[go: up one dir, main page]

JPH04335133A - Apparatus for setting evaluating range of machined surface - Google Patents

Apparatus for setting evaluating range of machined surface

Info

Publication number
JPH04335133A
JPH04335133A JP13225291A JP13225291A JPH04335133A JP H04335133 A JPH04335133 A JP H04335133A JP 13225291 A JP13225291 A JP 13225291A JP 13225291 A JP13225291 A JP 13225291A JP H04335133 A JPH04335133 A JP H04335133A
Authority
JP
Japan
Prior art keywords
evaluation
machined surface
time
signal
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13225291A
Other languages
Japanese (ja)
Inventor
Takatsugu Furukawa
考次 古川
Ukyo Mikoshiba
御子柴 佑恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP13225291A priority Critical patent/JPH04335133A/en
Publication of JPH04335133A publication Critical patent/JPH04335133A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To set the evaluating range automatically without an error when a machined surface is evaluated. CONSTITUTION:The machined surface of an aluminum disk 2 is scanned with laser light in the direction of an arrow A. The diffracted light of the laser light is used for evaluating the machined surface. The regular reflected light is used for setting the evaluating range. The signal I00 of the regular reflected light is suddenly changed at an edge part 2a where the signal reaches the machined surface from a through hole 2H of the aluminum disk 2 during the scanning. The sudden change is captured with a high-pass filter 22, and this time point is made to be a reference time point. An evaluation-starting/finishing-signal forming part 23 forms an evaluation starting signal S and an evaluation finishing signal E with the reference time point as a reference.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鏡面切削等の加工を行
ったとき、その加工面を評価することにより加工具の寿
命や加工欠陥を見出す加工面評価手段において、当該加
工面の評価範囲を定める加工面評価範囲の設定装置に関
する。
[Industrial Application Field] The present invention provides a machined surface evaluation means for determining the life of a processing tool and processing defects by evaluating the machined surface when processing such as mirror cutting is performed, and the evaluation range of the machined surface. The present invention relates to a device for setting a machined surface evaluation range.

【0002】0002

【従来の技術】アルミニュームデイスク基板等の被加工
物に例えば精密な鏡面加工を施す場合、ダイヤモンドバ
イト等の加工具が用いられる。この場合、バイトが摩耗
していると切削面が粗くなり、所望の鏡面に仕上げるこ
とはできず、不良品を作り出すこととなる。又、バイト
が摩耗していなくてもバイトが異物を引きずることによ
り鏡面に微細な引っ掻き傷を生じ不良品を作り出す場合
がある。このため、仕上げられた被加工物の加工面を検
査してバイトの摩耗、引っ掻き傷の有無等をチエックす
る加工面評価が行われている。この加工面評価には種々
の手段があるが、加工面をレーザビーム等の光線で走査
する手段が一般に採用されている。即ち、バイトで鏡面
加工を行う場合、バイトの刃先で加工面に極微小な溝(
カッターマーク)ができるので、加工面に光線を照射し
、その回析光を電気信号に変換し、これを適宜処理する
ことにより加工面評価を行う。
2. Description of the Related Art When performing precise mirror finishing on a workpiece such as an aluminum disk substrate, a processing tool such as a diamond cutting tool is used. In this case, if the cutting tool is worn out, the cut surface will become rough, making it impossible to achieve the desired mirror finish, resulting in defective products. Furthermore, even if the cutting tool is not worn, the cutting tool may drag foreign matter and cause minute scratches on the mirror surface, resulting in defective products. For this reason, a machined surface evaluation is performed in which the machined surface of a finished workpiece is inspected to check for wear of the tool bit, presence of scratches, and the like. Although there are various methods for evaluating the processed surface, a method that scans the processed surface with a light beam such as a laser beam is generally adopted. In other words, when performing mirror finishing with a cutting tool, the cutting edge of the cutting tool creates extremely small grooves (
Cutter marks) are formed, so the machined surface is evaluated by irradiating the machined surface with a light beam, converting the diffracted light into an electrical signal, and processing this as appropriate.

