[go: up one dir, main page]

JPH0433632B2 - - Google Patents

Info

Publication number
JPH0433632B2
JPH0433632B2 JP57183233A JP18323382A JPH0433632B2 JP H0433632 B2 JPH0433632 B2 JP H0433632B2 JP 57183233 A JP57183233 A JP 57183233A JP 18323382 A JP18323382 A JP 18323382A JP H0433632 B2 JPH0433632 B2 JP H0433632B2
Authority
JP
Japan
Prior art keywords
thermal transfer
color
ink layer
density
yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57183233A
Other languages
Japanese (ja)
Other versions
JPS5971896A (en
Inventor
Masaru Oonishi
Masayuki Saito
Ryoichi Shimazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujicopian Co Ltd
Mitsubishi Electric Corp
Original Assignee
Fuji Kagakushi Kogyo Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kagakushi Kogyo Co Ltd, Mitsubishi Electric Corp filed Critical Fuji Kagakushi Kogyo Co Ltd
Priority to JP57183233A priority Critical patent/JPS5971896A/en
Publication of JPS5971896A publication Critical patent/JPS5971896A/en
Publication of JPH0433632B2 publication Critical patent/JPH0433632B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38228Contact thermal transfer or sublimation processes characterised by the use of two or more ink layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Impression-Transfer Materials And Handling Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、印字、印刷濃度を変更しうる多階調
プリント技術に用いる感熱転写媒体に関し、詳し
くは基材に設けられたインキ層が熱転写により記
録紙に複数回重ね合わされることによつてえられ
る転写像の濃度を調整する多階調感熱転写方式に
用いられる多階調用感熱転写記録媒体に関する。 従来の感熱転写による多階調技術としては、通
称3L法と呼ばれる方法が知られている(社団法
人電子通信学会1981年9月25日発行の同会技法
IE81−63、45〜52頁参照)。 この3L法は一画素におけるドツト数の多少と、
熱転写されるインキ層の反射濃度の濃淡との組合
わせで多数の階調をえようとするものであるが、
該方法ではインキ層の反射濃度の調整限界とドツ
ト数の解像度に対する限界とにより、自然な階調
に近い多数の階調を高い解像度でうることはきわ
めて困難であつた。 これに対し、同色の濃度が同一または相互に異
なるインキ層を重ね合わせて印字することによ
り、印字濃度を調整すると階調調整の因子に重ね
合せ印字回数を加えることができ、一画素あたり
のドツト数を少なくして解像度を向上しても階調
数を充分多くとれるようになつた。 しかし、該重ね合せ印字、印刷による多階調記
録では後に重ね合せ転写されたインキ層の濃度
が、先に転写されたインキ層の濃度よりも強く作
用し、加算的濃度の増大が生じにくくなり、最高
反射濃度でも全体にかすみのかかつたような淡い
印字、印刷となりやすい欠点があつた。 本発明はこのような欠点を解消して、鮮明な重
ね合せ多階調サーマル転写印字、印刷が行なえる
ようにすることを目的とする。 本発明はこのような目的を達成するために熱転
写インキ層を改良したもので、基材上に設けられ
たイエロー、マゼンタまたはシアンのうちの少な
くとも1色のインキ層が各色ごとに熱転写により
記録紙に複数回重ね合わされることによつて、え
られる各色の転写像の濃度を調整する多階調感熱
転写方式に用いられる多階調用感熱転写記録媒体
であつて、前記インキ層が透明性および着色力の
高い着色顔料が最高反射濃度を呈する量未満の少
ない量含有されているとともに、前記着色顔料に
おける非吸収帯域での光透過率が約65%以上であ
るものである。 このようなインキ層を重ね合せ印字、印刷する
ことにより、反射濃度の最高値は従来のものに比
してきわめて高くなり、目視においてはかすみの
かかつたようなぼやけは生じず、鮮明な印字、印
刷がえられるようになつた。 本発明において、インキ層が含有している着色
剤の量は、その色の印字像の最高反射濃度以上で
あれば多階調がえられないので、印字像の最高反
射濃度を呈する量未満より少ない量でなければな
らない。 本発明においてインキ層の着色材量は次式によ
つて表わされるものである。 着色材量(g/m2)=[着色顔料含有率(重量%
)×塗布量(g/m2)]/100 またある色について印字像の最高反射濃度と
は、前記着色材量をいくら増加してもそれ以上反
射濃度が増加することのない上限の反射濃度をい
う。 また着色顔料における非吸収帯域の光透過率は
約65%以上、好ましくは70%以上である。約65%
未満のときはインキ層を重ねても濃度がでず、印
字像の最高反射濃度を充分高めることができず、
かすみがかかつたような印字像しかえられないた
め満足しうる階調はえられない。なお光透過率は
できるだけ高い方が好ましい。 つぎに本発明を実施例に基づいて説明する。 実施例 1 1つのフイルム状基材1に第1図に示すように
シアン(C)、マゼンタ(M)、イエロー(Y)の各色につき
着色材量の異なる3つの部分インキ層Y1,Y
2,Y3;C1,C2,C3;M1,M2,M3
をカラーダンダラ(富士化学紙工業(株)の商標名)
状に塗布してある。 フイルム基材1としては、厚さ9μのポリエス
テルフイルムを用いた。また前記インキ層のベヒ
クルとしては透明性の高いつぎの組成のものを用
いた。 成 分 重量% カルナバワツクス1号 20 パラフインワツクス(融点65℃のもの) 35 エステルワツクス 25 石油樹脂 10 スピンドル油 10 前記インキ層の着色材としては各色において、
つぎの透明性の高い着色顔料、すなわちシアンと
してはシアニンブルー、マゼンタとしてはローダ
ミンレーキY、イエローとしてはベンジジンイエ
ローを用いた。 各部分インキ層のベヒクルと着色顔料との混合
比および普通紙にサーマルプリンタにより1回直
接感熱転写したときの印字像の反射濃度(ΔOD)
(印字部分の反射濃度−未印字部分の反射濃度)、
非吸収帯域での光透過率およびその測定波長、な
らびに最大吸収波長を第1表に示す。
The present invention relates to a thermal transfer medium used in multi-gradation printing technology that can change printing and print density, and more specifically, the present invention relates to a thermal transfer medium used in multi-gradation printing technology that can change printing and print density. The present invention relates to a multi-tone thermal transfer recording medium used in a multi-tone thermal transfer method for adjusting the density of a transferred image. As a conventional multi-gradation technology using thermal transfer, a method commonly called the 3L method is known (IEICE Techniques published September 25, 1981).
(See IE81-63, pp. 45-52). This 3L method depends on the number of dots in one pixel,
This method attempts to achieve a large number of gradations by combining the reflection density of the thermally transferred ink layer.
