[go: up one dir, main page]

JPH04337336A - Electrically conductive polyolefin resin molding and production thereof - Google Patents

Electrically conductive polyolefin resin molding and production thereof

Info

Publication number
JPH04337336A
JPH04337336A JP10788491A JP10788491A JPH04337336A JP H04337336 A JPH04337336 A JP H04337336A JP 10788491 A JP10788491 A JP 10788491A JP 10788491 A JP10788491 A JP 10788491A JP H04337336 A JPH04337336 A JP H04337336A
Authority
JP
Japan
Prior art keywords
alkenylsilane
electrically conductive
copolymer
polyolefin resin
conductive carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10788491A
Other languages
Japanese (ja)
Other versions
JP3197289B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Kazuhiko Yamamoto
一彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP10788491A priority Critical patent/JP3197289B2/en
Publication of JPH04337336A publication Critical patent/JPH04337336A/en
Application granted granted Critical
Publication of JP3197289B2 publication Critical patent/JP3197289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the subject electrically conductive molding excellent in heat resistance by blending an electrically conductive carbon with a copolymer of an alkenylsilane and an olefin. CONSTITUTION:A mixture prepared by blending 5-90wt.%, preferably 10-80wt.% electrically conductive carbon (e.g. carbon black) with a copolymer of an alkenylsilane (e.g. vinylsilane or allylsilane) and an olefin (e.g. ethylene or propylene) is molded to obtain a molding containing boiling xylene insoluble matters in a larger quantity than that of the electrically conductive carbon. Radioactive rays (e.g. gamma ray or X ray) are then applied to the resultant molding.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は導電性のポリオレフィン
樹脂成形物に関する。詳しくは、架橋した導電性のポリ
オレフィン樹脂成形物およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive polyolefin resin molded articles. Specifically, the present invention relates to a crosslinked conductive polyolefin resin molded product and a method for producing the same.

【0002】0002

【従来の技術】ポリオレフィンの成形物に導電性カーボ
ンを混合することで導電性を付与することは広く行われ
ており、導電性のポリオレフィン成形物は種々の用途に
利用されており中でも発熱体としての利用が近来行われ
始めている。
[Prior Art] It is widely practiced to impart conductivity to polyolefin molded products by mixing conductive carbon into them, and conductive polyolefin molded products are used for a variety of purposes, including as heating elements. has recently begun to be used.

【0003】0003

【発明が解決しようとする課題】しかしながらポリオレ
フィンは比較的融点が低く、高温での使用には耐えない
という問題がありこれに対しては、架橋することが考え
られるが、水架橋では架橋後の成形物の導電性が劣ると
いう問題があり、また通常のポリオレフィンでは放射線
照射によって充分な架橋度を得るためには線量を増加さ
せる必要があるという問題があった。
[Problems to be Solved by the Invention] However, polyolefins have a relatively low melting point and cannot withstand use at high temperatures.To solve this problem, crosslinking is considered, but with water crosslinking, the There is a problem in that the electrical conductivity of the molded product is poor, and in the case of ordinary polyolefins, there is a problem in that it is necessary to increase the radiation dose in order to obtain a sufficient degree of crosslinking by radiation irradiation.

【0004】0004

【課題を解決するための手段】本発明者らは上記問題を
解決した耐熱性に優れた導電性のポリオレフィン樹脂成
形物について鋭意探索し本発明を完成した。
[Means for Solving the Problems] The present inventors have conducted extensive research into a conductive polyolefin resin molded product with excellent heat resistance that solves the above-mentioned problems, and have completed the present invention.