【0003】0003

【発明が解決しようとする課題】ところで、被加工物に
は種々の種類、寸法のものがあるので、加工面を光線で
走査する範囲、即ち加工面評価範囲は被加工物の種類や
寸法毎に異なる。したがって、被加工物の種類や寸法が
変わる度に加工面評価範囲の設定値を人手により変更す
る必要があり面倒であった。さらに、このように設定値
を与えても、加工面評価手段において光線の送受を行う
センサヘッドと加工面との間に走査方向における相対的
位置ずれがあると評価範囲に誤差を生じるという問題も
あった。本発明の目的は、上記従来技術における課題を
解決し、自動的に、かつ、誤差を生じることなく加工面
評価範囲を設定することができる加工面評価範囲の設定
装置を提供するにある。
[Problems to be Solved by the Invention] By the way, since there are various types and sizes of workpieces, the range in which the machined surface is scanned with a light beam, that is, the range for evaluating the machined surface, varies depending on the type and size of the workpiece. different. Therefore, it is necessary to manually change the set value of the machined surface evaluation range every time the type or size of the workpiece changes, which is troublesome. Furthermore, even if set values are given in this way, if there is a relative positional shift in the scanning direction between the sensor head that sends and receives light beams in the machined surface evaluation means and the machined surface, there is a problem that errors will occur in the evaluation range. there were. SUMMARY OF THE INVENTION An object of the present invention is to provide a machined surface evaluation range setting device that solves the problems in the prior art described above and can automatically set a machined surface evaluation range without causing errors.

【0004】0004

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、被加工物の加工面の所定範囲を光線で所
定方向に走査し、その反射光線を用いて当該加工面の評
価を行うものにおいて、前記反射光線のうちの正反射光
線の光量を検出する第1の検出手段と、前記加工面の走
査中前記第1の検出手段の検出値の急激な変化を検出す
る第2の検出手段と、この第2の検出手段で最初に当該
急激な変化が検出された時点を基準時点として前記加工
面の評価時間を設定する評価時間設定手段とを設けたこ
とを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention scans a predetermined range of a machined surface of a workpiece in a predetermined direction with a light beam, and evaluates the machined surface using the reflected light beam. A first detection means for detecting the amount of specularly reflected light among the reflected light rays, and a second detection means for detecting a sudden change in the detection value of the first detection means during scanning of the processed surface. The present invention is characterized in that it is provided with a detection means, and an evaluation time setting means for setting an evaluation time of the machined surface using the time point at which the sudden change is first detected by the second detection means as a reference time point.

【0005】[0005]

【作用】被加工物の加工面に光線を照射した場合、その
反射光線には正反射光線と前述の回析光線とが存在する
が、本発明では、加工面評価範囲の設定に正反射光線を
用いてその光量を検出し、加工面の走査中、検出した光
量が急激に変化したとき、その時点を基準時点とし、こ
れを基準として任意に走査時間を設定する。走査速度は
一定であるので、走査時間の設定は加工面評価範囲の設
定となる。
[Operation] When a light beam is irradiated onto the machined surface of a workpiece, the reflected light includes specularly reflected rays and the aforementioned diffraction rays. is used to detect the amount of light, and when the detected amount of light changes rapidly during scanning of the processed surface, that time is taken as a reference time, and the scanning time is arbitrarily set based on this time. Since the scanning speed is constant, the setting of the scanning time is the setting of the machined surface evaluation range.

【0006】[0006]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。図1は本発明の実施例に係る加工面評価範囲の設
定装置を含む加工面評価装置のブロック図である。図で
、1は超精密旋盤の主軸チャック、2はこの主軸チャッ
ク1に装着された加工済みのアルミデイスクを示す。 アルミデイスク2の中央にはこれを実際に使用する場合
相手機器に装着するための貫通孔2Hが形成されている
。2aは貫通孔2Hの縁部、2bはアルミデイスク2の
外縁部を示す。3は加工面評価装置であり、以下の構成
を有する。4はレーザ光を出力するレーザダイオード、
5はその駆動装置、6はレーザ光を平行光とするコリメ
ータレンズ、7はレーザ光を約1mm径の光線とするピ
ンホール、8は反射光を受光してその受光に比例した電
気信号を出力するフォトダイオードである。レーザダイ
オード4、コリメータレンズ6、ピンホール7、および
各フォトダイオード8によりセンサヘッド9が構成され
る。10は各フォトダイオード8のそれぞれに接続され
た増幅器である。11は2つの増幅器10の出力を加算
する加算器、12は所定時間内の加算値を平均化する平
均化回路、13は比較器、14は所定の設定値が設定さ
れる設定部である。15は入力信号中の高周波成分のみ
を通過させるハイ・パス・フィルタ、16は平均化回路
、17は比較器、18は設定値の設定部である。19は
ハイ・パス・フィルタ15の出力のピーク値を検出する
ピーク検出器、20は比較器、21は設定値の設定部で
ある。22はハイ・パス・フィルタ、23は加工面の評
価を開始する評価開始信号Sおよび加工面の評価を終了
する評価終了信号Eを作成する評価開始・終了信号作成
部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the illustrated embodiments. FIG. 1 is a block diagram of a machined surface evaluation device including a machined surface evaluation range setting device according to an embodiment of the present invention. In the figure, 1 indicates a spindle chuck of an ultra-precision lathe, and 2 indicates a machined aluminum disk attached to this spindle chuck 1. A through hole 2H is formed in the center of the aluminum disk 2 for attaching it to a mating device when it is actually used. 2a indicates the edge of the through hole 2H, and 2b indicates the outer edge of the aluminum disk 2. 3 is a machined surface evaluation device, which has the following configuration. 4 is a laser diode that outputs laser light;
5 is a driving device thereof, 6 is a collimator lens that converts the laser beam into parallel light, 7 is a pinhole that converts the laser beam into a beam with a diameter of about 1 mm, and 8 is a device that receives reflected light and outputs an electric signal proportional to the received light. It is a photodiode that A sensor head 9 is configured by the laser diode 4, the collimator lens 6, the pinhole 7, and each photodiode 8. 10 is an amplifier connected to each photodiode 8, respectively. 11 is an adder that adds the outputs of the two amplifiers 10; 12 is an averaging circuit that averages the summed values within a predetermined time; 13 is a comparator; and 14 is a setting section in which a predetermined setting value is set. 15 is a high pass filter that passes only high frequency components in the input signal; 16 is an averaging circuit; 17 is a comparator; and 18 is a set value setting section. 19 is a peak detector for detecting the peak value of the output of the high pass filter 15; 20 is a comparator; and 21 is a set value setting section. 22 is a high pass filter, and 23 is an evaluation start/end signal generating section that generates an evaluation start signal S for starting the evaluation of the machined surface and an evaluation end signal E for terminating the evaluation of the machined surface.

【0007】次に、本実施例の動作を説明する。走査開
始時におけるセンサヘッド9とアルミデイスク2との位
置関係は、ピンホール7から放射されたレーザ光が貫通
孔2Hに位置するように関係づけられている。このレー
ザ光の位置は貫通孔2Hのどの位置であってもよい。次
いで、このレーザ光により矢印Aに示すようにアルミデ
イスク2の半径方向にその加工面の走査が開始される。 この走査はアルミデイスク2とセンサヘッド9の相対的
移動により行われるが、走査速度は一定である。前述の
ように、レーザ光は加工面のカッターマークに照射され
、反射光R00、R10、R20となる。反射光R00
は正反射光、反射光R10、R20は回析光であり、こ
れらの反射光はそれぞれフォトダイオード8に入射して
その入射光量に比例した電気信号I00、I10、I2
0に変換され増幅器10でそれぞれ増幅される。
Next, the operation of this embodiment will be explained. The positional relationship between the sensor head 9 and the aluminum disk 2 at the start of scanning is such that the laser beam emitted from the pinhole 7 is located in the through hole 2H. The position of this laser beam may be any position in the through hole 2H. Next, the laser beam starts scanning the processed surface of the aluminum disk 2 in the radial direction as shown by arrow A. This scanning is performed by relative movement of the aluminum disk 2 and sensor head 9, but the scanning speed is constant. As described above, the laser beam is irradiated onto the cutter mark on the processed surface, resulting in reflected beams R00, R10, and R20. Reflected light R00
is specularly reflected light, and reflected lights R10 and R20 are diffracted lights, and these reflected lights respectively enter the photodiode 8 and generate electrical signals I00, I10, I2 proportional to the amount of incident light.
0 and amplified by the amplifier 10.

