[go: up one dir, main page]

JPH04336718A - Submarine branching device - Google Patents

Submarine branching device

Info

Publication number
JPH04336718A
JPH04336718A JP3107355A JP10735591A JPH04336718A JP H04336718 A JPH04336718 A JP H04336718A JP 3107355 A JP3107355 A JP 3107355A JP 10735591 A JP10735591 A JP 10735591A JP H04336718 A JPH04336718 A JP H04336718A
Authority
JP
Japan
Prior art keywords
station
branch
underwater
terminal station
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3107355A
Other languages
Japanese (ja)
Inventor
Yoshiichi Kogure
小榑 芳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3107355A priority Critical patent/JPH04336718A/en
Publication of JPH04336718A publication Critical patent/JPH04336718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To attain power feeding between two normal remaining branches even when a fault takes place on any branch in a submarine branching device where three terminal stations are connected in a star form. CONSTITUTION:In an optical communication system where a submarine branching point, 1st land station 11-3rd land station 13 on land are connected in a star form via a submarine cable including a feeder and an optical fiber, branches of the 1st station 11 and the 2nd station 12 have a relay point and the branch of the 3rd station 13 has no relay point, the submarine branching device 40 is provided with a relay contact section 42 provided in the branch of the 2nd station 12 and connecting selectively the 2nd station 12 to a branching point 41 or one of a submarine earth electrode 38 and with a driving section 43 provided in the branch of the 3rd station 13 and driving the contact section 42 so as to connect the 2nd station 12 to the submarine earth electrode 38 when a current flows between the 1st station 11 and the 3rd station 13 and connect in other cases the 2nd station 12 to the branching point 41.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、海底ケーブル中継方式
の光通信システムにおける海中分岐装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater branching device in an optical communication system using a submarine cable relay system.

【0002】0002

【従来の技術】海底ケーブル中継方式の光通信システム
では、海底に敷設された海底ケーブル内の通信用光ファ
イバによって陸上の端局間を接続するが、3つ以上の端
局を海中分岐装置によって星形状に結び、この海中分岐
装置において光ファイバを分岐して、1つの端局が2以
上の端局と通信可能としたり、通信可能な端局を切り換
えられるようにしたシステムもある。
[Prior Art] In an optical communication system using a submarine cable relay method, terminal stations on land are connected by communication optical fibers in a submarine cable laid on the ocean floor. Three or more terminal stations are connected by an underwater branching device. There is also a system in which the optical fibers are connected in a star shape and the optical fibers are branched at this underwater branching device so that one terminal station can communicate with two or more terminal stations, or the terminal stations that can communicate with each other can be switched.

【0003】ところで、海底ケーブル中継方式の光通信
システムでは、端局間の距離が長くなれば海底中継器が
必要になる。この海底中継器には、通信用光ファイバと
共に海底ケーブル内に設けられた給電線を介して陸上の
端局の給電装置から直流電力、通常は直流定電流を給電
するようになっている。1本の給電線上の複数の海底中
継器に対しては、給電線の両端に極性の異なる給電装置
を接続して給電する両端給電、給電線の一端にのみ給電
装置を接続し他端は接地して給電する片端給電のいずれ
も可能である。ところが、前述のような海中分岐装置を
有するシステムの場合には、海中分岐装置内において給
電線が分岐されるため、全ての海底中継器に直流定電流
を給電するためには工夫が必要になる。
By the way, in an optical communication system using a submarine cable relay system, a submarine repeater becomes necessary as the distance between terminal stations increases. This submarine repeater is supplied with DC power, usually a constant DC current, from a power supply device at a terminal station on land via a communication optical fiber and a power supply line provided in the submarine cable. For multiple submarine repeaters on one power line, two-end power supply is available, in which a power supply device with different polarity is connected to both ends of the power line, and a power supply device is connected only at one end of the power line, and the other end is grounded. Both single-end power supply and single-end power supply are possible. However, in the case of a system that has an underwater branching device like the one mentioned above, the power supply line is branched within the underwater branching device, so it is necessary to devise ways to supply constant DC current to all submarine repeaters. .

【0004】図6は、従来の海中分岐装置を含む光通信
システムの構成を示す説明図である。このシステムでは
、第1局11、第2局12、第3局13の3つの端局が
、海底ケーブルおよび海中分岐装置30によって星形状
に結ばれている。この海中分岐装置30を介して、第1
局11と第2局12の間、および第1局11と第3局1
3の間は、それぞれ、海底ケーブル内の通信用光ファイ
バ14、15によって接続されている。また、一端が各
端局11、12、13の給電装置21、22、23に接
続され、通信用光ファイバと共に海底ケーブル内に設け
られた給電線16、17、18の他端は、それぞれ海中
分岐装置30の端子31A、31B、31Cに接続され
ている。
FIG. 6 is an explanatory diagram showing the configuration of an optical communication system including a conventional underwater branching device. In this system, three terminal stations, a first station 11, a second station 12, and a third station 13, are connected in a star shape by a submarine cable and an underwater branching device 30. The first
Between station 11 and second station 12, and between first station 11 and third station 1
3 are connected by communication optical fibers 14 and 15 in submarine cables, respectively. In addition, one end is connected to the power supply devices 21, 22, 23 of each terminal station 11, 12, 13, and the other end of the power supply lines 16, 17, 18, which are provided in the submarine cable together with the communication optical fiber, It is connected to terminals 31A, 31B, and 31C of branching device 30.