【0005】即ち本発明は、アルケニルシランとオレフ
ィンの共重合体と導電性カーボンの混合物からなる成形
物であって沸騰キシレン不溶分が導電性カーボンの含量
より多い導電性ポリオレフィン樹脂成形物であり、また
本発明はその好ましい製造方法であり、アルケニルシラ
ンとオレフィンの共重合体と導電性カーボンの混合物か
らなる成形物に放射線を照射することを特徴とする導電
性ポリオレフィン樹脂成形物の製造方法である。
That is, the present invention is a conductive polyolefin resin molded product comprising a mixture of a copolymer of alkenylsilane and olefin and conductive carbon, in which the content insoluble in boiling xylene is greater than the content of the conductive carbon, Further, the present invention is a preferred method for producing the same, which is a method for producing a conductive polyolefin resin molded product, which comprises irradiating a molded product made of a mixture of an alkenylsilane and olefin copolymer and conductive carbon with radiation. .

【0006】本発明の成形物について、その製造方法の
一例を示すことで詳しく説明する。本発明においてアル
ケニルシランとオレフィンの共重合体は通常オレフィン
とアルケニルシランを遷移金属触媒と有機金属化合物か
らなるいわゆるチーグラー・ナッタ触媒を用いて重合す
ることで製造でき例えば、米国特許第3,223,68
6号にその例が開示されている。さらにポリオレフィン
をパーオキサイドなどのラジカル重合開始剤の存在下に
アルケニルシランと加熱処理することによってグラフト
重合して得たグラフト共重合体であっても良い。
The molded product of the present invention will be explained in detail by showing an example of its manufacturing method. In the present invention, the copolymer of alkenylsilane and olefin is usually produced by polymerizing olefin and alkenylsilane using a so-called Ziegler-Natta catalyst consisting of a transition metal catalyst and an organometallic compound. 68
An example is disclosed in No. 6. Furthermore, a graft copolymer obtained by graft polymerizing a polyolefin by heat-treating it with alkenylsilane in the presence of a radical polymerization initiator such as peroxide may also be used.

【0007】アルケニルシランとしては少なくとも一つ
のSi−H結合を有するものが好ましく用いられ、例え
ば、下記一般式(化1)で表される化合物、
As the alkenylsilane, those having at least one Si-H bond are preferably used, such as compounds represented by the following general formula (Formula 1),

【0008
0008
]

【化1】H2C=CH−(CH2)n−SiHPR3−
P(式中nは0〜12、pは1〜3、Rは炭素数1 〜
12の炭化水素残基。)が例示でき、具体的にはビニル
シラン、アリルシラン、ブテニルシラン、ペンテニルシ
ラン、あるいはこれらのモノマーの一部のSi−H結合
のHがクロルで置換された化合物などが例示できる。
[Chemical formula 1] H2C=CH-(CH2)n-SiHPR3-
P (in the formula, n is 0 to 12, p is 1 to 3, R is carbon number 1 to
12 hydrocarbon residues. ), and specific examples include vinylsilane, allylsilane, butenylsilane, pentenylsilane, and compounds in which H in the Si-H bond of some of these monomers is replaced with chloro.

【0009】またオレフィンとしては下記一般式(化2
)で示される化合物、
In addition, as an olefin, the following general formula (Chemical formula 2
),

【0010】0010

【化2】H2C=CH−R (式中Rは炭素数1 〜12の炭化水素残基。) が例
示でき、具体的にはエチレン、プロピレン、ブテン−1
、ペンテン−1、ヘキセン−1、2−メチルペンテン、
ヘプテン−1、オクテン−1などのα−オレフィンの他
にスチレンまたはその誘導体も例示される。
[Chemical formula 2] H2C=CH-R (In the formula, R is a hydrocarbon residue having 1 to 12 carbon atoms.) Specific examples include ethylene, propylene, butene-1
, pentene-1, hexene-1,2-methylpentene,
In addition to α-olefins such as heptene-1 and octene-1, styrene or derivatives thereof are also exemplified.

【0011】本発明においてオレフィンとアルケニルシ
ランの共重合体は、上記米国特許に記載された、TiC
l3 とトリエチルアルミニウムからなる触媒も使用で
きるがより好ましくはその後開発された種々の高活性で
ポリオレフィンを与える触媒が利用される。
In the present invention, the copolymer of olefin and alkenylsilane is TiC, which is described in the above US patent.
A catalyst consisting of 13 and triethylaluminum can also be used, but it is more preferable to use various highly active catalysts that have been developed since then and which give polyolefins.