【0008】ここで、加工面評価の概略を説明する。回
析光の信号I10、I20は増幅後、加算器11により
加算され、加算信号I12として平均化回路12および
ハイ・パス・フィルタ15に入力される。平均化回路1
2は評価開始信号Sが入力された後評価終了信号Eが入
力されるまでの間に入力された信号I12の平均値I1
3を求める。比較器13はこの平均値I13を設定部1
4に設定されている設定値と比較し、その結果を判定信
号Xとして出力する。平均値I13はバイトの摩耗とと
もに増大するので、判定信号Xが設定値を超えたことを
示す信号となれば、バイトの摩耗が進行していると判断
される。一方、ハイ・パス・フィルタ15に入力された
加算信号I12はその高周波成分のみが取出され、この
高周波信号(脈動信号)は上記平均化回路12と同様に
平均化回路16で平均値I14として平均化され、この
平均値I14は比較器17で設定値と比較される。比較
の結果は判定信号Yとして出力される。平均値I14も
バイトの摩耗とともに増大するので、判定信号Yが設定
値を超えたことを示す信号となれば、バイトの摩耗が進
行していると判断され、この判定信号Yおよび前記判定
信号Xによりバイト摩耗に対する総合判定がなされる。 上記ハイ・パス・フィルタ15の高周波信号はピーク検
出器19にも入力され、ここで、評価開始信号Sと評価
終了信号Eとの間に入力された信号の最大ピーク値(脈
動信号の最大振幅)I15が求められ、比較器20で設
定値と比較される。比較器20の比較の結果は判定信号
Zとして出力される。最大ピーク値I15は加工面の欠
陥を判定する信号であり、判定信号Zが設定値を超えた
ことを示す信号となれば、加工面に引っ掻き傷等が存在
していると判断される。
[0008] Here, the outline of machined surface evaluation will be explained. After the diffraction light signals I10 and I20 are amplified, they are added by an adder 11 and inputted to an averaging circuit 12 and a high pass filter 15 as a summed signal I12. Averaging circuit 1
2 is the average value I1 of the signal I12 input after the evaluation start signal S is input until the evaluation end signal E is input.
Find 3. The comparator 13 sets this average value I13 to the setting unit 1.
4 and outputs the result as a determination signal X. Since the average value I13 increases as the cutting tool wears down, if the determination signal X becomes a signal indicating that it exceeds the set value, it is determined that the cutting tool wear is progressing. On the other hand, only the high frequency component of the addition signal I12 inputted to the high pass filter 15 is extracted, and this high frequency signal (pulsating signal) is averaged as an average value I14 in the averaging circuit 16 in the same way as the averaging circuit 12. This average value I14 is compared with a set value in a comparator 17. The comparison result is output as a determination signal Y. Since the average value I14 also increases as the cutting tool wears, if the judgment signal Y becomes a signal indicating that it exceeds the set value, it is determined that the cutting tool wear is progressing, and this judgment signal Y and the judgment signal X A comprehensive judgment regarding tool wear is made. The high frequency signal of the high pass filter 15 is also input to the peak detector 19, where it detects the maximum peak value (maximum amplitude of the pulsating signal) of the signal input between the evaluation start signal S and the evaluation end signal E. ) I15 is determined and compared with the set value by the comparator 20. The comparison result of the comparator 20 is output as a determination signal Z. The maximum peak value I15 is a signal for determining defects on the machined surface, and if the determination signal Z becomes a signal indicating that it exceeds a set value, it is determined that a scratch or the like exists on the machined surface.

【0009】次に、上記加工面の評価に用いられる評価
開始信号Sと評価終了信号Eの作成について、図2、3
に示す波形図を参照しながら説明する。増幅器10から
出力される正反射光の信号I00は、図2の波形I00
で示すように、走査開始時は貫通孔2Hの反射光である
ので低レベルであるが、走査が進行してレーザ光が縁部
2aに達するとアルミデイスク2の加工面に反射されて
急速に増大し、その後ほぼ一定値となる。この増大時点
で、ハイ・パス・フィルタ22は図2の波形I01に示
すようにその変化分の信号I01を出力する。走査がさ
らに進行し、レーザ光がアルミデイスク2の外縁部2b
を外れると、信号I00は図2に示すように急速に低下
して元の低レベルに戻る。この減少時点でも、ハイ・パ
ス・フィルタ22は図2に示すように、その変化分の信
号I01(最初の信号とは逆極性となる)を出力する。 評価開始・終了信号作成部23はハイ・パス・フィルタ
22の最初の出力信号I01を入力すると、この信号に
より図2に示すように、評価開始信号S(パルス信号)
を作成して出力し、又、次の出力信号I01により図2
に示すように評価終了信号E(パルス信号)を作成して
出力する。この両信号S、Eが平均化回路12、16お
よびピーク検出器19に入力される。即ち、評価開始信
号Sの出力から評価終了信号Eの出力までの時間が評価
時間となり、走査速度が一定であるから、当該評価時間
が加工面評価範囲となる。上記の場合、評価時間は加工
面走査時間と一致し、加工面評価範囲はアルミデイスク
2の縁部2aから外縁部2bまでの間となる。しかしな
がら、加工面評価範囲は必ずしも上記の範囲に限ること
はなく、任意に選定することができる。即ち、評価開始
・終了信号作成部23にタイマ回路を備えておき、ハイ
・パス・フィルタ22からの最初の信号I01の入力時
点を基準時点とし、この基準時点から、図2に示す時間
t後に評価開始信号Sを作成出力し、かつ、前記基準時
点から時間T後に評価終了信号Eを作成出力するように
してもよい。この手段は、アルミデイスク2の縁部2a
から外縁部2bまでを全部走査しなくても加工面評価が
可能である場合に適用できる。
Next, FIGS. 2 and 3 show how to create the evaluation start signal S and the evaluation end signal E used for evaluating the machined surface.
This will be explained with reference to the waveform diagram shown in FIG. The specularly reflected light signal I00 output from the amplifier 10 has a waveform I00 in FIG.
As shown in , the level is low at the start of scanning because it is the reflected light from the through hole 2H, but as the scanning progresses and the laser light reaches the edge 2a, it is reflected by the machined surface of the aluminum disk 2 and rapidly increases. It increases and then becomes an almost constant value. At this point of increase, the high pass filter 22 outputs a signal I01 corresponding to the change, as shown in waveform I01 of FIG. As the scanning progresses further, the laser beam hits the outer edge 2b of the aluminum disk 2.
Once the signal I00 is out of the range, the signal I00 rapidly drops back to its original low level as shown in FIG. Even at this point of decrease, the high pass filter 22 outputs the signal I01 corresponding to the change (having the opposite polarity to the initial signal), as shown in FIG. When the evaluation start/end signal generation unit 23 receives the first output signal I01 of the high pass filter 22, this signal generates an evaluation start signal S (pulse signal) as shown in FIG.
is created and output, and the following output signal I01 is used as shown in Figure 2.
An evaluation end signal E (pulse signal) is created and output as shown in FIG. Both signals S and E are input to averaging circuits 12 and 16 and a peak detector 19. That is, the time from the output of the evaluation start signal S to the output of the evaluation end signal E becomes the evaluation time, and since the scanning speed is constant, the evaluation time becomes the machined surface evaluation range. In the above case, the evaluation time coincides with the machined surface scanning time, and the machined surface evaluation range is from the edge 2a of the aluminum disk 2 to the outer edge 2b. However, the processed surface evaluation range is not necessarily limited to the above range, and can be arbitrarily selected. That is, the evaluation start/end signal generation unit 23 is equipped with a timer circuit, and the input time of the first signal I01 from the high pass filter 22 is set as a reference time, and from this reference time, after the time t shown in FIG. The evaluation start signal S may be generated and output, and the evaluation end signal E may be generated and output after a time T from the reference time. This means is applied to the edge 2a of the aluminum disk 2.
This method can be applied when it is possible to evaluate the machined surface without scanning the entire area from the outer edge 2b to the outer edge 2b.

