JPH04337251A - Exhaust heat recovering device for fuel cell power generating facility - Google Patents
Exhaust heat recovering device for fuel cell power generating facilityInfo
- Publication number
- JPH04337251A JPH04337251A JP3110310A JP11031091A JPH04337251A JP H04337251 A JPH04337251 A JP H04337251A JP 3110310 A JP3110310 A JP 3110310A JP 11031091 A JP11031091 A JP 11031091A JP H04337251 A JPH04337251 A JP H04337251A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- fuel cell
- cold
- cell power
- cooling tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は燃料電池発電設備の排熱
回収装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery device for fuel cell power generation equipment.
【0002】0002
【従来の技術】従来の燃料電池発電設備の排熱回収装置
としては、図3に示すような構成のものがある。図3に
おいて、1は水素を含有する燃料ガスをアノード極へ、
空気をカソード極へ導入して発電を行う燃料電池発電プ
ラント、2はこの燃料電池発電プラント内で回収した高
温排熱蒸気3を三方弁を有する流量調節バルブ4を介し
て供給され、その熱エネルギを冷熱に変換する吸収式冷
凍機、5はこの吸収式冷凍機2で変換された冷熱6が供
給される冷熱負荷である。また、7は吸収式冷凍機2に
より熱エネルギを冷熱に変換する際に生じる排熱を吸収
し、これを大気へ放散する冷却塔、8は吸収式冷凍機2
による冷熱の供給量の低減時に燃料電池発電プラント1
より流出する高温排熱蒸気3の一部を流量調節バルブ4
を介して導入し、その熱エネルギを大気へ放散させる別
設の冷却塔である。2. Description of the Related Art A conventional exhaust heat recovery device for fuel cell power generation equipment has a configuration as shown in FIG. In FIG. 3, 1 is a fuel gas containing hydrogen to an anode electrode;
A fuel cell power generation plant 2 generates electricity by introducing air into the cathode electrode, and the high temperature exhaust heat steam 3 recovered in this fuel cell power generation plant is supplied via a flow control valve 4 having a three-way valve, and the thermal energy is 5 is a cold load to which the cold heat 6 converted by the absorption refrigerator 2 is supplied. In addition, 7 is a cooling tower that absorbs waste heat generated when thermal energy is converted into cold heat by the absorption chiller 2 and radiates it to the atmosphere; 8 is the absorption chiller 2;
Fuel cell power generation plant 1 when the supply of cold heat is reduced due to
A part of the high-temperature exhaust heat steam 3 flowing out is transferred to the flow rate control valve 4.
This is a separate cooling tower that dissipates the heat energy into the atmosphere.
【0003】このような構成の燃料電池発電設備の排熱
回収装置において、冷熱利用時には吸収式冷凍機2を運
転して燃料電池発電プラント1内で回収した高温排熱蒸
気3の熱エネルギが冷熱6に変換され、冷熱負荷5に供
給される。この場合、吸収式冷凍機2で熱エネルギを冷
熱に変換する際に生にじる排熱は、冷却塔7より大気へ
放散される。[0003] In the exhaust heat recovery device of the fuel cell power generation equipment having such a configuration, when using cold energy, the absorption chiller 2 is operated to convert the thermal energy of the high temperature exhaust heat steam 3 recovered in the fuel cell power generation plant 1 into cold energy. 6 and is supplied to the cooling load 5. In this case, the waste heat generated when the absorption chiller 2 converts thermal energy into cold energy is dissipated into the atmosphere from the cooling tower 7.
【0004】また、冷熱負荷5が低減したときは、燃料
電池発電プラント1の熱収支のバランスをとる目的で、
定格冷熱需要時の回収排熱分と実際の利用分との差に相
当する分の高温排熱蒸気3が流量調節バルブ4を介して
別設の冷却塔8に導入され、その熱エネルギが大気へ放
散される。[0004] Furthermore, when the cold load 5 is reduced, for the purpose of balancing the heat balance of the fuel cell power generation plant 1,
High-temperature waste heat steam 3 corresponding to the difference between the recovered waste heat and the actual usage at the time of rated cold demand is introduced into a separate cooling tower 8 via a flow rate control valve 4, and its thermal energy is transferred to the atmosphere. is dissipated to.