In this method, it is extremely difficult to obtain a large number of gradations close to natural gradations with high resolution due to the adjustment limit of the reflection density of the ink layer and the limit to the resolution of the number of dots. On the other hand, if you adjust the print density by overlapping and printing ink layers of the same color with the same or different densities, you can add the number of overlapping prints to the gradation adjustment factor, and the dots per pixel can be adjusted. Even if the number is reduced and the resolution is improved, it is now possible to obtain a sufficiently large number of gradations. However, in multi-gradation recording by overlay printing or printing, the density of the ink layer transferred later in overlay acts more strongly than the density of the ink layer transferred first, making it difficult for additive density increases to occur. Even at the highest reflection density, there was a drawback that the prints tended to be faint and hazy throughout. It is an object of the present invention to eliminate such drawbacks and to enable clear superimposed multi-tone thermal transfer printing. The present invention is an improved thermal transfer ink layer in order to achieve such an object, and an ink layer of at least one color among yellow, magenta, or cyan provided on a base material is thermally transferred for each color to a recording paper. A multi-gradation thermal transfer recording medium used in a multi-gradation thermal transfer method that adjusts the density of a transferred image of each color by overlapping the ink layer multiple times, wherein the ink layer has transparency and coloring. It contains a small amount of a high-power colored pigment that is less than the amount that exhibits the highest reflection density, and the light transmittance of the colored pigment in a non-absorption band is about 65% or more. By overlapping and printing such ink layers, the maximum value of reflection density is extremely high compared to conventional ones, and there is no hazy or blurry appearance when visually inspected, and clear printing, Printing is now available. In the present invention, if the amount of colorant contained in the ink layer is equal to or higher than the maximum reflection density of the printed image of that color, multiple gradations cannot be obtained. It has to be a small amount. In the present invention, the amount of coloring material in the ink layer is expressed by the following formula. Amount of coloring material (g/m 2 ) = [Coloring pigment content (weight%)
)×Coating amount (g/m 2 )]/100 The maximum reflection density of a printed image for a certain color is the upper limit reflection density at which the reflection density does not increase any further no matter how much the amount of coloring material is increased. means. Furthermore, the light transmittance of the non-absorbing band of the colored pigment is about 65% or more, preferably 70% or more. Approximately 65%
If it is less than that, no density will be achieved even if the ink layers are stacked, and the maximum reflection density of the printed image will not be sufficiently increased.
Since only a hazy printed image can be obtained, a satisfactory gradation cannot be obtained. Note that it is preferable that the light transmittance is as high as possible. Next, the present invention will be explained based on examples. Example 1 As shown in FIG. 1, three partial ink layers Y1, Y with different amounts of coloring materials for each color of cyan (C), magenta (M), and yellow (Y) are formed on one film-like base material 1.
2, Y3; C1, C2, C3; M1, M2, M3
Color Dandara (trademark name of Fuji Kagaku Paper Industries Co., Ltd.)
It is coated in a shape. As the film base material 1, a polyester film having a thickness of 9 μm was used. Further, as the vehicle for the ink layer, a highly transparent vehicle having the following composition was used. Ingredients Weight % Carnauba wax No. 1 20 Parafine wax (melting point 65°C) 35 Ester wax 25 Petroleum resin 10 Spindle oil 10 As the coloring material for the ink layer, for each color,
The following highly transparent colored pigments were used: cyanine blue for cyan, rhodamine lake Y for magenta, and benzidine yellow for yellow. Mixing ratio of vehicle and colored pigment in each partial ink layer and reflection density (ΔOD) of printed image when directly thermally transferred once to plain paper using a thermal printer
(Reflection density of printed area - Reflection density of non-printed area)
Table 1 shows the light transmittance in the non-absorption band, its measurement wavelength, and the maximum absorption wavelength.

