガ
スホルダ3内の酸素ガスの一部が送気され、第2
吸着塔2内の残留窒素が酸素ガスによつて置換さ
れて第2排気弁2cから排気管L2に排出され、
ゼオライトが再生される。また、この間に連通ガ
スホルダ3内の酸素ガスは、酸素ガス供給管L3
を経て絞り弁5にて減圧されて外部へ供給され
る。
第1吸着塔1内のゼオライトが、十分に窒素を
吸着した段階において、タイマー等によつて各弁
1b,1c,2b,2cの切換を行う。すなわ
ち、第1空気供給弁1bおよび第2排気弁2cを
閉とし、第2空気供給弁2bおよび第1排気弁1
cを開とする。かくして、無給油圧縮機4からの
空気は第2吸着塔2へ送気され、第2吸着塔内の
ゼオライトが窒素を吸着し、他方、第1吸着塔1
内に吸着されていた窒素は第1排気弁1cから放
出される。そして該塔2内の圧力が酸素採集用逆
止逃し弁2dの設定圧力より高くなれば、該塔2
内の酸素ガスは通過ガスホルダ3内へ送られ、ま
た連通ガスホルダ3内の酸素ガス圧力が酸素採集
用逆止逃し弁1d,2dの設定圧力よりは僅かに
低い所定圧力に到達すると、酸素逆流入用逆止逃
し弁1eが作動して、連通ガスホルダ3内の酸素
ガスの一部が、第1排気弁1cが開放して排気管
L2に接続している第1吸着塔1内へ送気され、
第1吸着塔1内の残留窒素は、酸素ガスによつて
置換されて第1排気弁1cから排気管L2に排出
される。
上記のようにして、第1吸着塔1と第2吸着塔
2とにおいて、窒素の吸着と再生とが交互に繰り
返えされ、この間に分離された酸素ガスが利用さ
れる。
なお、吸着塔内のゼオライトの再生工程におい
て、吸着塔内の窒素ガスの放出による圧力降下の
段階では、再生中の吸着塔内の温度が降下して窒
素の脱離を妨げる原因となるが、後から該吸着塔
内へ侵入して来る酸素ガス温度は、加圧吸着工程
において昇温しており、この酸素ガスが該吸着塔
内へ送気されることによつて、該吸着塔内の温度
降下を防止して、窒素の脱離を容易とすることが
できる。
(考案の効果)
以上の説明によつて理解されるように、本考案
によれば下記のような効果が得られる。
(イ) 2個の吸着塔を連通ガスホルダで連通させる
ことによつて、各2個の空気供給弁と排気弁と
の制御で酸素ガスを連続的に安定して得られ、
酸素発生装置の構造が簡素化される。
(ロ) 加圧吸着工程で発生する熱が減圧再生時の温
度降下の抑制に利用され、ゼオライトの再生を
効果的に促進する。
(ハ) 吸着工程時の酸素ガス取出しと再生工程時の
酸素ガス供給とが、各2個の酸素採集用逆止逃
し弁と酸素逆流入用逆止逃し弁とで外部からの
制御なしに自動的になされる。
(ニ) 2個の吸着塔を連通ガスホルダにて連結する
ことによつて、酸素発生装置を小形にできる。
(ホ) 連通ホルダから吸着塔への酸素ガスの流入方
向は吸着塔からの流出方向と全く逆にできるの
で、吸着塔内の掃気が効果的になされる。[Table] Between both the adsorption towers 1 and 2 and the communicating gas holder 3, there are two oxygen collecting check relief valves 1d which are in the open position at constant pressure from both the adsorption towers 1 and 2 to the communicating gas holder 3.
2d and communicating gas holder 3 to both adsorption towers 1 and 2.
to the open position with constant pressure, and both check relief valves 1d,
Pressure slightly lower than the set pressure of 2d (0.2~0.5
Check relief valves 1e and 2e for backflow of oxygen are provided, which are set at a low pressure of Kg/cm 2 G (low pressure side). L 3 is an oxygen gas supply pipe connected to the communication gas holder 3 and supplies oxygen gas as a product to the outside, and 5 is a throttle valve. Next, the effect will be explained. If the oil-free compressor 4 is operated with the first air supply valve 1b opened, the first exhaust valve 1c closed, the second air supply valve 2b closed, and the second exhaust valve 2c opened, air will flow to the first adsorption column. The air pressure inside the first adsorption tower 1 rises and the zeolite inside the first adsorption tower 1 begins to adsorb nitrogen. When the zeolite in the first adsorption tower 1 adsorbs nitrogen and the pressure inside the tower 1 reaches the set pressure of the oxygen collection check relief valve 1d, the valve 1d assumes the open position and oxygen gas is communicated. Collected into holder 3.