【0005】ここで、燃料電池発電プラント1から回収
される排熱量をQとし、吸収式冷凍機2の成績係数(C
OP)を1.2 とした場合には、別設の冷却塔8はQ
の容量を有する機器が必要であった。また、吸収式冷凍
機2としては燃料電池発電プラント1から回収されたQ
の熱エネルギを冷熱6に変換するためには、(1+CO
P)×Q=2.2Qの容量を有する冷却塔が必要である
。[0005] Here, the amount of exhaust heat recovered from the fuel cell power generation plant 1 is Q, and the coefficient of performance (C
OP) is set to 1.2, the separate cooling tower 8 is Q
equipment with a capacity of In addition, as the absorption chiller 2, Q
In order to convert the thermal energy of 6 to cold energy, (1+CO
A cooling tower with a capacity of P)×Q=2.2Q is required.
【0006】したがって、冷熱利用時には容量Qの別設
の冷却塔8を停止した状態で吸収式冷凍機2に有する容
量2.2 Qの冷却塔7を運転し、冷熱の需要が低減し
た場合には吸収式冷凍機2に有する容量2.2 Qの冷
却塔7を部分運転とした状態で、容量Qの別設の冷却塔
8を運転することになる。Therefore, when using cold energy, if the cooling tower 7 with a capacity of 2.2 Q in the absorption chiller 2 is operated while the separate cooling tower 8 with a capacity of Q is stopped, and the demand for cold energy is reduced. In this case, the cooling tower 7 with a capacity of 2.2 Q in the absorption chiller 2 is in partial operation, and the separate cooling tower 8 with a capacity of Q is operated.
【0007】[0007]
【発明が解決しようとする課題】このように従来の燃料
電池発電プラントの排熱回収装置においては、上述のよ
うに吸収式冷凍機に有する冷却塔とは別に、冷熱の需要
が低減したときの燃料電池発電設備本体の熱収支のバラ
ンスをとる目的で、冷熱相当分の熱エネルギを大気に放
出させる冷却塔を単体で設置し、使用していた。[Problems to be Solved by the Invention] In this way, in the conventional exhaust heat recovery device of a fuel cell power generation plant, in addition to the cooling tower included in the absorption chiller, as mentioned above, the In order to balance the heat balance of the fuel cell power generation equipment itself, a cooling tower was installed and used to release heat energy equivalent to cold heat into the atmosphere.
【0008】このため、大気を低温側流体として用いる
冷却塔は機器として大型化する傾向があり、この冷却塔
の設置によりプラントの占有面積が増加するという問題
があった。[0008] For this reason, cooling towers that use the atmosphere as a low-temperature side fluid tend to be larger in size as equipment, and the installation of such cooling towers poses a problem in that the area occupied by the plant increases.
【0009】本発明は、吸収式冷凍機側の冷却塔とは別
個に冷却塔を設けなくても、冷熱が低減したときの燃料
電池発電設備本体の熱収支のバランスをとることを可能
にすることにより、プラントの設置面積の縮小化を図る
ことができる燃料電池発電設備の排熱回収装置を提供す
ることを目的とする。[0009] The present invention makes it possible to balance the heat balance of the fuel cell power generation equipment main body when cold heat is reduced without providing a cooling tower separate from the cooling tower on the absorption chiller side. An object of the present invention is to provide an exhaust heat recovery device for a fuel cell power generation facility that can reduce the installation area of a plant.
【0010】0010
【課題を解決するための手段】本発明は上記の目的を達
成するため、水素を含有する燃料ガスをアノード極へ、
空気をカソード極へ導入して発電を行う燃料電池発電プ
ラント内の作動流体から得られた熱エネルギを吸収式冷
凍機により冷熱に変換して冷熱負荷に供給可能な燃料電
池発電設備の排熱回収装置において、冷熱利用時に前記
吸収式冷凍機で吸収した排熱を外部に放散させる冷却機
器と、この冷却機器の熱媒体流路に設けられ前記冷熱負
荷の低減時に前記プラント内作動流体に有する冷熱相当
分の熱エネルギの余剰分を前記冷却機器の熱媒体に与え
て外部へ放出させる熱交換器とを備えたものである。[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention supplies a hydrogen-containing fuel gas to an anode electrode.