【0005】第1局11と海中分岐装置30の間の海底
ケーブル、および第2局12と海中分岐装置30の間の
海底ケーブルには、それぞれ光海底中継器24、25が
介装されている。第3局13と海中分岐装置30の間は
無中継線路になっている。
Optical submarine repeaters 24 and 25 are interposed in the submarine cable between the first station 11 and the underwater branching device 30 and the submarine cable between the second station 12 and the underwater branching device 30, respectively. . A non-repeater line is provided between the third station 13 and the underwater branching device 30.

【0006】海中分岐装置30内には、光ファイバ14
、15が挿通されている。また、海中分岐装置30内に
は、第1のリレーと第2のリレーとが設けられている。 第1のリレーの接点部32の可動接点32cは端子31
Bを介して給電線17に接続され、第2のリレーの接点
部33の可動接点33cは端子31Cを介して給電線1
8に接続されている。第1のリレーの接点部32の固定
接点32aは第2のリレーの駆動部36を介して端子3
1Aに接続され、第2のリレーの接点部33の固定接点
33aは第1のリレーの駆動部34を介して端子31A
に接続され、共にこの端子31Aを介して給電線16に
接続されている。なお、各駆動部34、36はコイルを
有し、このコイルに電流が流れると接点部32、33を
駆動するようになっている。また、第1のリレーの接点
部32の固定接点32bおよび第2のリレーの接点部3
3の固定接点33bは、端子31Dを介して海中アース
電極38に接続されている。また、各リレーの駆動部3
4、36には、それぞれ並列にダイオード35、37が
接続されている。このダイオード35、37は、逆方向
電流に対してリレー駆動部34、36が動作しないよう
に電流側路の役割を果たしている。
[0006] Inside the underwater branching device 30, an optical fiber 14 is installed.
, 15 are inserted. Furthermore, a first relay and a second relay are provided in the underwater branching device 30. The movable contact 32c of the contact part 32 of the first relay is the terminal 31
The movable contact 33c of the contact portion 33 of the second relay is connected to the feeder line 17 via the terminal 31C.
8 is connected. The fixed contact 32a of the contact section 32 of the first relay is connected to the terminal 3 via the drive section 36 of the second relay.
1A, and the fixed contact 33a of the contact section 33 of the second relay is connected to the terminal 31A via the drive section 34 of the first relay.
and both are connected to the power supply line 16 via this terminal 31A. Note that each of the drive sections 34 and 36 has a coil, and when current flows through this coil, the contact sections 32 and 33 are driven. Further, the fixed contact 32b of the contact portion 32 of the first relay and the contact portion 3 of the second relay
The fixed contact 33b of No. 3 is connected to the underwater earth electrode 38 via the terminal 31D. In addition, the drive section 3 of each relay
Diodes 35 and 37 are connected in parallel to 4 and 36, respectively. The diodes 35 and 37 serve as current bypasses so that the relay drive units 34 and 36 do not operate against reverse current.

【0007】次に、このように構成された従来の海中分
岐装置30の動作について説明する。図6におけるリレ
ー接点部の状態は無給電状態を示す。ここで、第1局1
1の給電装置21と第3局13の給電装置23との間で
両端給電を実行すると、第1局11の給電装置21から
送出された電流は、光海底中継器24、海中分岐装置3
0内のリレー駆動部34およびリレー接点部33を通り
、第3局13の給電装置23に至る。リレー駆動部34
に電流が流れると、このリレー駆動部34によって駆動
されるリレー接点部32は、可動接点32cと固定接点
32bとが接続されるように切り換わる。この状態で第
2局12から片端給電を実行すると、給電電流は、海中
分岐装置30に取り付けた海中アース電極38より流入
し、リレー接点部32および光海底中継器25を通り、
第2局12の給電装置22に至る。すなわち、海中アー
スを帰路とした片端給電ができる。以上の結果、光海底
中継器24、25共、給電が完了し、光ファイバ14、
15を介した通信が、第1局11と第2局12間および
第1局11と第3局13間で可能となる。
Next, the operation of the conventional underwater branching device 30 configured as described above will be explained. The state of the relay contact portion in FIG. 6 indicates a non-power-supplied state. Here, the first station 1
When both-end power feeding is performed between the power feeding device 21 of the first station 11 and the power feeding device 23 of the third station 13, the current sent from the power feeding device 21 of the first station 11 is transmitted to the optical submarine repeater 24 and the underwater branching device 3.
The power passes through the relay drive unit 34 and relay contact unit 33 in the third station 13 and reaches the power supply device 23 of the third station 13. Relay drive section 34
When a current flows through, the relay contact section 32 driven by the relay drive section 34 is switched so that the movable contact 32c and the fixed contact 32b are connected. When one-end power supply is executed from the second station 12 in this state, the power supply current flows from the underwater earth electrode 38 attached to the underwater branching device 30, passes through the relay contact part 32 and the optical submarine repeater 25,
The power supply device 22 of the second station 12 is reached. In other words, one-end power supply can be performed using the underwater earth as the return path. As a result of the above, power supply has been completed to both the optical submarine repeaters 24 and 25, and the optical fiber 14,
15 between the first station 11 and the second station 12 and between the first station 11 and the third station 13.