The pressure inside the communication holder 3 is reduced to the oxygen collection check relief valve 1.
When the pressure reaches a pressure slightly lower than the set pressure of d and 2d, the oxygen in the communication gas holder 3 passes through the check relief valve 2e for oxygen backflow into the second adsorption tower 2, where the second exhaust valve 2c is opened. A portion of the gas is delivered and the second
The residual nitrogen in the adsorption tower 2 is replaced by oxygen gas and is discharged from the second exhaust valve 2c to the exhaust pipe L2 ,
Zeolite is regenerated. Also, during this time, the oxygen gas in the communication gas holder 3 is transferred to the oxygen gas supply pipe L 3
The air is then depressurized by the throttle valve 5 and supplied to the outside. When the zeolite in the first adsorption tower 1 has sufficiently adsorbed nitrogen, each valve 1b, 1c, 2b, 2c is switched by a timer or the like. That is, the first air supply valve 1b and the second exhaust valve 2c are closed, and the second air supply valve 2b and the first exhaust valve 1 are closed.
Let c be open. Thus, the air from the oil-free compressor 4 is sent to the second adsorption tower 2, and the zeolite in the second adsorption tower adsorbs nitrogen, while the air from the first adsorption tower 1
The nitrogen adsorbed inside is released from the first exhaust valve 1c. If the pressure inside the column 2 becomes higher than the set pressure of the oxygen collecting check relief valve 2d, the column 2
The oxygen gas inside is sent into the passing gas holder 3, and when the oxygen gas pressure inside the communication gas holder 3 reaches a predetermined pressure that is slightly lower than the set pressure of the oxygen collection check relief valves 1d and 2d, oxygen backflow occurs. The first exhaust valve 1c opens and a part of the oxygen gas in the communication gas holder 3 is released into the exhaust pipe.
Air is sent into the first adsorption tower 1 connected to L 2 ,
The residual nitrogen in the first adsorption tower 1 is replaced by oxygen gas and is discharged from the first exhaust valve 1c to the exhaust pipe L2 . As described above, adsorption and regeneration of nitrogen are alternately repeated in the first adsorption tower 1 and the second adsorption tower 2, and the oxygen gas separated during this is utilized. In addition, in the regeneration process of zeolite in the adsorption tower, at the stage of pressure drop due to the release of nitrogen gas in the adsorption tower, the temperature inside the adsorption tower during regeneration decreases, which prevents the desorption of nitrogen. The temperature of the oxygen gas that later enters the adsorption tower increases during the pressure adsorption process, and as this oxygen gas is fed into the adsorption tower, the temperature inside the adsorption tower increases. It is possible to prevent a temperature drop and facilitate the desorption of nitrogen. (Effects of the invention) As understood from the above explanation, the invention provides the following effects. (a) By communicating two adsorption towers with a communication gas holder, oxygen gas can be obtained continuously and stably by controlling two air supply valves and two exhaust valves,
The structure of the oxygen generator is simplified. (b) The heat generated in the pressurized adsorption step is used to suppress the temperature drop during reduced pressure regeneration, effectively promoting zeolite regeneration. (c) Oxygen gas removal during the adsorption process and oxygen gas supply during the regeneration process are automatically performed without external control using two check relief valves for oxygen collection and two check relief valves for oxygen backflow. It is done with purpose. (d) By connecting two adsorption towers with a communicating gas holder, the oxygen generator can be made smaller. (e) Since the direction of inflow of oxygen gas from the communication holder to the adsorption tower can be completely opposite to the direction of outflow from the adsorption tower, the air in the adsorption tower can be scavenged effectively.