Exhaust heat recovery for fuel cell power generation equipment that generates power by introducing air to the cathode electrode. Heat energy obtained from the working fluid in the fuel cell power generation plant is converted into cold energy by an absorption chiller and can be supplied to the cold load. The apparatus includes a cooling device that dissipates the exhaust heat absorbed by the absorption chiller to the outside when using cold energy, and a cooling device that is installed in a heat medium flow path of the cooling device to dissipate the cold energy that is contained in the working fluid in the plant when the cold load is reduced. and a heat exchanger that provides a considerable amount of surplus thermal energy to the heat medium of the cooling device and releases it to the outside.
【0011】[0011]
【作用】このような構成の燃料電池発電設備の排熱回収
装置にあっては、冷熱負荷の低減時にプラント内作動流
体に有する冷熱相当分の熱エネルギの余剰分を熱交換器
により冷却機器の熱媒体に与えて外部へ放出させること
により、燃料電池発電設備本体の熱収支のバランスをと
ることが可能となる。[Function] In the exhaust heat recovery device for fuel cell power generation equipment with such a configuration, when the cold load is reduced, the excess heat energy corresponding to the cold heat in the working fluid in the plant is transferred to the cooling equipment by the heat exchanger. By applying the heat to the heat medium and discharging it to the outside, it becomes possible to balance the heat balance of the fuel cell power generation equipment main body.
【0012】0012
【実施例】以下本発明の一実施例を図面を参照して説明
する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0013】図1は本発明による燃料電池発電設備の排
熱回収装置の構成例を示すもので、図3と同一部分には
同一符号を付してその説明を省略し、ここでは異なる点
についてのみ述べる。FIG. 1 shows an example of the configuration of an exhaust heat recovery device for a fuel cell power generation facility according to the present invention. The same parts as in FIG. I will only describe it.
【0014】本実施例では、図1に示すように冷却塔7
の熱媒体10と熱交換可能に熱交換器9を設け、この熱
交換器9に燃料電池発電プラント1から吸収式冷凍機2
に流入する高温排熱蒸気3の一部を流量調節バルブ4を
介して供給し、これを吸収式冷凍機2からの戻り温水1
1に混合して燃料電池発電プラント1へ戻すようにした
ものである。また、熱交換器9からの戻り温水12と吸
収式冷凍機2からの戻り温水11の混合温水13の温度
を温度測定器14により測定し、この測定値を制御器1
5に与えて流量調節バルブ4の三方弁の開度を制御可能
にしている。In this embodiment, as shown in FIG.
A heat exchanger 9 is provided so as to be able to exchange heat with the heat medium 10 of
A part of the high-temperature exhaust heat steam 3 flowing into
1 and returned to the fuel cell power generation plant 1. Further, the temperature of the mixed hot water 13 of the return hot water 12 from the heat exchanger 9 and the return hot water 11 from the absorption chiller 2 is measured by the temperature measuring device 14, and this measured value is sent to the controller 1.
5, the opening degree of the three-way valve of the flow rate regulating valve 4 can be controlled.
【0015】ここで、吸収式冷凍機2は図2に示すよう
な構成となっている。図2に示すように、燃料電池発電
プラント1から高温排熱蒸気3が流入する再生器16と
、冷却塔7の熱媒体10が流出入する凝縮器17および
吸収器18と、冷熱6として熱交換する蒸発器19とか
ら構成されている。[0015] Here, the absorption refrigerator 2 has a configuration as shown in FIG. As shown in FIG. 2, a regenerator 16 into which high-temperature waste heat steam 3 flows from the fuel cell power generation plant 1, a condenser 17 and an absorber 18 into which the heat medium 10 of the cooling tower 7 flows, and evaporator 19 to be replaced.
【0016】次に上記のように構成された燃料電池発電
設備の排熱回収装置の作用について述べる。冷熱利用時
には、燃料電池発電プラント1から取出された高温排熱
蒸気3の熱エネルギは、吸収式冷凍機2において冷熱6
に変換され、冷熱負荷5に供給される。この場合、高温
排熱蒸気4はその熱エネルギを吸収式冷凍機2を介して
冷熱6に変換された後、戻り温水11として燃料電池発
電プラント1へ戻される。Next, the operation of the exhaust heat recovery device for the fuel cell power generation equipment constructed as described above will be described. When using cold energy, the thermal energy of the high-temperature waste heat steam 3 extracted from the fuel cell power generation plant 1 is converted into cold energy 6 in the absorption chiller 2.
and is supplied to the cooling load 5. In this case, the heat energy of the high-temperature waste heat steam 4 is converted into cold heat 6 via the absorption chiller 2, and then returned to the fuel cell power generation plant 1 as return hot water 11.
【0017】このような状態にあるとき冷熱6の需要が
低減すると、高温排熱蒸気3の一部が流量調節バルブ4
によって流路が変更され、熱交換器9へ流入する。この
熱交換器9に流入した高温排熱蒸気3は、冷却塔7を用
いて冷却された熱媒体10に熱を奪われ、燃料電池発電
プラント1へ戻される。When the demand for cold heat 6 decreases in such a state, a portion of the high temperature waste heat steam 3 flows through the flow rate control valve 4.
The flow path is changed by , and it flows into the heat exchanger 9 . The high-temperature waste heat steam 3 that has flowed into the heat exchanger 9 has its heat removed by the heat medium 10 cooled using the cooling tower 7 and is returned to the fuel cell power generation plant 1 .
【0018】このとき、熱交換器9からの戻り温水12
と吸収式冷凍機2からの戻り温水11との混合温水13
の温度は熱電対等の温度測定器14により測定され、そ
の測定信号が制御器15に入力される。この制御器15
では、温度測定器14からの測定信号に基づいて流量調
節バルブ4の三方弁開度を求め、流量調節バルブ4を制
御する。これにより、熱交換器9へ流入する高温排熱蒸
気3と吸収式冷凍機2に流入する流量分配が変化し、熱
交換器9を介しての高温排熱蒸気3の放散が制御される
。ここで、冷却塔7および熱交換器9による大気への熱
エネルギを放散させるに必要な容量について検討する。At this time, the return hot water 12 from the heat exchanger 9
Mixed hot water 13 with return hot water 11 from the absorption chiller 2
The temperature is measured by a temperature measuring device 14 such as a thermocouple, and the measurement signal is input to the controller 15. This controller 15
Now, the three-way valve opening degree of the flow control valve 4 is determined based on the measurement signal from the temperature measuring device 14, and the flow control valve 4 is controlled. As a result, the flow rate distribution between the high-temperature waste heat steam 3 flowing into the heat exchanger 9 and the flow rate flowing into the absorption refrigerator 2 changes, and the dissipation of the high-temperature waste heat steam 3 through the heat exchanger 9 is controlled. Here, the capacity required for the cooling tower 7 and the heat exchanger 9 to dissipate thermal energy to the atmosphere will be considered.
【0019】冷熱利用時の排熱回収に必要な容量は、吸
収式冷凍機2の成績係数(COP)を1.2 と仮定す
ると、吸収式冷凍機2の内部において、再生器16の高
温排熱より吸収式冷凍機2の内部作動流体が受取る熱エ
ネルギをQとした場合、蒸発器19より外部に取出され
る冷熱4はQ×COP =1.2 Qとなる。よって、
凝縮器17における交換熱量はQ+1.2 Q=2.2
Qとなり、冷却塔7の容量も同じく2.2 Q必要と
なる。Assuming that the coefficient of performance (COP) of the absorption chiller 2 is 1.2, the capacity required for exhaust heat recovery when using cold energy is determined by If the thermal energy received by the internal working fluid of the absorption refrigerator 2 from heat is Q, then the cold heat 4 taken out from the evaporator 19 is Q×COP=1.2Q. Therefore,
The amount of heat exchanged in the condenser 17 is Q+1.2 Q=2.2
Therefore, the capacity of the cooling tower 7 is also required to be 2.2 Q.