【表】 * 着色材量が減少すると非吸収帯域での光透過率は
増大する。
ついで各部分のインキ層の各色における重ね合
せ印字をサーマルプリンタを用いて行なつた。え
られた印字像の反射濃度と着色材量の関係をグラ
フにして第2図に示す。第2図(第3〜4図も同
じ)において、Y1の1回転写でえられた印字像
およびY1の複数回の重ね合せ転写でえられた印
字像は〇印で示し、Y2の1回転写でえられた印
字像およびY2の複数回の重ね合せ転写でえられ
た印字像は●印で示し、Y3の1回転写でえられ
た印字像およびY3の複数回の重ね合せ転写でえ
られた印字像は▲印で示している。C1,C2,
C3およびM1,M2,M3についても同様であ
る。 第2図に示すとおり、各色とも一定の着色材量
を超えると、それ以上着色材の量を増してもえら
れる印字像の反射濃度は一定の値を超えることは
なかつた。また各色とも10階調程度の印字像がえ
られ、いずれの印字像もきわめて鮮明なものであ
つた。 実施例 2 実施例1で用いた着色顔料1重量部に対しさら
に酸化チタン0.5重量部を混合して実施例1と同
様に多階調用感熱転写記録媒体を作製し、これを
用いて実施例1と同様にして印字を行なつた。え
られた印字像の反射濃度と着色材量の関係をグラ
フにして第3図に示す。 なお、非吸収帯域での光透過率は前記Y1のイ
ンキ層に対応する層で約70%、前記C1のインキ
層に対応する層で約76%、前記M1のインキ層に
対応する層で約73%であつた。 第3図から明らかなとおり、いずれの色でも実
施例1とほぼ同程度の高い最高反射濃度値がえら
れた。また各色とも8階調程度の印字像がえら
れ、いずれの印字像もきわめて鮮明なものであつ
た。 比較例 酸化チタンを実施例1で用いた着色顔料1重量
部に対して4重量部添加し、非吸収帯域での光透
過率が前記Y1のインキ層に対応する層で約45
%、前記C1のインキ層に対応する層で約49%、
前記M1のインキ層に対応する層で約47%の比較
用の感熱転写記録媒体を作製した。これを用いて
実施例1と同様に印字を行なつた。えられた印字
像の反射濃度と着色材量の関係をグラフにして第
4図に示す。 第4図から明らかなとおり、この比較例ではい
ずれの色においても実施例1〜2に比して大幅に
反射濃度が減少し、インキ層を重ねてもかすみの
かかつたような印字像しかえられず、鮮明な階調
色はえられなかつた。 以上の比較は、着色顔料が相違すれば色相など
が相違し、比較しにくいため、あえて酸化チタン
により透過率を減少させて透過率の作用を確認し
たものである。 なお前記第2〜4図において◇が付してあるも
のは、▲に相当する着色顔料含有率と同様な含有
率のインキを塗布量2g/m2にして形成したイン
キ層による印字濃度を示している。 第2〜4図から明らかなとおり、反射濃度
(ΔOD)は着色材量によつて変動するものであ
る。 なおインキ層の厚さは、多くのばあい、重ね合
せ印字によるトータルの厚さが35μm程度以下に
なるように設定するのが好ましい。 なお前記実施例に限らず、ベヒクルや着色顔料
として以下の透明性のよいものを用いるときは、
前記実施例とほぼ同様な傾向を示した。 ただし、各材料により最高反射濃度、非吸収帯
域での光透過率および該反射濃度に達したときの
着色材量に変動は生じたが、いずれも目視による
最高濃度以上とすることができた。 イエローの着色顔料としてナフトールエロー
S、ハンザエロー5G、パーマネントエロー
NCG、キノリンエローレーキなどの顔料の1種
または2種以上の混合物を用いたところ、実施例
1と同様にすぐれた効果がえられた。 マゼンタの着色顔料としてブリリアントフアス
トカーレツト、ブリリンアントカーミンBS、パ
ーマネントカーミンFB、リソールレツド、パー
マネントレツドF5R、ブリリアントカーミン6B、
ピグメントスカーレツト3B、ローダミンレーキ
B、アリザリンレーキなどの顔料の1種または2
種以上の混合物を用いたところ、実施例1と同様
にすぐれた効果がえられた。 シアンの着色顔料としてビクトリアブルーレー
キ、無金属フタロシアニンブルー、フタロシアニ
ンブルー、フアストスカイブルーなどの顔料の1
種または2種以上の混合物を用いたところ、実施
例1と同様にすぐれた効果がえられた。 ベヒクルの組成としては、バインダー剤とし
て、針入度が10〜30(25℃)の固体ロウを用いる
のが、えられるインキ層の感熱性を向上せしめる
うえで好ましく、たとえばカルナバワツクス、マ
イクロクリスタリンワツクス、木ろう、ミツロ
ウ、セレシンワツクス、鯨ロウなどのワツクス類
が用いられるが、さらに必要に応じて低分子量ポ
リエチレン、酸化ワツクス、エステルワツクスな
どの容易に溶融しうる物質を併用して用いてもよ
い。 また柔軟剤としては、たとえば石油樹脂、ポリ
酢酸ビニル、ポリスチレン、スチレン−ブタジエ
ン共重合体、セルロースエステル類、セルロース
エーテル類、アクリル系樹脂類などのごとき容易
に熱溶融しうる物質または潤滑油が好適に使用さ
れる。 さらに本発明においては、かかる感熱転写性イ
ンキ層に良好な熱伝導性および溶融転写性を付与
させるために、粉体状熱伝導性物質および(また
は)体質顔料を配合することができる。 粉体状熱伝導性物質としては、たとえばアルミ
ニウム、銅、錫、亜鉛などの熱伝導率が6.0×
10-4〜25.0×10-4cal/sec・cm・℃のものが好適
に使用される。 また体質顔料としては、たとえばコロイダルシ
リカ、炭酸マグネシウム、炭残カルシウム、クレ
ー、カオリン、珪酸カルシウム、アエロジル、ホ
ワイトカーボンなどの比較的透明性の高いものが
好適に使用される。 これらの熱伝導性物質や体質顔料はインキ層総
量100重量部に対してそれぞれ0〜30重量部およ
び0〜10重量部の割合で配合される。 なお、ベヒクルを構成する前記各成分の組合せ
や配合量などは、ベヒクル自体の透明性を損なわ
ないように選択する必要がある。 基材1としては、コンデンサー薄紙、コンデン
サー絶縁紙、ワンタイムカーボン原紙、硫酸紙、
グラシン紙、インデイアン紙、ロウ紙原子などの
薄紙あるいはセロハン、ポリエステル、ポリイミ
ド、ポリ塩化ビニルなどのプラスチツクフイルム
などを用いることができる。 また基材1は表面にステイツク防止のための樹
脂や転写性向上のための高熱伝導層をコーテイン
グしたものとしてもよい。 基材1に対するインキ層の配置は必ずしも第1
図に示すようなものに限らず、従来周知のパター