図は本考案に係る酸素発生装置の実施例を示す
概略図である。
1……第1吸着塔、1b……第1空気供給弁、
1c……第1排気弁、1d,2d……酸素採集用
逆止逃し弁、1e,2e……酸素逆流入用逆止逃
し弁、2……第2吸着塔、2b……第2空気供給
弁、2c……第2排気弁、2……連通ホルダ、4
……無給油圧縮機、5……絞り弁、L1……空気
供給管、L2……排気管、L3……酸素ガス供給管。
The figure is a schematic diagram showing an embodiment of the oxygen generating device according to the present invention. 1...first adsorption tower, 1b...first air supply valve,
1c...First exhaust valve, 1d, 2d...Check relief valve for oxygen collection, 1e, 2e...Check relief valve for oxygen backflow, 2...Second adsorption tower, 2b...Second air supply Valve, 2c...Second exhaust valve, 2...Communication holder, 4
...Oil-free compressor, 5... Throttle valve, L 1 ... Air supply pipe, L 2 ... Exhaust pipe, L 3 ... Oxygen gas supply pipe.
Claims (1)
塔を用いた酸素発生装置において、第1吸着塔と
第2吸着塔との一端側を、それぞれ交互に開閉す
る空気供給弁を備えた空気供給管にて無給油圧縮
機に接続し、かつそれぞれ交互に開閉する排気弁
を介して排気管に接続し、また第1吸着塔と第2
吸着塔との他端側において、それぞれ酸素採集用
逆止逃し弁と該弁の設定圧よりは僅かに低い設定
圧で作動する酸素逆流入用逆止逃し弁とを設け、
酸素ガス供給管を接続した連通ガスホルダにて両
吸着塔を連通させたことを特徴とする酸素発生装
置。 In an oxygen generator using an adsorption tower filled with zeolite having nitrogen adsorption properties, one end side of the first adsorption tower and the second adsorption tower are connected to each other by an air supply pipe equipped with an air supply valve that opens and closes alternately. The first adsorption tower and the second adsorption tower
On the other end side of the adsorption tower, a check relief valve for oxygen collection and a check relief valve for oxygen backflow that operate at a set pressure slightly lower than the set pressure of the valve are provided, respectively.
An oxygen generator characterized in that both adsorption towers are communicated with each other through a communication gas holder connected to an oxygen gas supply pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4156085U JPH0433942Y2 (en) | 1985-03-25 | 1985-03-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4156085U JPH0433942Y2 (en) | 1985-03-25 | 1985-03-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61159332U JPS61159332U (en) | 1986-10-02 |
JPH0433942Y2 true JPH0433942Y2 (en) | 1992-08-13 |
Family
ID=30551502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4156085U Expired JPH0433942Y2 (en) | 1985-03-25 | 1985-03-25 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0433942Y2 (en) |
-
1985
- 1985-03-25 JP JP4156085U patent/JPH0433942Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS61159332U (en) | 1986-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3492869B2 (en) | Single bed pressure swing adsorption method for oxygen recovery from air | |
JP3050881B2 (en) | How to separate oxygen from air | |
US5346536A (en) | Process for separating nitrogen gas | |
TW436316B (en) | Pressure swing process and system using single adsorber and single blower for separating a gas mixture | |
JP2002191925A (en) | Pressure swing adsorption method for separating feed gas | |
EP1027915A3 (en) | Single bed pressure swing adsorption process and system | |
JP2000153124A (en) | Pressure swing adsorption for producing oxygen-enriched gas | |
JPH1087302A (en) | Single step secondary high purity oxygen concentrator | |
JPS6137968B2 (en) | ||
JP2671436B2 (en) | Method for producing medical oxygen-enriched air | |
JP2607632B2 (en) | Separation of gas mixtures | |
JPH0433942Y2 (en) | ||
JP3793256B2 (en) | Oxygen concentrator | |
JP3654658B2 (en) | Pressure fluctuation adsorption type oxygen production method and apparatus | |
JPH10272332A (en) | Gas separation device and its operation method | |
JP3654661B2 (en) | Oxygen generation method by pressure fluctuation adsorption separation method | |
JPH01184016A (en) | gas separation equipment | |
JP2857045B2 (en) | Oxygen concentrator | |
JPH10194708A (en) | Oxygen enricher | |
JP2002047003A (en) | Adsorbing type oxygen generating device | |
JPS621524B2 (en) | ||
JP2755407B2 (en) | Pressure swing type gas separator | |
JPS63107805A (en) | Process for producing nitrogen by pressure-swing adsorption process | |
JPS63107719A (en) | Pressure swing adsorption method | |
JP3576201B2 (en) | High-purity gas production apparatus and production method by pressure vibration adsorption method |