【0012】重合法としても不活性溶媒を使用する溶媒
法の他に塊状重合法、気相重合法も採用できる。
As the polymerization method, in addition to the solvent method using an inert solvent, bulk polymerization method and gas phase polymerization method can also be employed.

【0013】ここで遷移金属化合物と有機金属化合物か
らなる触媒としては、遷移金属化合物としてはハロゲン
化チタンが、有機金属化合物としては有機アルミニウム
化合物が好ましく用いられる。
As the catalyst comprising a transition metal compound and an organometallic compound, a titanium halide is preferably used as the transition metal compound, and an organoaluminum compound is preferably used as the organometallic compound.

【0014】例えば四塩化チタンを金属アルミニウム、
水素或いは有機アルミニウムで還元して得た三塩化チタ
ンを電子供与性化合物で変性処理したものと有機アルミ
ニウム化合物、さらに必要に応じ含酸素有機化合物など
の電子供与性化合物からなる触媒系、或いはハロゲン化
マグネシウム等の担体或いはそれらを電子供与性化合物
で処理したものにハロゲン化チタンを担持して得た遷移
金属化合物触媒と有機アルミニウム化合物、必要に応じ
含酸素有機化合物などの電子供与性化合物からなる触媒
系、あるいは塩化マグネシウムとアルコールの反応物を
炭化水素溶媒中に溶解し、ついで四塩化チタンなどの沈
澱剤で処理することで炭化水素溶媒に不溶化し、必要に
応じエステル、エーテルなどの電子供与性の化合物で処
理し、ついでハロゲン化チタンで処理する方法などによ
って得られる遷移金属化合物触媒と有機アルミニウム化
合物、必要に応じ含酸素有機化合物などの電子供与性化
合物からなる触媒系等が例示される(例えば、以下の文
献に種々の例が記載されている。Ziegler−Na
tta Catalysts and Polymer
ization by John Boor Jr(A
cademic Press),Journal of
 Macromorecular Science R
eviews in Macromolecular 
Chemistry and Physics,C24
(3) 355−385(1984) 、同C25(1
) 578−597(1985)) 。
For example, titanium tetrachloride can be replaced with metallic aluminum,
A catalyst system consisting of titanium trichloride obtained by reducing with hydrogen or organoaluminum and modified with an electron-donating compound, an organoaluminium compound, and an electron-donating compound such as an oxygen-containing organic compound as necessary, or a halogenated A catalyst consisting of a transition metal compound catalyst obtained by supporting titanium halide on a carrier such as magnesium or a carrier treated with an electron-donating compound, an organoaluminum compound, and an electron-donating compound such as an oxygen-containing organic compound if necessary. system, or a reaction product of magnesium chloride and alcohol is dissolved in a hydrocarbon solvent, and then treated with a precipitant such as titanium tetrachloride to make it insolubilized in the hydrocarbon solvent. Examples include a catalyst system consisting of a transition metal compound catalyst obtained by a method of treating with a compound of For example, various examples are described in the following documents: Ziegler-Na
tta Catalysts and Polymer
ization by John Boor Jr.
Academic Press), Journal of
Macromolecular Science R
views in Macromolecular
Chemistry and Physics,C24
(3) 355-385 (1984), C25 (1
) 578-597 (1985)).

【0015】あるいは炭化水素溶剤に可溶な遷移金属触
媒とアルミノキサンからなる触媒を用いて重合すること
もできる。
Alternatively, polymerization can be carried out using a catalyst consisting of a transition metal catalyst soluble in a hydrocarbon solvent and aluminoxane.