【0008】同様な手順により、第1局11の給電装置
21と第2局12の給電装置22との間で両端給電を実
施し、リレー駆動部36を動作させ、リレー接点部33
により第3局13の給電装置23の給電路を海中アース
電極38に接続し、第3局13側からの片端給電を可能
とすることもできる。ただし、この場合は第3の端局1
3から海中分岐装置30までの区間は無中継線路である
から、あまり意味を持たない。
By the same procedure, power is supplied at both ends between the power supply device 21 of the first station 11 and the power supply device 22 of the second station 12, the relay drive section 36 is operated, and the relay contact section 33
Accordingly, it is also possible to connect the power supply path of the power supply device 23 of the third station 13 to the underwater earth electrode 38 to enable one-end power supply from the third station 13 side. However, in this case, the third terminal 1
Since the section from 3 to the underwater branching device 30 is a non-repeater line, it does not have much meaning.

【0009】[0009]

【発明が解決しようとする課題】ところで、第1局11
から海中分岐装置30までの区間に障害が発生した場合
、残る第2局12と第3局13との間での通信を確保し
たいという要望がある。図6に示すように第3局13と
海中分岐装置30の間が無中継線路の場合には、この無
中継線路に流れる電流の向きはどちらでも良い。そこで
、上述のような障害の発生時には、第3局13の給電装
置23の極性を負極から正極に変更して第3局13と第
2局12の間で両端給電を行うか、第3局13側を地絡
して第2局側から片端給電を行うことが考えられる。 しかしながら、従来の海中分岐装置30では、仮に、第
3局13の給電装置23の極性を負極から正極に変更し
、第3局13と第2局12の間で両端給電を実行すると
、リレー駆動部36が動作し、リレー接点部33が可動
接点33cと固定接点33bとが接続されるように切り
換わり、第3局13と第2局12の間の給電路を切断し
てしまうので、このような給電は実施できない。従って
、第2局12と第3局13の間に光ファイバによる通信
路を設けることはできない。これは、第3局13側を地
絡した場合も同様である。
[Problem to be solved by the invention] By the way, the first station 11
If a failure occurs in the section from 1 to 30, there is a desire to ensure communication between the remaining second station 12 and third station 13. As shown in FIG. 6, if there is a non-repeater line between the third station 13 and the underwater branching device 30, the current flowing in the non-repeater line may flow in either direction. Therefore, when the above-mentioned failure occurs, either the polarity of the power supply device 23 of the third station 13 is changed from negative to positive and power is supplied from both ends between the third station 13 and the second station 12, or the third station It is conceivable that the 13 side is grounded and one-end power is supplied from the second station side. However, in the conventional underwater branching device 30, if the polarity of the power supply device 23 of the third station 13 is changed from negative to positive and power is supplied at both ends between the third station 13 and the second station 12, the relay is driven. section 36 operates, the relay contact section 33 switches so that the movable contact 33c and the fixed contact 33b are connected, and the power supply path between the third station 13 and the second station 12 is cut off. Such power supply cannot be implemented. Therefore, it is not possible to provide a communication path using an optical fiber between the second station 12 and the third station 13. This also applies when there is a ground fault on the third station 13 side.

【0010】そこで本発明の目的は、3つの端局を星形
状に接続する海中分岐装置において、どの分岐枝に障害
が発生しても、正常な残り2つの分岐枝間での給電を可
能とし、この2つの分岐枝間での通信を維持できるよう
にした海中分岐装置を提供することにある。
[0010] Therefore, an object of the present invention is to enable, in an underwater branching device that connects three terminal stations in a star shape, even if a fault occurs in any branch, power can be supplied between the two remaining normal branches. An object of the present invention is to provide an underwater branching device that can maintain communication between these two branching branches.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明の海
中分岐装置は、海底中継器に直流電力を供給する給電線
および通信用光ファイバを有する海底ケーブルを介して
、海底の1つの分岐点と陸上の第1ないし第3の端局の
間が星形状に接続され、第1の端局と分岐点を結ぶ分岐
枝および第2の端局と分岐点を結ぶ分岐枝が有中継、第
3の端局と分岐点を結ぶ分岐枝が無中継となる海底ケー
ブル中継方式の光通信システムにおける各分岐枝を結ぶ
ものであって、第2の端局と分岐点との間の給電線の線
路内にのみ設けられ、第2の端局を分岐点と海中アース
の一方に選択的に接続するスイッチ部と、第3の端局と
分岐点との間の給電線の線路内にのみ設けられ、第1の
端局と第3の端局の間に所定の方向の電流が流れている
ときには第2の端局を海中アースに接続し、それ以外の
ときは第2の端局を分岐点に接続するようにスイッチ部
を駆動する駆動手段とを備えたものである。
[Means for Solving the Problems] An underwater branching device according to the invention described in claim 1 provides for connecting one branch on the seabed via a submarine cable having a power supply line and a communication optical fiber for supplying DC power to a submarine repeater. The point and the first to third terminal stations on land are connected in a star shape, and the branch connecting the first terminal station and the branch point and the branch branch connecting the second terminal station and the branch point are relayed, A power feed line between the second terminal station and the branch point that connects each branch branch in a submarine cable relay type optical communication system in which the branch branch connecting the third terminal station and the branch point is non-repeater. A switch section that is installed only in the line of the feeder line between the third terminal station and the branch point, and a switch section that selectively connects the second terminal station to one of the branch point and the underwater earth. When a current is flowing in a predetermined direction between the first terminal station and the third terminal station, the second terminal station is connected to the underwater earth; otherwise, the second terminal station is connected to the underwater earth. and a driving means for driving the switch section so as to connect it to the branch point.

【0012】この海中分岐装置では、第1の端局と第3
の端局との間で両端給電を実施すると、駆動手段が動作
して第2の端局は海中アースに接続され、第2の端局と
海中アースとの間で片端給電が可能となる。第2の端局
と分岐点を結ぶ分岐枝に障害が発生した場合には、上記
の場合と同様に第1の端局と第3の端局との間で両端給
電が可能である。第3の端局と分岐点を結ぶ分岐枝に障
害が発生した場合には、第1の端局と第3の端局の間に
電流が流れないので、分岐点を介して第1の端局と第2
の端局とが接続され、両者の間での両端給電が可能であ
る。また、第1の端局と分岐点を結ぶ分岐枝に障害が発
生した場合には、第3の端局の給電装置の極性を変える
と、駆動部を流れる電流の方向が変わり、分岐点を介し
て第2の端局と第3の端局とが接続され、第2の端局と
第3の端局との間で両端給電が可能となる。
[0012] This underwater branching device has a first terminal station and a third terminal station.
When the two-end power supply is carried out between the terminal station and the second terminal station, the driving means is operated and the second terminal station is connected to the underwater earth, allowing one-end electric power feeding between the second terminal station and the underwater earth. If a failure occurs in the branch connecting the second terminal station and the branch point, power can be supplied at both ends between the first terminal station and the third terminal station, as in the case described above. If a failure occurs in the branch that connects the third terminal station and the branch point, no current will flow between the first terminal station and the third terminal station, so the current will not flow between the first terminal station and the third terminal station. station and second
is connected to the terminal station, and power can be supplied at both ends between the two. In addition, if a fault occurs in the branch connecting the first terminal station and the branch point, changing the polarity of the power supply device of the third terminal station changes the direction of the current flowing through the drive unit, which connects the branch point to the branch point. The second terminal station and the third terminal station are connected through the terminal station, and power can be supplied from both ends between the second terminal station and the third terminal station.

【0013】請求項2記載の発明の海中分岐装置は、請
求項2記載の発明において、駆動手段が、電流が流れて
いるときに第2の端局を海中アースに接続するようにス
イッチ部を駆動する駆動部と、この駆動部に並列に接続
され、一方向の電流を側路するダイオードとを有するも
のである。
[0013] In the underwater branching device according to the invention set forth in claim 2, in the invention set forth in claim 2, the driving means connects the switch section to connect the second terminal station to the underwater ground when current is flowing. The device includes a drive section that drives the drive section, and a diode that is connected in parallel to the drive section and bypasses current in one direction.

【0014】この海中分岐装置では、第1の端局と第3
の端局との間で両端給電を実施すると、駆動部によって
スイッチ部が駆動され、第2の端局は海中アースに接続
され、第1の端局と分岐点を結ぶ分岐枝に障害が発生し
た場合において第3の端局の給電装置の極性を変えると
、電流はダイオードを流れ、駆動部が動作せず、分岐点
を介して第2の端局と第3の端局とが接続される。
[0014] In this underwater branching device, the first terminal station and the third
When power is supplied from both ends to the terminal station of In this case, if the polarity of the power supply device of the third terminal station is changed, the current flows through the diode, the drive section does not operate, and the second terminal station and the third terminal station are connected via the branch point. Ru.

【0015】[0015]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1ないし図5は本発明の一実施例に係る
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 5 relate to one embodiment of the present invention.