ンで配置すればよい。 また色ちがいのインキ層を1つの基材1に塗布
するのではなく、各色のインキ層ごとに基材に塗
布したり、濃度の相意により基材をかえるなどし
てもよい。
[Table] * As the amount of colorant decreases, the light transmittance in the non-absorbing band increases.
Next, overlapping printing of each color of the ink layer of each portion was performed using a thermal printer. The relationship between the reflection density of the obtained printed image and the amount of coloring material is shown in a graph in FIG. In Figure 2 (the same applies to Figures 3 and 4), the printed image obtained by one transfer of Y1 and the printed image obtained by multiple overlapping transfers of Y1 are indicated by ○ marks, and the printed image obtained by one rotation of Y2 The printed images obtained by copying and the printed images obtained by multiple overlapping transfers of Y2 are indicated by ●, and the printed images obtained by one transfer of Y3 and the printed images obtained by multiple overlapping transfers of Y3 are indicated by ●. The resulting printed image is indicated by a ▲ mark. C1, C2,
The same applies to C3 and M1, M2, and M3. As shown in FIG. 2, when the amount of colorant for each color exceeded a certain value, the reflection density of the printed image obtained by increasing the amount of colorant did not exceed a certain value. In addition, printed images of about 10 gradations were obtained for each color, and all printed images were extremely clear. Example 2 A multi-tone thermal transfer recording medium was prepared in the same manner as in Example 1 by further mixing 0.5 parts by weight of titanium oxide with 1 part by weight of the colored pigment used in Example 1, and using this, Example 1 Printing was carried out in the same manner. The relationship between the reflection density of the obtained printed image and the amount of coloring material is shown in a graph in FIG. The light transmittance in the non-absorption band is approximately 70% for the layer corresponding to the Y1 ink layer, approximately 76% for the layer corresponding to the C1 ink layer, and approximately 76% for the layer corresponding to the M1 ink layer. It was 73%. As is clear from FIG. 3, a maximum reflection density value almost as high as that of Example 1 was obtained for all colors. Further, printed images of approximately 8 gradations were obtained for each color, and all printed images were extremely clear. Comparative Example 4 parts by weight of titanium oxide was added to 1 part by weight of the colored pigment used in Example 1, and the light transmittance in the non-absorption band was approximately 45 in the layer corresponding to the ink layer of Y1.
%, about 49% in the layer corresponding to the ink layer of C1,
A thermal transfer recording medium for comparison was prepared with a layer corresponding to the M1 ink layer having a thickness of about 47%. Printing was carried out in the same manner as in Example 1 using this. The relationship between the reflection density of the obtained printed image and the amount of coloring material is shown in a graph in FIG. As is clear from Figure 4, in this comparative example, the reflection density was significantly reduced in all colors compared to Examples 1 and 2, and even if the ink layers were stacked, only a hazy printed image could be obtained. It was not possible to obtain clear gradation colors. In the above comparison, since different colored pigments have different hues and are difficult to compare, the transmittance was deliberately reduced by titanium oxide and the effect of transmittance was confirmed. In Figs. 2 to 4 above, ◇ indicates the print density of an ink layer formed with an ink coating amount of 2 g/m 2 having the same coloring pigment content as that corresponding to ▲. ing. As is clear from FIGS. 2 to 4, the reflection density (ΔOD) varies depending on the amount of coloring material. In most cases, the thickness of the ink layer is preferably set so that the total thickness resulting from overlapping printing is about 35 μm or less. In addition to the above examples, when using the following highly transparent vehicles and coloring pigments,
Almost the same tendency as in the above example was shown. However, although variations occurred in the maximum reflection density, the light transmittance in the non-absorption band, and the amount of coloring material when the reflection density was reached depending on each material, it was possible to achieve a maximum density higher than the maximum density visually observed. Naphthol Yellow S, Hansa Yellow 5G, Permanent Yellow as yellow coloring pigments
When one type or a mixture of two or more types of pigments such as NCG and quinoline yellow lake were used, excellent effects similar to those in Example 1 were obtained. Magenta coloring pigments include Brilliant Fast Curly, Brilliant Carmine BS, Permanent Carmine FB, Resole Red, Permanent Red F5R, Brilliant Carmine 6B,
One or two pigments such as Pigment Scarlet 3B, Rhodamine Lake B, Alizarin Lake, etc.
When a mixture of more than one species was used, similar excellent effects as in Example 1 were obtained. As a cyan coloring pigment, one of pigments such as Victoria Blue Lake, metal-free phthalocyanine blue, phthalocyanine blue, Fast Sky Blue, etc.