【0016】ここで電子供与性化合物としては通常エー
テル、エステル、オルソエステル、アルコキシ硅素化合
物などの含酸素化合物が好ましく例示でき、さらにアル
コール、アルデヒド、水なども使用可能である。
[0016] As the electron-donating compound, oxygen-containing compounds such as ether, ester, orthoester, and alkoxy silicon compound are generally preferred, and alcohol, aldehyde, water, etc. can also be used.

【0017】有機アルミニウム化合物としては、トリア
ルキルアルミニウム、ジアルキルアルミニウムハライド
、アルキルアルミニウムセスキハライド、アルキルアル
ミニウムジハライドが使用でき、アルキル基としてはメ
チル基、エチル基、プロピル基、ブチル基、ヘキシル基
などが例示され、ハライドとしては塩素、臭素、沃素が
例示される。また上記有機アルミニウムと水または結晶
水とを反応することで得られるオリゴマー〜ポリマーで
あるアルミノキサンも利用できる。
As the organoaluminum compound, trialkylaluminum, dialkylaluminum halide, alkylaluminum sesquihalide, alkylaluminum dihalide can be used, and the alkyl group includes methyl group, ethyl group, propyl group, butyl group, hexyl group, etc. Examples of halides include chlorine, bromine, and iodine. Furthermore, aluminoxane, which is an oligomer or polymer obtained by reacting the above organoaluminium with water or water of crystallization, can also be used.

【0018】ここでアルケニルシランとオレフィンの重
合割合としては特に制限は無いが、ポリオレフィンと混
合して用いる場合には、通常アルケニルシランが 0.
001〜30モル%程度、好ましくは0.1 〜10モ
ル%である。また単独で用いる場合には0.0001〜
1 モル%程度である。
There is no particular restriction on the polymerization ratio of alkenylsilane and olefin, but when used in combination with polyolefin, alkenylsilane is usually 0.0%.
The amount is about 0.001 to 30 mol%, preferably 0.1 to 10 mol%. In addition, when used alone, 0.0001~
It is about 1 mol%.

【0019】重合体の分子量としては特に制限はないが
、混合して物性の向上を計ろうとする場合にはポリオレ
フィンの分子量と同程度あるいはそれ以下とするのが好
ましい。
There is no particular restriction on the molecular weight of the polymer, but when it is intended to improve the physical properties by mixing it, it is preferable that the molecular weight is about the same as or lower than that of the polyolefin.

【0020】場合によっては、アルケニルシランを含有
する他はポリオレフィンと同様の重合(組成、分子量等
) を行って用いても良く、例えば、ブロック共重合を
行って、前段のみあるいは後段のみにアルケニルシラン
を共重合してもよい。好ましい分子量としては135 
℃のテトラリン溶液で測定した極限粘度が0.1 〜1
0程度である。
[0020] Depending on the case, it may be used by carrying out the same polymerization as polyolefins (composition, molecular weight, etc.) except that it contains alkenylsilane. For example, block copolymerization may be carried out and alkenylsilane is added only in the first stage or only in the second stage. may be copolymerized. The preferred molecular weight is 135
Intrinsic viscosity measured in tetralin solution at °C is 0.1 to 1
It is about 0.

【0021】ポリオレフィン(例えば、下記のような混
合して用いるポリオレフィンが使用できる。)にアルケ
ニルシランをグラフト重合して得たグラフト共重合体も
本発明の目的に使用可能であり、その場合、ポリオレフ
ィンにアルケニルシランをグラフトする方法としては特
に制限はなく、通常のグラフト共重合に用いる方法及び
条件が利用でき、通常は用いるポリオレフィンとアルケ
ニルシランの存在下にラジカル開始剤の分解温度以上に
加熱することで簡単にグラフト共重合することができる
[0021] A graft copolymer obtained by graft polymerizing an alkenylsilane to a polyolefin (for example, the following polyolefins can be used as a mixture) can also be used for the purpose of the present invention; in that case, the polyolefin There are no particular restrictions on the method of grafting alkenylsilane to the polymer, and the methods and conditions used for normal graft copolymerization can be used, and the method usually involves heating above the decomposition temperature of the radical initiator in the presence of the polyolefin and alkenylsilane used. can be easily graft copolymerized.