【0020】冷熱の需要が低減し、0となった場合には
燃料電池発電プラント1の熱収支のバランスをとる目的
で、再生器16により奪われていた高温排熱4の熱エネ
ルギを熱交換器9にて消費する必要があるが、この場合
吸収式冷凍機2は作用していないため、冷媒10は吸収
式冷凍機2の凝縮器17、吸収器18を通過するだけで
熱の交換はしないことから、熱交換器9、冷却塔7とも
その容量はQ有れば良いことになる。When the demand for cold energy decreases to zero, the thermal energy of the high-temperature waste heat 4 that was taken away by the regenerator 16 is exchanged for the purpose of balancing the heat balance of the fuel cell power generation plant 1. However, in this case, since the absorption chiller 2 is not working, the refrigerant 10 only passes through the condenser 17 and absorber 18 of the absorption chiller 2, and no heat exchange occurs. Therefore, it is sufficient that both the heat exchanger 9 and the cooling tower 7 have a capacity of Q.
【0021】したがって、冷熱利用時に吸収式冷凍機が
運転上必要とする2.2 Qの容量を有する冷却塔7の
他に、冷却塔7を循環する冷媒10の流路中に伝熱容量
Qの熱交換器9を設置することで、冷熱の利用状態の如
何によらずに燃料電池発電プラント1の熱収支バランス
の維持が可能となり、プラントの定常運転の継続が可能
となる。Therefore, in addition to the cooling tower 7 having a capacity of 2.2 Q which is required for operation of the absorption chiller when utilizing cold energy, there is a heat transfer capacity Q in the flow path of the refrigerant 10 circulating through the cooling tower 7. By installing the heat exchanger 9, it is possible to maintain the heat balance of the fuel cell power generation plant 1 regardless of the state of use of cold energy, and the steady operation of the plant can be continued.
【0022】[0022]
【発明の効果】以上述べたように本発明によれば、吸収
式冷凍機側の冷却塔とは別個に冷却塔を設けなくても、
冷熱が低減したときの燃料電池発電設備本体の熱収支の
バランスをとって定常的な運転を可能にしたので、プラ
ントの設置面積の縮小化を図ることができる燃料電池発
電設備の排熱回収装置を提供できる。[Effects of the Invention] As described above, according to the present invention, there is no need to provide a cooling tower separate from the cooling tower on the absorption chiller side.
An exhaust heat recovery device for fuel cell power generation equipment that enables steady operation by balancing the heat balance of the fuel cell power generation equipment itself when cold heat decreases, thereby reducing the installation area of the plant. can be provided.
【図1】本発明による燃料電池発電設備の排熱回収装置
の一実施例を示す系統構成図。FIG. 1 is a system configuration diagram showing an embodiment of an exhaust heat recovery device for a fuel cell power generation facility according to the present invention.
【図2】同実施例における吸収式冷凍機の内部構成図。FIG. 2 is an internal configuration diagram of an absorption refrigerator in the same embodiment.
【図3】従来の燃料電池発電設備の排熱回収装置を示す
系統構成図。FIG. 3 is a system configuration diagram showing an exhaust heat recovery device of a conventional fuel cell power generation facility.
1……燃料電池発電プラント、2……吸収式冷凍機、3
……高温排熱蒸気、4……流量調節バルブ、5……冷熱
負荷、7……冷却塔、9……熱交換器、14……温度測
定器、15……制御器。1...Fuel cell power generation plant, 2...Absorption chiller, 3
. . . High temperature exhaust heat steam, 4 . . . Flow rate control valve, 5 . . . Cold load, 7 .
Claims (1)
へ、空気をカソード極へ導入して発電を行う燃料電池発
電プラント内の作動流体から得られた熱エネルギを吸収
式冷凍機により冷熱に変換して冷熱負荷に供給可能な燃
料電池発電設備の排熱回収装置において、冷熱利用時に
前記吸収式冷凍機で吸収した排熱を外部に放散させる冷
却機器と、この冷却機器の熱媒体流路に設けられ前記冷
熱負荷の低減時に前記プラント内作動流体の有する冷熱
相当分の熱エネルギの余剰分を前記冷却機器の熱媒体に
与えて外部へ放出させる熱交換器とを備えたことを特徴
とする燃料電池発電設備の排熱回収装置。Claim 1: Thermal energy obtained from the working fluid in a fuel cell power generation plant that generates electricity by introducing hydrogen-containing fuel gas to the anode electrode and air to the cathode electrode is converted into cold energy by an absorption refrigerator. A waste heat recovery device for a fuel cell power generation facility that can supply cold energy to a cold load includes a cooling device that dissipates the waste heat absorbed by the absorption chiller to the outside when cold energy is used, and a heat medium flow path of this cooling device. and a heat exchanger that is provided and supplies a surplus of thermal energy corresponding to the cold heat of the working fluid in the plant to the heat medium of the cooling equipment and releases it to the outside when the cold load is reduced. Exhaust heat recovery device for fuel cell power generation equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3110310A JPH04337251A (en) | 1991-05-15 | 1991-05-15 | Exhaust heat recovering device for fuel cell power generating facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3110310A JPH04337251A (en) | 1991-05-15 | 1991-05-15 | Exhaust heat recovering device for fuel cell power generating facility |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04337251A true JPH04337251A (en) | 1992-11-25 |
Family
ID=14532470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3110310A Pending JPH04337251A (en) | 1991-05-15 | 1991-05-15 | Exhaust heat recovering device for fuel cell power generating facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04337251A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6588522B2 (en) * | 2001-08-07 | 2003-07-08 | Ballard Power System Ag | Vehicle with a fuel cell system and method for operating the same |
-
1991
- 1991-05-15 JP JP3110310A patent/JPH04337251A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6588522B2 (en) * | 2001-08-07 | 2003-07-08 | Ballard Power System Ag | Vehicle with a fuel cell system and method for operating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101719385B (en) | Superconductive heat tube type nuclear power heat-clod cogeneration system | |
US6663993B2 (en) | Cooling device for a fuel cell | |
CN108882654B (en) | Phase change cooling system, cooling system and converter cabinet cooling system | |
CN112339614A (en) | Collaborative management method suitable for fuel cell automobile thermal system | |
CN113611895A (en) | Fuel cell cooling system and method based on cooling coupling heat control | |
JP3215489B2 (en) | Fuel cell waste heat utilization system and control method thereof | |
JPH04337251A (en) | Exhaust heat recovering device for fuel cell power generating facility | |
JP2019507941A (en) | Fuel cell power plant cooling network integrated thermal fluid engine | |
US20120122002A1 (en) | Phosphoric acid fuel cell with integrated absorption cycle refrigeration system | |
JPS6154842A (en) | Cooler of rotary electric machine | |
CN210090650U (en) | A test machine for testing battery package | |
JPH0417268A (en) | Co-generation system | |
JPS6139369A (en) | Fuel cell power generation plant | |
JPS5815705B2 (en) | Heat recovery method in power generation equipment | |
JPH04155770A (en) | Fuel cell cooling system and control thereof | |
JPH0529013A (en) | Fuel cell power generation system | |
JP3426620B2 (en) | Fuel cell waste heat utilization system | |
JPH11337214A (en) | Absorption cold/hot water device and operation thereof | |
CN221233416U (en) | Comprehensive thermal management system of unmanned charging vehicle under different environmental temperatures | |
JPH0541231A (en) | Fuel cell | |
JPH06176777A (en) | Fuel cell power generation system | |
JPH0443567A (en) | Waste heat recovery device for fuel cell power generating plant | |
CN220367944U (en) | Heat utilization system based on fuel cell power generation system | |
JPH0989407A (en) | Absorption refrigerator | |
JP3384005B2 (en) | Fuel cell absorption refrigerator connection system |