When the seeds or a mixture of two or more kinds were used, similar excellent effects as in Example 1 were obtained. Regarding the composition of the vehicle, it is preferable to use a solid wax with a penetration degree of 10 to 30 (25°C) as a binder agent in order to improve the heat sensitivity of the resulting ink layer, such as carnauba wax, microcrystalline wax, etc. Waxes such as wax, wood wax, beeswax, ceresin wax, and spermaceti wax are used, and if necessary, easily meltable substances such as low molecular weight polyethylene, oxidized wax, and ester wax are used in combination. May be used. Suitable softeners include substances that can be easily melted by heat, such as petroleum resins, polyvinyl acetate, polystyrene, styrene-butadiene copolymers, cellulose esters, cellulose ethers, and acrylic resins, or lubricating oils. used for. Furthermore, in the present invention, a powdery thermally conductive substance and/or extender pigment may be blended in order to impart good thermal conductivity and melt transferability to the thermally transferable ink layer. Examples of powdered thermally conductive substances include aluminum, copper, tin, and zinc, whose thermal conductivity is 6.0×.
10 -4 to 25.0×10 -4 cal/sec・cm・℃ is preferably used. As extender pigments, relatively highly transparent ones such as colloidal silica, magnesium carbonate, calcium charcoal, clay, kaolin, calcium silicate, Aerosil, and white carbon are preferably used. These thermally conductive substances and extender pigments are blended in proportions of 0 to 30 parts by weight and 0 to 10 parts by weight, respectively, based on 100 parts by weight of the total ink layer. The combination and amount of each of the components constituting the vehicle must be selected so as not to impair the transparency of the vehicle itself. Base material 1 includes capacitor thin paper, capacitor insulating paper, one-time carbon base paper, parchment paper,
Thin paper such as glassine paper, Indian paper, wax paper, etc., or plastic film such as cellophane, polyester, polyimide, polyvinyl chloride, etc. can be used. Further, the surface of the base material 1 may be coated with a resin to prevent sticking or a highly thermally conductive layer to improve transferability. The arrangement of the ink layer on the substrate 1 is not necessarily the first one.
The arrangement is not limited to the one shown in the figure, but may be arranged in a conventionally known pattern. Furthermore, instead of applying ink layers of different colors to one base material 1, ink layers of each color may be applied to the base material, or the base material may be changed depending on the density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカラーダンダラ状に配置されている本
発明の多階調用感熱転写記録媒体の一実施例の概
略説明図、第2〜4図はそれぞれ実施例1〜2お
よび比較例においてえられた印字像の反射濃度
(ΔOD)と着色材量との関係を示すグラフであ
る。
FIG. 1 is a schematic explanatory diagram of an example of a multi-tone thermal transfer recording medium of the present invention arranged in a color random pattern, and FIGS. 2 to 4 are images obtained in Examples 1 to 2 and a comparative example, respectively. It is a graph showing the relationship between the reflection density (ΔOD) of a printed image and the amount of coloring material.

Claims (1)

【特許請求の範囲】 1 基材に設けられたイエロー、マゼンタまたは
シアンのうちの少なくとも1色のインキ層が各色
ごとに熱転写により記録紙に複数回重ね合わされ
ることによつて、えられる各色の転写像の濃度を
調整する多階調感熱転写方式に用いられる多階調
用感熱転写記録媒体であつて、前記インキ層が、
透明性および着色力の高い着色顔料が最高反射濃
度を呈する量未満の少ない量含有されているとと
もに、前記着色顔料における非吸収帯域での光透
過率が約65%以上である多階調用感熱転写記録媒
体。 2 単一の基材上に、イエロー、マゼンタまたは
シアンのうちの1色に属し、反射濃度が相互に異
なる複数のインキ層が並べて配置されてなる特許
請求の範囲第1項記載の多階調用感熱転写記録媒
体。 3 単一の基材上に、イエローに属し、反射濃度
が相互に異なる複数のインキ層、マゼンタに属
し、反射濃度が相互に異なる複数のインキ層、お
よびシアンに属し、反射濃度が相互に異なる複数
のインキ層が並べて配置されてなる特許請求の範
囲第1項記載の多階調用感熱転写記録媒体。
[Scope of Claims] 1. An ink layer of at least one color among yellow, magenta, or cyan provided on a base material is superimposed on a recording paper multiple times by thermal transfer for each color, so that the ink layer of each color obtained is A multi-tone thermal transfer recording medium used in a multi-tone thermal transfer method for adjusting the density of a transferred image, wherein the ink layer comprises:
A thermal transfer for multi-gradation use, which contains a colored pigment with high transparency and coloring power in a small amount less than the amount that exhibits the highest reflection density, and in which the light transmittance of the colored pigment in a non-absorption band is about 65% or more. recoding media. 2. A multi-gradation product according to claim 1, wherein a plurality of ink layers belonging to one color among yellow, magenta, or cyan and having different reflection densities are arranged side by side on a single base material. Thermal transfer recording medium. 3 On a single base material, multiple ink layers that belong to yellow and have mutually different reflection densities, multiple ink layers that belong to magenta and have mutually different reflection densities, and multiple ink layers that belong to cyan and have mutually different reflection densities. The multi-tone thermal transfer recording medium according to claim 1, wherein a plurality of ink layers are arranged side by side.
JP57183233A 1982-10-18 1982-10-18 Multi-gradation thermosensitive transfer recording medium Granted JPS5971896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57183233A JPS5971896A (en) 1982-10-18 1982-10-18 Multi-gradation thermosensitive transfer recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57183233A JPS5971896A (en) 1982-10-18 1982-10-18 Multi-gradation thermosensitive transfer recording medium