【0022】本発明において必要に応じ上記共重合体と
混合して用いるポリオレフィンとしては上記一般式(化
2)で示されるオレフィン、具体的にはエチレン、プロ
ピレン、ブテン−1、ペンテン−1、ヘキセン−1、2
−メチルペンテン、ヘプテン−1、オクテン−1などの
α−オレフィンあるいは、スチレンまたはその誘導体の
単独重合体、相互のランダム共重合体、或いは、始めに
オレフィン単独、或いは少量の他のオレフィンと共重合
し、ついで2種以上のオレフィンを共重合することによ
って製造される所謂ブロック共重合体などが例示される
[0022] In the present invention, the polyolefin used in combination with the above-mentioned copolymer as required is an olefin represented by the above general formula (Chemical formula 2), specifically ethylene, propylene, butene-1, pentene-1, hexene. -1, 2
- homopolymers of α-olefins such as methylpentene, heptene-1, octene-1, or styrene or its derivatives, random copolymers of each other, or olefins initially alone or copolymerized with small amounts of other olefins; Examples include so-called block copolymers produced by then copolymerizing two or more types of olefins.

【0023】特に単独では架橋しにくいポリプロピレン
などのポリ−α−オレフィンまたはその共重合体を用い
ると効果的である。これらのポリオレフィンの製造法に
ついては既に公知であり種々の銘柄のものが市場で入手
可能である。
It is particularly effective to use poly-α-olefins such as polypropylene or copolymers thereof, which are difficult to crosslink when used alone. Methods for producing these polyolefins are already known, and various brands are available on the market.

【0024】またアルケニルシランを用いない他は上記
オレフィンとアルケニルシランの共重合体の製造法と同
様に行うことでも製造可能である。
It can also be produced in the same manner as the above-mentioned method for producing a copolymer of olefin and alkenylsilane, except that alkenylsilane is not used.

【0025】本発明において導電性カーボンとは、混合
することで高い導電性を付与することが可能な炭素質の
物質であれば良く、天然黒鉛、人造黒鉛、カーボンブラ
ック、炭素繊維等があるが、ファーネスブラック、アセ
チレンブラックなどのカーボンブラックが好ましい。そ
の使用割合としては全成形物中5 〜90wt% 、好
ましくは10〜80wt% である。これ以下では導電
性が劣り、これ以上では物性が劣る。
[0025] In the present invention, conductive carbon may be any carbonaceous substance that can impart high conductivity when mixed with it, and includes natural graphite, artificial graphite, carbon black, carbon fiber, etc. Carbon blacks such as , furnace black, and acetylene black are preferred. Its usage rate is 5 to 90 wt%, preferably 10 to 80 wt% of the total molded product. If it is less than this, the conductivity will be poor, and if it is more than this, the physical properties will be poor.

【0026】本発明において沸騰キシレン不溶分とは、
成形物を400 メッシュの金網にいれ沸騰キシレンで
12時間抽出した時の抽出残分を示し、成形物の架橋の
程度を示す。その含量は使用した導電性のカーボンの量
より多く、成形物の30重量%以上、特に50重量%以
上であるのが好ましい。
[0026] In the present invention, the boiling xylene insoluble matter is
The extracted residue when the molded product was placed in a 400 mesh wire mesh and extracted with boiling xylene for 12 hours is shown, and the degree of crosslinking of the molded product is shown. The content thereof is preferably greater than the amount of conductive carbon used, and is preferably at least 30% by weight, particularly at least 50% by weight of the molded product.

【0027】本発明においてはさらに別の添加剤、例え
ば、安定剤、フィラーなど公知の種々の添加剤を用いる
こともできる。
In the present invention, other additives such as stabilizers, fillers, and various other known additives can also be used.