【0016】図1は本実施例の海中分岐装置を含む光通
信システムの構成を示す説明図である。この光通信シス
テムでは、第1局11、第2局12、第3局13の3つ
の端局が、海底ケーブルおよび海中分岐装置40によっ
て星形状に結ばれている。この海中分岐装置40を介し
て、第1局11と第2局12の間、第1局11と第3局
13の間および第2局12と第3局13の間は、それぞ
れ、海底ケーブル内の通信用光ファイバ51、52、5
3によって接続されている。また、一端が各端局11、
12、13の給電装置21、22、23に接続され、通
信用光ファイバと共に海底ケーブル内に設けられた給電
線16、17、18の他端は、それぞれ海中分岐装置4
0の端子31A、31B、31Cに接続されている。
FIG. 1 is an explanatory diagram showing the configuration of an optical communication system including an underwater branching device of this embodiment. In this optical communication system, three terminal stations, a first station 11, a second station 12, and a third station 13, are connected in a star shape by a submarine cable and an underwater branching device 40. Via this underwater branching device 40, submarine cables are connected between the first station 11 and the second station 12, between the first station 11 and the third station 13, and between the second station 12 and the third station 13. Communication optical fibers 51, 52, 5 within
Connected by 3. In addition, one end is each terminal station 11,
The other ends of the power supply lines 16, 17, 18 connected to the power supply devices 21, 22, 23 of 12, 13 and provided in the submarine cable together with the communication optical fiber are connected to the underwater branching device 4, respectively.
0 terminals 31A, 31B, and 31C.

【0017】第1局11と海中分岐装置40の間の海底
ケーブル、および第2局12と海中分岐装置40の間の
海底ケーブルには、それぞれ光海底中継器24、25が
介装されている。第3局13と海中分岐装置40の間は
無中継線路になっている。
Optical submarine repeaters 24 and 25 are interposed in the submarine cable between the first station 11 and the underwater branching device 40 and the submarine cable between the second station 12 and the underwater branching device 40, respectively. . A non-repeater line is provided between the third station 13 and the underwater branching device 40.

【0018】海中分岐装置40内には、光ファイバ51
、52、53の分岐部が挿通され、この海中分岐装置4
0から各端局に対して光ファイバが2本ずつ延設されて
いる。また、海中分岐装置40内には、1つのリレー接
点部42とこの接点部42を駆動する1つのリレー駆動
部43とが設けられている。接点部42の可動接点42
cは端子31Bを介して給電線17に接続され、固定接
点42aは給電線の分岐点41に接続され、固定接点4
2bは端子31Dを介して、海中分岐装置40に取り付
けられた海中アース電極38に接続されている。前述の
分岐点41は端子31Aを介して給電線16に接続され
ている。また、リレー駆動部43は、分岐点41と端子
31Cの間に介装されている。この駆動部43はコイル
を有し、このコイルに電流が流れると接点部42を駆動
して可動接点42cと固定接点42bとを接続し、コイ
ルに電流が流れないときには接点部42の可動接点42
cと固定接点42aとを接続するようになっている。 また、駆動部43には、並列にダイオード44が接続さ
れている。このダイオード44は、アノードが端子31
C側に接続され、カソードが分岐点41側に接続されて
おり、第3局13から分岐点41の方向に流れる電流に
対して駆動部43が動作しないように電流側路の役割を
果たしている。
[0018] Inside the underwater branching device 40, an optical fiber 51 is installed.
, 52 and 53 are inserted, and this underwater branching device 4
Two optical fibers are extended from zero to each terminal station. Moreover, one relay contact section 42 and one relay drive section 43 that drives this contact section 42 are provided in the underwater branching device 40. Movable contact 42 of contact part 42
c is connected to the feeder line 17 via the terminal 31B, and the fixed contact 42a is connected to the branch point 41 of the feeder line, and the fixed contact 42a is connected to the branch point 41 of the feeder line.
2b is connected to an underwater earth electrode 38 attached to the underwater branching device 40 via a terminal 31D. The aforementioned branch point 41 is connected to the power supply line 16 via the terminal 31A. Further, the relay drive section 43 is interposed between the branch point 41 and the terminal 31C. This drive section 43 has a coil, and when current flows through this coil, it drives the contact section 42 to connect the movable contact 42c and the fixed contact 42b, and when no current flows through the coil, the movable contact 42 of the contact section 42
c and the fixed contact 42a are connected. Further, a diode 44 is connected in parallel to the drive section 43. This diode 44 has an anode connected to the terminal 31.
C side, the cathode is connected to the branch point 41 side, and plays the role of a current bypass so that the drive unit 43 does not operate with respect to the current flowing from the third station 13 toward the branch point 41. .

【0019】なお、通常時は、図1に示すように、第1
局11の給電装置21は正極で、第2局12の給電装置
22と第3局13の給電装置23は負極である。
Note that in normal times, as shown in FIG.
The power supply device 21 of the station 11 has a positive pole, and the power supply device 22 of the second station 12 and the power supply device 23 of the third station 13 have a negative pole.

【0020】次に、図2ないし図5を参照して、本実施
例の動作について説明する。図2ないし図5は、それぞ
れ本実施例における給電方法を示す説明図である。
Next, the operation of this embodiment will be explained with reference to FIGS. 2 to 5. 2 to 5 are explanatory diagrams each showing the power supply method in this embodiment.

【0021】図1において、第1局11の給電装置21
と第3局13の給電装置23との間で両端給電を実施す
ると、分岐点41と第3局13を結ぶ無中継分岐枝の海
中分岐装置40内の給電路上に配置されたリレー駆動部
43が動作し、このリレー駆動部43によって駆動され
るリレー接点部42は、可動接点42cと固定接点42
bとが接続されるように切り換わる。従って、第2局1
2と海中分岐装置40とを結ぶ光海底中継器25を含む
分岐枝の、海中分岐装置40側の給電路の一端が海中ア
ース電極38に接続される。この結果、第1局11と第
3局13との間で両端給電、第2局11と海中アース電
極38との間で片端給電が可能となる。このようにして
、光海底中継器24、25が給電により動作状態となれ
ば、第1局11、第2局12、第3局13の間を相互に
接続する光ファイバ51、52、53は、全て通信可能
な状態となる。このときのリレー接点部42と給電電流
の状態を図2に示す。この図において、I1 は第1局
11と第3局13との間の給電電流、I2 は第2局1
2と海中アース電極38との間の給電電流を示している
In FIG. 1, the power supply device 21 of the first station 11
When power is supplied at both ends between the branch point 41 and the power supply device 23 of the third station 13, the relay drive unit 43 disposed on the power supply path in the underwater branch device 40 of the non-relay branch connecting the branch point 41 and the third station 13 operates, and the relay contact section 42 driven by this relay drive section 43 has a movable contact 42c and a fixed contact 42.
b is switched so that it is connected. Therefore, the second station 1
One end of the power supply path on the underwater branching device 40 side of the branch including the optical submarine repeater 25 connecting the underwater branching device 2 and the underwater branching device 40 is connected to the underwater ground electrode 38 . As a result, power can be supplied at both ends between the first station 11 and the third station 13, and power can be supplied at one end between the second station 11 and the underwater earth electrode 38. In this way, when the optical submarine repeaters 24 and 25 are activated by power supply, the optical fibers 51, 52, 53 interconnecting the first station 11, second station 12, and third station 13 are , all become communicable. FIG. 2 shows the state of the relay contact portion 42 and the power supply current at this time. In this figure, I1 is the power supply current between the first station 11 and the third station 13, and I2 is the power supply current between the second station 11 and the third station 13.
2 and the underwater earth electrode 38.

【0022】次に、本実施例における光通信システムに
おいて、各分岐枝に障害が発生し、障害となった分岐枝
に給電電流を流すことができなくなったときに、障害と
なっていない残りの2つの分岐枝間に給電電流を流し、
その分岐枝内の通信路を確保する方法について説明する
Next, in the optical communication system of this embodiment, when a fault occurs in each branch and the power supply current cannot flow to the faulty branch, the remaining non-faulty branch A power supply current is passed between two branch branches,
A method for securing a communication path within the branch will be explained.

【0023】図3は、海中分岐装置40と第2局12の
給電装置22との間の分岐枝に障害が発生した場合を示
し、図中符号Fが障害点を示す。この場合には、通常時
と同様に、第1局11の給電装置21と第3局13の給
電装置23の間で両端給電を実施すれば良い。これによ
り、光ファイバ52による第1局11と第3局13の間
での通信が可能となる。このとき、リレー駆動部43が
動作し、リレー接点部42は可動接点42cと固定接点
42bとが接続されるように切り換わり、第3局13の
給電装置23に接続されている分岐枝を海中アース電極
38により海中接地するが、第1局11と第3局13と
の間の通信路を確保するという観点では意味を持たない
FIG. 3 shows a case where a fault has occurred in the branch between the underwater branch device 40 and the power supply device 22 of the second station 12, and reference numeral F in the figure indicates the fault point. In this case, as in normal times, both-end power feeding may be performed between the power feeding device 21 of the first station 11 and the power feeding device 23 of the third station 13. This enables communication between the first station 11 and the third station 13 via the optical fiber 52. At this time, the relay drive section 43 operates, the relay contact section 42 switches so that the movable contact 42c and the fixed contact 42b are connected, and the branch branch connected to the power supply device 23 of the third station 13 is placed underwater. Although the earth electrode 38 is grounded under the sea, it has no meaning in terms of securing a communication path between the first station 11 and the third station 13.

【0024】図4は、海中分岐装置40と第3局13の
給電装置23との間の分岐枝に障害が発生した場合を示
す。この場合には、リレー駆動部43には電流が流れな
いので、リレー動作を考慮することなく、第1局11と
第2局12の間で両端給電を実施すれば良い。これによ
り、光ファイバ51による第1局11と第2局12の間
での通信が可能となる。なお、この図において、I3 
は第1局11と第2局12との間の給電電流を示してい
る。
FIG. 4 shows a case where a failure occurs in the branch between the underwater branch device 40 and the power supply device 23 of the third station 13. In this case, since no current flows through the relay drive unit 43, it is sufficient to carry out both-end power feeding between the first station 11 and the second station 12 without considering the relay operation. This enables communication between the first station 11 and the second station 12 via the optical fiber 51. In addition, in this figure, I3
indicates the power supply current between the first station 11 and the second station 12.