Publications (2)

Publication Number Publication Date
JPS5971896A JPS5971896A (en) 1984-04-23
JPH0433632B2 true JPH0433632B2 (en) 1992-06-03

Family

ID=16132103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57183233A Granted JPS5971896A (en) 1982-10-18 1982-10-18 Multi-gradation thermosensitive transfer recording medium

Country Status (1)

Country Link
JP (1) JPS5971896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064105A1 (en) * 2014-10-23 2016-04-28 주식회사 에스엠하이테크 Smd type complex micro fuse having temperature fuse function, and manufacturing method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729483B2 (en) * 1985-06-27 1995-04-05 沖電気工業株式会社 Ink ribbon for impact printer
JPH0755583B2 (en) * 1985-07-22 1995-06-14 大日本印刷株式会社 Thermal transfer sheet
JPH0717141A (en) * 1992-12-11 1995-01-20 Tektronix Inc Thermal transfer printing medium
JP2963056B2 (en) * 1996-07-29 1999-10-12 大日本印刷株式会社 Image forming method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939595A (en) * 1982-08-30 1984-03-03 Mitsubishi Paper Mills Ltd Thermal transfer recording material for gradation images

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939595A (en) * 1982-08-30 1984-03-03 Mitsubishi Paper Mills Ltd Thermal transfer recording material for gradation images

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064105A1 (en) * 2014-10-23 2016-04-28 주식회사 에스엠하이테크 Smd type complex micro fuse having temperature fuse function, and manufacturing method therefor

Also Published As

Publication number Publication date
JPS5971896A (en) 1984-04-23

Similar Documents

Publication Publication Date Title
CA1198591A (en) Heat-sensitive color transfer recording media
US4572684A (en) Heat-sensitive color transfer ribbon
JPH01258987A (en) Thermal transfer recording medium
EP0198505B1 (en) Heat-sensitive transfer sheet
US4853274A (en) Thermal transfer material
JPH0433632B2 (en)
US5700584A (en) Thermal transfer recording medium
JPS6365029B2 (en)
JPH038959B2 (en)
JPS6365030B2 (en)
US4615932A (en) Multi-gradation heat sensitive transfer medium
US5376432A (en) Thermal transfer sheet
JP5556311B2 (en) Sublimation thermal transfer method and information leakage prevention system
EP0158686B1 (en) Multi-gradation heat sensitive transfer medium
US4931123A (en) Heat-sensitive color transfer recording medium
JP2570260B2 (en) Thermal transfer recording medium
CA1236300A (en) Multi-gradation heat sensitive transfer medium
JP3114977B2 (en) Thermal transfer sheet
JP3357961B2 (en) Thermal transfer sheet
JP3055800B2 (en) Thermal transfer sheet
JPH01271289A (en) Melting type thermal transfer ink image receiving sheet
JP2922734B2 (en) Thermal transfer recording medium
JPH0717142A (en) Color thermal transfer recording method
JPS62279984A (en) Thermal transfer recording material
JPH01263081A (en) Thermal transfer image receiving sheet