【0028】本発明においては後述の放射線を照射する
に先立ち、アルケニルシランとオレフィンの共重合体、
導電性カーボンと必要に応じポリオレフィンあるいは添
加剤などを混合し組成物とし、ついでシートあるいはフ
イルム状に成形され、次いで放射線が照射される。
In the present invention, prior to irradiation with the radiation described below, a copolymer of alkenylsilane and olefin,
The conductive carbon is mixed with polyolefin or additives as necessary to form a composition, which is then formed into a sheet or film, and then irradiated with radiation.

【0029】本発明において、放射線としてはγ線、電
子線、X線、加速イオンなどが例示できるが、特に透過
性の大きいγ線、X線が好ましく利用でき、電子線を用
いる場合には成形物を薄くして照射することが好ましい
。照射の際の線量としては0.1 〜50Mrad、通
常1 〜10Mrad程度で充分である。
In the present invention, examples of radiation include gamma rays, electron beams, X-rays, accelerated ions, etc., but gamma rays and It is preferable to thin the object and irradiate it. A dose of 0.1 to 50 Mrad, usually about 1 to 10 Mrad, is sufficient for irradiation.

【0030】成形物中のアルケニルシラン含量としては
共重合体中のアルケニルシラン含量にもよるが、通常成
形物中の共重合体の割合は0.1wt%以上であり、成
形物中のアルケニルシランが0.0001wt%以上存
在するようにするのが好ましい。また成形性、あるいは
高価なアルケニルシランの使用量を削減するという点か
らは、5.0wt%以下で充分であり、好ましくは成形
物中のアルケニルシランとしては0.1 〜2.0wt
%程度である。
The alkenylsilane content in the molded article depends on the alkenylsilane content in the copolymer, but usually the proportion of the copolymer in the molded article is 0.1 wt% or more, and the alkenylsilane content in the molded article is is preferably present in an amount of 0.0001 wt% or more. In addition, from the viewpoint of moldability or reducing the amount of expensive alkenylsilane used, 5.0 wt% or less is sufficient, and preferably 0.1 to 2.0 wt% as alkenylsilane in the molded product.
It is about %.

【0031】[0031]

【実施例】以下に実施例を示しさらに本発明を説明する
[Examples] The present invention will be further explained by showing examples below.

【0032】実施例1 直径12mmの鋼球9kgの入った内容積4リットルの
粉砕用ポットを4個装備した振動ミルを用意する。各ポ
ットに窒素雰囲気下で塩化マグネシウム 300g、テ
トラエトキシシラン60mlおよびα, α, α−ト
リクロロトルエン45mlを入れ、40時間粉砕した。 こうして得た共粉砕物 300gを5リットルのフラス
コに入れ、四塩化チタン 1.5リットルおよびトルエ
ン 1.5リットルを加え、 100℃で30分間撹拌
処理し、次いで上澄液を除いた。再び四塩化チタン1.
5リットルおよびトルエン1.5 リットルを加え、1
00 ℃で30分間撹拌処理し、次いで上澄液を除いた
。その後固形分をn−ヘキサンで繰り返し洗浄して遷移
金属触媒スラリーを得た。一部をサンプリングしてチタ
ン分を分析したところチタン分は 1.9wt%であっ
た。
Example 1 A vibratory mill equipped with four grinding pots each having an internal volume of 4 liters each containing 9 kg of steel balls each having a diameter of 12 mm was prepared. 300 g of magnesium chloride, 60 ml of tetraethoxysilane and 45 ml of α, α, α-trichlorotoluene were placed in each pot under a nitrogen atmosphere, and the mixture was ground for 40 hours. 300 g of the thus obtained co-pulverized product was placed in a 5 liter flask, 1.5 liters of titanium tetrachloride and 1.5 liters of toluene were added, stirred at 100° C. for 30 minutes, and then the supernatant liquid was removed. Titanium tetrachloride again 1.
Add 5 liters and 1.5 liters of toluene,
The mixture was stirred at 00°C for 30 minutes, and then the supernatant was removed. Thereafter, the solid content was repeatedly washed with n-hexane to obtain a transition metal catalyst slurry. When we sampled a portion and analyzed the titanium content, the titanium content was 1.9 wt%.