【0025】図5は、海中分岐装置40と第1局11の
給電装置21との間の分岐枝に障害が発生した場合を示
す。この場合は、第3局13の給電装置23の極性を負
極から正極に変更し、第3局13と第2局12の間で両
端給電を実施すれば良い。このとき、給電電流I4 は
、リレー駆動部43のコイルに並列に設けられたダイオ
ード44側を流れるのでリレー駆動部43は動作しない
。 従って、リレー接点部42は可動接点42cが固定接点
42b側に切り換わることなく、固定接点42aに接続
された状態のままとなっており、第3局13と第2局1
2の間の給電路は遮断されない。これにより、光ファイ
バ53による第3局13と第2局12の間での通信が可
能となる。なお、第3局13と海中分岐装置40の間は
無中継線路なので、この無中継線路に流れる電流の向き
は変わっても問題はない。
FIG. 5 shows a case where a fault occurs in the branch between the underwater branch device 40 and the power supply device 21 of the first station 11. In this case, the polarity of the power feeding device 23 of the third station 13 may be changed from negative to positive, and power may be fed from both ends between the third station 13 and the second station 12. At this time, the feeding current I4 flows through the diode 44 provided in parallel to the coil of the relay drive section 43, so the relay drive section 43 does not operate. Therefore, in the relay contact section 42, the movable contact 42c remains connected to the fixed contact 42a without switching to the fixed contact 42b side, and the third station 13 and the second station 1
The power supply path between 2 and 2 is not interrupted. This enables communication between the third station 13 and the second station 12 via the optical fiber 53. Note that since there is a non-repeater line between the third station 13 and the underwater branching device 40, there is no problem even if the direction of the current flowing in this non-repeater line changes.

【0026】このように本実施例によれば、どの分岐枝
に障害が発生しても、正常な残り2つの分岐枝間での両
端給電が可能となる。しかも、海中分岐装置40の構成
が簡単になる。なお、海中分岐装置40と第1局11の
給電装置21との間の分岐枝に障害が発生した場合、第
3局13の給電装置23の極性を変更する代わりに、第
3局13側を地絡して第2局12側から片端給電を行っ
ても良い。
As described above, according to this embodiment, even if a fault occurs in any branch, power can be supplied at both ends between the remaining two normal branches. Moreover, the configuration of the underwater branching device 40 is simplified. Note that if a fault occurs in the branch between the underwater branch device 40 and the power supply device 21 of the first station 11, instead of changing the polarity of the power supply device 23 of the third station 13, It is also possible to perform one-end power supply from the second station 12 side with a ground fault.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、海
中分岐装置に星形状に接続された3つの分岐枝のうち、
どの分岐枝に障害が発生しても、正常な残り2つの分岐
枝間での給電が可能となり、この2つの分岐枝間での通
信を維持できるという効果がある。
[Effects of the Invention] As explained above, according to the present invention, among the three branch branches connected in a star shape to the underwater branch device,
Even if a fault occurs in any branch, power can be supplied between the two remaining normal branches, and communication between these two branches can be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の海中分岐装置を含む光通信
システムの構成を示す説明図である。
FIG. 1 is an explanatory diagram showing the configuration of an optical communication system including an underwater branching device according to an embodiment of the present invention.

【図2】障害がないときの図1の海中分岐装置のリレー
接点部と給電電流の状態を示す説明図である。
FIG. 2 is an explanatory diagram showing the state of the relay contact section and power supply current of the underwater branching device of FIG. 1 when there is no fault;

【図3】第2局側の分岐枝に障害が発生したときの図1
の海中分岐装置のリレー接点部と給電電流の状態を示す
説明図である。
[Figure 3] Figure 1 when a failure occurs in the branch on the second station side
FIG. 2 is an explanatory diagram showing the state of the relay contact part and the power supply current of the underwater branching device.

【図4】第3局側の分岐枝に障害が発生したときの図1
の海中分岐装置のリレー接点部と給電電流の状態を示す
説明図である。
[Figure 4] Figure 1 when a failure occurs in the branch on the third station side
FIG. 2 is an explanatory diagram showing the state of the relay contact part and the power supply current of the underwater branching device.

【図5】第1局側の分岐枝に障害が発生したときの図1
の海中分岐装置のリレー接点部と給電電流の状態を示す
説明図である。
[Figure 5] Figure 1 when a failure occurs in the branch on the first station side
FIG. 2 is an explanatory diagram showing the state of the relay contact part and the power supply current of the underwater branching device.

【図6】従来の海中分岐装置を含む光通信システムの構
成を示す説明図である。
FIG. 6 is an explanatory diagram showing the configuration of an optical communication system including a conventional underwater branching device.