【0010】上記実施例では、ハイ・パス・フィルタ2
2を設け、信号I00の変化分を取出すことにより基準
時点を決定する手段について説明した。しかし、ハイ・
パス・フィルタ22の代わりに比較器を用いて加工面評
価範囲を設定することもできる。図3はこの手段を説明
する波形図である。図3で、I00は上記と同じく正反
射光の信号、ITHは比較器に設定された閾値である。 走査が縁部2aに達し、信号I00が閾値ITHを超え
て増大すると、当該比較器の出力信号は例えば高レベル
信号となり、信号I00が閾値ITH以下に減少すると
低レベル信号となる。評価開始・終了信号作成部23は
比較器の出力信号の立上がりで評価開始信号Sを作成出
力し、立下がりで評価終了信号Eを作成出力する。これ
により、アルミデイスク2の縁部2aから外縁部2bま
での全部を加工面評価範囲として設定することとなる。 勿論、この例の場合にも、評価開始・終了信号作成部2
3にタイマ回路を備え、比較器の出力信号の立上がり時
点を基準時点として評価時間を任意に設定することもで
きる。このように本実施例では、正反射光の光量の最初
の急激な変化を捉えて加工面評価範囲の基準時点とし、
これを基準に次の光量急変時点までを、又はタイマ回路
で定められた時間を評価時間とするようにしたので、ど
のような寸法のアルミデイスクに対しても加工面評価範
囲を自動的、かつ、誤差なく設定することができる。な
お、上記実施例の説明では、被加工物としてアルミデイ
スクを例示して説明したが、どのような被加工物であっ
ても適用可能であるのは明らかである。
In the above embodiment, the high pass filter 2
2 is provided and the reference time point is determined by extracting the change in the signal I00. However, high
It is also possible to use a comparator instead of the pass filter 22 to set the machined surface evaluation range. FIG. 3 is a waveform diagram illustrating this means. In FIG. 3, I00 is the specularly reflected light signal as described above, and ITH is the threshold value set in the comparator. When the scan reaches the edge 2a and the signal I00 increases above the threshold ITH, the output signal of the comparator becomes, for example, a high level signal, and when the signal I00 decreases below the threshold ITH it becomes a low level signal. The evaluation start/end signal generating section 23 generates and outputs an evaluation start signal S when the output signal of the comparator rises, and generates and outputs an evaluation end signal E when the output signal of the comparator falls. As a result, the entire area from the edge 2a to the outer edge 2b of the aluminum disk 2 is set as the processed surface evaluation range. Of course, also in this example, the evaluation start/end signal generation unit 2
3 is provided with a timer circuit, and the evaluation time can be arbitrarily set using the rise time of the output signal of the comparator as a reference time. In this example, the first rapid change in the amount of specularly reflected light is captured and used as the reference point for the processed surface evaluation range.
Based on this, the evaluation time is the time until the next sudden change in light intensity, or the time determined by the timer circuit, so that the processing surface evaluation range can be automatically and easily applied to aluminum disks of any size. , can be set without error. In the above embodiments, an aluminum disk was used as an example of the workpiece, but it is obvious that the invention can be applied to any workpiece.

【0011】[0011]

【発明の効果】以上述べたように、本発明では、正反射
光の光量の最初の急変時点を基準時点として評価時間を
定めるようにしたので、被加工物の種類や寸法の如何に
かかわらず、加工面評価範囲を自動的に、かつ、誤差な
く設定することができる。
[Effects of the Invention] As described above, in the present invention, the evaluation time is determined using the first sudden change in the amount of specularly reflected light as the reference point, regardless of the type or size of the workpiece. , the machined surface evaluation range can be set automatically and without error.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例に係る加工面評価範囲の設定装
置のブロック図である。
FIG. 1 is a block diagram of a machined surface evaluation range setting device according to an embodiment of the present invention.

【図2】加工面評価範囲の設定動作を説明する波形図で
ある。
FIG. 2 is a waveform diagram illustrating an operation for setting a machined surface evaluation range.

【図3】加工面評価範囲の設定動作を説明する波形図で
ある。
FIG. 3 is a waveform diagram illustrating an operation for setting a machined surface evaluation range.

【符号の説明】[Explanation of symbols]