【0033】内容積 5リットルのオートクレーブに窒
素雰囲気下トルエン40ml、上記遷移金属触媒100
 mg、ジエチルアルミニウムクロライド 0.128
ml、p−トルイル酸メチル0.06mlおよびトリエ
チルアルミニウム0.20mlを入れ、プロピレン1.
5 kg、ビニルシラン40gを加え、水素1Nリット
ル圧入した後、75℃で2時間重合した。重合後未反応
のプロピレンをパージし、パウダーを取り出し、濾過乾
燥して180 gのパウダーを得た。
In an autoclave with an internal volume of 5 liters, 40 ml of toluene and 100 ml of the above transition metal catalyst were placed in a nitrogen atmosphere.
mg, diethylaluminum chloride 0.128
ml, 0.06 ml of methyl p-toluate and 0.20 ml of triethylaluminum, and 1.0 ml of propylene.
After adding 5 kg of vinylsilane and 40 g of vinylsilane and pressurizing 1N liter of hydrogen, polymerization was carried out at 75°C for 2 hours. After polymerization, unreacted propylene was purged, and the powder was taken out and filtered and dried to obtain 180 g of powder.

【0034】135 ℃のテトラリン溶液で測定した極
限粘度 (以下ηと略記する) 、示差熱分析装置を用
い10℃/min で昇温或いは降温することで融点及
び結晶化温度を最大ピーク温度として測定したところ、
得られたパウダーは、ηが1.72であり、融点153
 ℃、結晶化温度 118℃である結晶性のプロピレン
共重合体であった。尚、元素分析によればビニルシラン
単位を 1.2wt%含有していた。
[0034] Intrinsic viscosity (hereinafter abbreviated as η) measured with a tetralin solution at 135 °C, melting point and crystallization temperature measured as maximum peak temperature by increasing or decreasing temperature at 10 °C/min using a differential thermal analyzer. Then,
The obtained powder has an η of 1.72 and a melting point of 153
It was a crystalline propylene copolymer with a crystallization temperature of 118°C. According to elemental analysis, it contained 1.2 wt% of vinylsilane units.

【0035】得られた共重合体400gに、ケッチェン
ブラックインターナショナル(株)製ファーネスブラッ
ク( 商品名ケッチェンブラックEC)100gを加え
、2,6−ジ−t−ブチル−4−メチルフェノール1.
0gを加え良く混合したものを20mmの押出機で25
0 ℃で造粒した。次いで厚さ1mm のシートに射出
成形した。
To 400 g of the obtained copolymer, 100 g of Furnace Black (trade name: Ketjen Black EC) manufactured by Ketjen Black International Co., Ltd. was added, and 2,6-di-t-butyl-4-methylphenol 1.
Add 0g and mix well, then use a 20mm extruder to
Granulation was carried out at 0°C. It was then injection molded into a 1 mm thick sheet.

【0036】このシートに室温で750keVの電子線
を3 Mrad照射し、沸騰キシレンで12時間抽出し
たところ不溶分は85.1wt%であり200 ℃で変
形しなかった。これに対し電子線を照射する前のシート
は変形した。比抵抗は照射前の2.9×104Ω・cm
に対し、照射後2.5×104Ω・cmと殆ど変化はな
かった。
When this sheet was irradiated with a 750 keV electron beam at 3 Mrad at room temperature and extracted with boiling xylene for 12 hours, the insoluble content was 85.1 wt% and did not deform at 200°C. In contrast, the sheet before being irradiated with the electron beam was deformed. Specific resistance is 2.9×104Ω・cm before irradiation
On the other hand, there was almost no change to 2.5×10 4 Ω·cm after irradiation.