【符号の説明】[Explanation of symbols]

11  第1局 12  第2局 13  第3局 21、22、23  給電装置 24、25  光海底中継器 38  海中アース電極 40  海中分岐装置 41  分岐点 42  リレー接点部 43  リレー駆動部 44  ダイオード 11 1st station 12 Second station 13 3rd station 21, 22, 23 Power supply device 24, 25 Optical submarine repeater 38 Undersea earth electrode 40 Undersea branching device 41 Turning point 42 Relay contact part 43 Relay drive part 44 Diode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  海底中継器に直流電力を供給する給電
線および通信用光ファイバを有する海底ケーブルを介し
て、海底の1つの分岐点と陸上の第1ないし第3の端局
の間が星形状に接続され、第1の端局と分岐点を結ぶ分
岐枝および第2の端局と分岐点を結ぶ分岐枝が有中継、
第3の端局と分岐点を結ぶ分岐枝が無中継となる海底ケ
ーブル中継方式の光通信システムにおける、前記各分岐
枝を結ぶ海中分岐装置であって、第2の端局と分岐点と
の間の給電線の線路内にのみ設けられ、第2の端局を分
岐点と海中アースの一方に選択的に接続するスイッチ部
と、第3の端局と分岐点との間の給電線の線路内にのみ
設けられ、第1の端局と第3の端局の間に所定の方向の
電流が流れているときには第2の端局を海中アースに接
続し、それ以外のときは第2の端局を分岐点に接続する
ように前記スイッチ部を駆動する駆動手段とを具備する
ことを特徴とする海中分岐装置。
Claim 1: A submarine cable is connected between one branch point on the ocean floor and the first to third terminal stations on land via a submarine cable that has a feeder line that supplies DC power to a submarine repeater and an optical fiber for communication. The branch branch that connects the first terminal station and the branch point and the branch branch that connects the second terminal station and the branch point are connected in the form of a relay,
An underwater branching device that connects each branch in a submarine cable relay type optical communication system in which a branch connecting a third terminal station and a branch point is non-repeater, A switch part that is provided only in the line of the feeder line between the branch point and selectively connects the second terminal station to one of the branch point and the underwater earth, and a switch part of the feed line between the third terminal station and the branch point. It is installed only within the line, and when a current in a predetermined direction is flowing between the first terminal station and the third terminal station, the second terminal station is connected to the underwater earth, and at other times, the second terminal station is connected to the underwater earth. and a driving means for driving the switch section so as to connect the terminal station to the branch point.
【請求項2】  前記駆動手段は、電流が流れていると
きに第2の端局を海中アースに接続するように前記スイ
ッチ部を駆動する駆動部と、この駆動部に並列に接続さ
れ、一方向の電流を側路するダイオードとを有すること
を特徴とする請求項1記載の海中分岐装置。
2. The drive means is connected in parallel to the drive unit and a drive unit that drives the switch unit so as to connect the second terminal station to underwater earth when current is flowing. 2. The underwater branching device according to claim 1, further comprising a diode for bypassing current in the direction.
JP3107355A 1991-05-13 1991-05-13 Submarine branching device Pending JPH04336718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3107355A JPH04336718A (en) 1991-05-13 1991-05-13 Submarine branching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107355A JPH04336718A (en) 1991-05-13 1991-05-13 Submarine branching device

Publications (1)

Publication Number Publication Date
JPH04336718A true JPH04336718A (en) 1992-11-24

Family

ID=14456969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107355A Pending JPH04336718A (en) 1991-05-13 1991-05-13 Submarine branching device

Country Status (1)

Country Link
JP (1) JPH04336718A (en)

Similar Documents

Publication Publication Date Title
US5214312A (en) Power feed line switching circuit for submarine branching device and method of feeding power to submarine cable communication system
CN108604934B (en) Underwater optical cable coast landing device
US5196984A (en) Submarine telecommunications systems
US4798969A (en) Power feed system in transmission line between terminals of three-terminal station
EP0843917B1 (en) Improvements in or relating to power switching of optical fibre cable branching units
CN107005269A (en) Feed line branch unit and feed line branching method
JP6973495B2 (en) Submarine branching device and submarine branching method
JP2001144684A (en) Submarine communication system and its landing stage
US5532478A (en) Underwater branching device
JP2786524B2 (en) Feeding line switching circuit for undersea branching device and method for feeding power in undersea cable communication system
JP3967382B2 (en) Branch device for optical fiber transmission system
JPH04336718A (en) Submarine branching device
US7269353B2 (en) Branching unit for an optical transmission system
JP6044274B2 (en) Feed path switching device and feed system
JP2665544B2 (en) Power supply switching circuit for submarine cable transmission line
JP2805147B2 (en) Submarine branch cable power supply system
JP2552165B2 (en) Submarine optical cable power supply branch device
JP2632905B2 (en) Transmission line feeder switching circuit
JPS63299721A (en) Power supply switching system for submarine trunk transmission line
JPH05327561A (en) Power line switching circuit
JP2691218B2 (en) Submarine power feed path configuration method and submarine power feed switching circuit
EP3540892B1 (en) Transmission system having a trunk and a branch
JPH0470129A (en) Power supply switching circuit for underwater branch equipment and power supply method for submarine cable communication system
JP2561307B2 (en) Branch transmission line
JPH01289323A (en) Feeding switching system for submarine relay transmission line