2  アルミデイスク 3  加工面評価装置 9  センサヘッド 22  ハイ・パス・フィルタ 23  評価開始・終了信号作成部 S  評価開始信号 E  評価終了信号 I00  正反射光信号 2 Aluminum disk 3 Machined surface evaluation device 9 Sensor head 22 High pass filter 23 Evaluation start/end signal creation unit S Evaluation start signal E Evaluation end signal I00 Specular reflection light signal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  被加工物の加工面の所定範囲を光線で
所定方向に走査し、その反射光線を用いて当該加工面の
評価を行うものにおいて、前記反射光線のうちの正反射
光線の光量を検出する第1の検出手段と、前記加工面の
走査中前記第1の検出手段の検出値の急激な変化を検出
する第2の検出手段と、この第2の検出手段で最初に当
該急激な変化が検出された時点を基準時点として前記加
工面の評価時間を設定する評価時間設定手段とを設けた
ことを特徴とする加工面評価範囲の設定装置。
Claim 1: A method in which a predetermined range of a machined surface of a workpiece is scanned in a predetermined direction with a light beam, and the reflected light beam is used to evaluate the machined surface, the amount of light of a specularly reflected light beam among the reflected light beams. a first detection means for detecting a sudden change in the detection value of the first detection means during scanning of the machined surface; and evaluation time setting means for setting the evaluation time of the machined surface using a point in time when a change is detected as a reference time.
【請求項2】  請求項1において、前記第2の検出手
段は、高周波濾波器であることを特徴とする加工面評価
範囲の設定装置。
2. The machined surface evaluation range setting device according to claim 1, wherein the second detection means is a high frequency filter.
【請求項3】  請求項1において、前記第2の検出手
段は、前記第1の検出手段で検出された検出値と所定レ
ベルとを比較する比較手段であることを特徴とする加工
面評価範囲の設定装置。
3. The machined surface evaluation range according to claim 1, wherein the second detection means is a comparison means for comparing the detection value detected by the first detection means with a predetermined level. Setting device.
【請求項4】  請求項1において、前記評価時間設定
手段は、前記基準時点から前記第2の検出手段で2番目
に急激な変化が検出された第2の時点までの時間を評価
時間として設定することを特徴とする加工面評価範囲の
設定装置。
4. In claim 1, the evaluation time setting means sets the time from the reference time to a second time point at which the second rapid change is detected by the second detection means as the evaluation time. A device for setting a machined surface evaluation range.
【請求項5】  請求項1において、前記評価時間設定
手段は、前記基準時点からの、又はこの基準時点から所
定時間経過後の時点からの所定時間を評価時間として設
定することを特徴とする加工面評価範囲の設定装置。
5. The processing according to claim 1, wherein the evaluation time setting means sets a predetermined time from the reference time or from a time after a predetermined time has elapsed from the reference time as the evaluation time. A device for setting the surface evaluation range.
JP13225291A 1991-05-09 1991-05-09 Apparatus for setting evaluating range of machined surface Withdrawn JPH04335133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13225291A JPH04335133A (en) 1991-05-09 1991-05-09 Apparatus for setting evaluating range of machined surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13225291A JPH04335133A (en) 1991-05-09 1991-05-09 Apparatus for setting evaluating range of machined surface

Publications (1)

Publication Number Publication Date
JPH04335133A true JPH04335133A (en) 1992-11-24

Family

ID=15076932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13225291A Withdrawn JPH04335133A (en) 1991-05-09 1991-05-09 Apparatus for setting evaluating range of machined surface

Country Status (1)

Country Link
JP (1) JPH04335133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532354A (en) * 2018-07-27 2021-11-25 ユナイテッド・ステイツ・ジプサム・カンパニー Wallboard cuts, folds, and edge appearance test procedures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532354A (en) * 2018-07-27 2021-11-25 ユナイテッド・ステイツ・ジプサム・カンパニー Wallboard cuts, folds, and edge appearance test procedures

Similar Documents

Publication Publication Date Title
US4031368A (en) Adaptive control of cutting machining operations
MY137596A (en) Test head for optically inspecting workpieces
Wong et al. Tool condition monitoring using laser scatter pattern
EP0956498A1 (en) Method and apparatus for checking the condition of a protective glass in connection with laser machining
US20150220077A1 (en) Method and device for measuring a tool received in a workpiece processing machine
GB1510299A (en) Method for adaptive control of machining operations
JP2008543572A5 (en)
Ryabov et al. Laser displacement meter application for milling diagnostics
JPH04335133A (en) Apparatus for setting evaluating range of machined surface
KR20190008644A (en) Laser cleaning device having a function of checking cleaning quality and method thereof
CN116921875A (en) Laser engraving and cutting device and laser engraving and cutting system
JPH08174255A (en) Focus detector for laser beam machine
JPH05334837A (en) Disk outer peripheral part inspecting device
JPH0557566A (en) Machining unit
JPH10249560A (en) Laser beam machining method and equipment therefor
JPH0616981B2 (en) Tool loss detector
JP2644642B2 (en) Blade position detecting device and method for determining its reliability
KR101984647B1 (en) Laser cleaning device having a function of checking cleaning quality and method thereof
JP7611288B2 (en) Device and method for non-contact detection of grinding wheel clogging during machining
JPS58125388A (en) Monitoring method of working state by laser
JPH0475854A (en) Perceiving sensor for tool life
JPH0575051B2 (en)
JP2971003B2 (en) Device to detect dirt on lens of laser repair device
JPH0516059A (en) Cutting edge position detecting device for cutting tool
Narayanaperumal et al. Evaluation of the working surface of the grinding wheel using speckle image analysis

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806