【0037】[0037]

【発明の効果】本発明の成形物は耐熱性に優れた導電性
成形物として利用可能であり工業的に極めて価値がある
[Effects of the Invention] The molded product of the present invention can be used as a conductive molded product with excellent heat resistance and is extremely valuable industrially.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  アルケニルシランとオレフィンの共重
合体と導電性カーボンの混合物からなる成形物であって
沸騰キシレン不溶分が導電性カーボンの含量より多い導
電性ポリオレフィン樹脂成形物。
1. A conductive polyolefin resin molded product comprising a mixture of an alkenylsilane and olefin copolymer and conductive carbon, the molded product having a boiling xylene insoluble content greater than the content of the conductive carbon.
【請求項2】  アルケニルシランとオレフィンの共重
合体と導電性カーボンの混合物からなる成形物に放射線
を照射することを特徴とする導電性ポリオレフィン樹脂
成形物の製造方法。
2. A method for producing a conductive polyolefin resin molded article, which comprises irradiating a molded article made of a mixture of an alkenylsilane and olefin copolymer and conductive carbon with radiation.
JP10788491A 1991-05-14 1991-05-14 Conductive polyolefin resin molded article and method for producing the same Expired - Fee Related JP3197289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10788491A JP3197289B2 (en) 1991-05-14 1991-05-14 Conductive polyolefin resin molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10788491A JP3197289B2 (en) 1991-05-14 1991-05-14 Conductive polyolefin resin molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04337336A true JPH04337336A (en) 1992-11-25
JP3197289B2 JP3197289B2 (en) 2001-08-13

Family

ID=14470523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10788491A Expired - Fee Related JP3197289B2 (en) 1991-05-14 1991-05-14 Conductive polyolefin resin molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP3197289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858081A3 (en) * 1997-02-07 1999-02-03 Mitsubishi Chemical Corporation Semiconductive resin composition and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858081A3 (en) * 1997-02-07 1999-02-03 Mitsubishi Chemical Corporation Semiconductive resin composition and process for producing the same

Also Published As

Publication number Publication date
JP3197289B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JP2880725B2 (en) Method for producing crosslinked polyolefin
JP2988942B2 (en) Method for producing crosslinked polyolefin
CA1337084C (en) Polyolefin resin compositions and applications thereof
JPH04337336A (en) Electrically conductive polyolefin resin molding and production thereof
JP3137701B2 (en) Method for producing crosslinked polyolefin molded article
JP3281132B2 (en) Method for producing crosslinked polyolefin
JP3171650B2 (en) Method for producing crosslinked polyolefin molded article
JP3142963B2 (en) Method for producing crosslinked polyolefin
JP3181704B2 (en) Method for producing cross-linked molded article of polyolefin
JP2809703B2 (en) Polyolefin resin composition
JP2775704B2 (en) Method for producing expanded polyolefin
JP3176141B2 (en) Method for producing crosslinked polyolefin
JP3034058B2 (en) Method for producing crosslinked polyolefin molded article
JP3193765B2 (en) Method for producing crosslinked polyolefin molded article
JP2981273B2 (en) Method for producing crosslinked polyolefin
JP3176140B2 (en) Method for producing crosslinked polyolefin
JPH04239527A (en) Production of molded product of cross-linked polyolefin
JPH0774295B2 (en) Method for producing polypropylene resin composition
JP3171653B2 (en) Method for producing crosslinked polyolefin molded article
JP3265089B2 (en) Method for producing crosslinked polyolefin
JP3171649B2 (en) Method for producing crosslinked polyolefin molded article
JP3142929B2 (en) Method for producing cross-linked molded product
JP2988672B2 (en) Spherical crosslinked polyolefin and method for producing the same
JP3171655B2 (en) Method for producing crosslinked polyolefin molded article
JP3174407B2 (en) Method for producing crosslinked polyolefin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees