[go: up one dir, main page]

JPH04335044A - Tetrafluoroethylene resin foam and its production - Google Patents

Tetrafluoroethylene resin foam and its production

Info

Publication number
JPH04335044A
JPH04335044A JP13558291A JP13558291A JPH04335044A JP H04335044 A JPH04335044 A JP H04335044A JP 13558291 A JP13558291 A JP 13558291A JP 13558291 A JP13558291 A JP 13558291A JP H04335044 A JPH04335044 A JP H04335044A
Authority
JP
Japan
Prior art keywords
spheres
ptfe
tetrafluoroethylene resin
molding
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13558291A
Other languages
Japanese (ja)
Other versions
JP3198121B2 (en
Inventor
Yoshiaki Sato
喜昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP13558291A priority Critical patent/JP3198121B2/en
Publication of JPH04335044A publication Critical patent/JPH04335044A/en
Application granted granted Critical
Publication of JP3198121B2 publication Critical patent/JP3198121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a closed-cell tetrafluoroethylene resin foam of improved moldability and a process for producing the same. CONSTITUTION:A closed-cell foam having a very high void volume can be obtained by molding a mixture of unexpanded spheres containing a blowing agent with an unfired tetrafluoroethylene resin powder into any desired shape, expanding the spheres by heating the molding and three-dimensionally fiberizing the unfired tetrafluoroethylene resin by using the expansion pressure. Because the microfibers of tetrafluoroethylene resin in this molding are lowly oriented in a specified direction, the strengths of the molding differ less when measured along all the directions.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、電気絶縁材料などに
好適な四フッ化エチレン樹脂発泡体と、その製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a polytetrafluoroethylene resin foam suitable for electrical insulating materials and a method for producing the same.

【0002】0002

【従来の技術】四フッ化エチレン樹脂(以下PTFEと
称す)は、その優れた電気的特性、耐熱性、耐薬品性等
に基づき、種々の用途に広く用いられているが、これを
例えば電気絶縁材料として使用する場合には、電気的特
性をより向上させるため、多孔質化させて使用すること
が行われている。
[Prior Art] Tetrafluoroethylene resin (hereinafter referred to as PTFE) is widely used for various purposes based on its excellent electrical properties, heat resistance, chemical resistance, etc. When used as an insulating material, it is often made porous to further improve electrical properties.

【0003】多孔質PTFEの製造方法については、溶
融時におけるPTFEの粘度が著しく高いために、不活
性ガスの吹き込みによる物理的発泡、あるいはアゾジカ
ルボンアミド等の熱分解性発泡剤による化学発泡のよう
な一般の熱可塑性樹脂もしくは他のフッ素系樹脂におい
て行われている方法を適用することができず、特殊な方
法が採られている。その代表的なものを挙げると、例え
ば未焼成PTFEに抽出や溶解によって除去される物質
を混和して加圧成形した後、これらの物質を除去する方
法(特公昭35−13043号)、PTFEの微粉末に
ソルベントナフサ等の液体潤滑剤を添加し、この混和物
を圧延や押出しなどの剪断力が加わる条件下で成形した
後、液体潤滑剤を除去し、次いで延伸して焼成する方法
(特公昭42−13560号、特公昭56−17216
号、特公昭57−30057号)、PTFEの未焼成成
形物を、ハロゲン化炭化水素、石油系炭化水素、アルコ
ール、ケトンなどのPTFEを濡らしうる液体中で延伸
させた後、焼成する方法などが知られている。
As for the manufacturing method of porous PTFE, since the viscosity of PTFE is extremely high when melted, there are methods such as physical foaming by blowing inert gas or chemical foaming using a thermally decomposable blowing agent such as azodicarbonamide. The methods used for general thermoplastic resins or other fluororesins cannot be applied, and special methods are used. Typical examples include, for example, a method in which unsintered PTFE is mixed with substances that can be removed by extraction or dissolution, pressure molded, and then these substances are removed (Japanese Patent Publication No. 35-13043); A method in which a liquid lubricant such as solvent naphtha is added to fine powder, the mixture is formed under conditions where shear force is applied, such as by rolling or extrusion, the liquid lubricant is removed, and then the mixture is stretched and fired (a special method). Publication No. 42-13560, Special Publication No. 56-17216
(Japanese Patent Publication No. 57-30057), a method in which an unfired PTFE molded product is stretched in a liquid that can wet PTFE, such as a halogenated hydrocarbon, petroleum hydrocarbon, alcohol, or ketone, and then fired. Are known.

【0004】このように、多孔質PTFEの製造方法と
して幾つかの方法が提案されているが、いずれの方法に
おいても得られる多孔質体は、連続気孔性のものとなる
。このため、わずかな圧縮力によっても内部の空孔が潰
れ、圧縮を受けた部分が非多孔質構造に変化しやすい。 その傾向は、誘電率を低下させるために空孔率を高めた
場合にとくに顕著である。したがって、例えばこれをテ
ープ状やシート状などに成形し、電線、プリント基板等
の絶縁体として用いると、特に誘電率等の電気的特性が
不安定になりやすく、きわめて取り扱いにくいという欠
点があった。
[0004] As described above, several methods have been proposed for producing porous PTFE, but the porous body obtained by any of the methods has continuous pores. Therefore, even a slight compressive force causes the internal pores to collapse, and the compressed portion tends to change into a non-porous structure. This tendency is particularly noticeable when the porosity is increased to lower the dielectric constant. Therefore, for example, when this material is formed into a tape or sheet shape and used as an insulator for electric wires, printed circuit boards, etc., the electrical properties such as the dielectric constant tend to become unstable, making it extremely difficult to handle. .

【0005】そこで、このような従来技術の欠点を改良
するものとして、本発明者は、窒素ガス、炭酸ガスなど
の不活性気体が内部に封入されたガラスあるいはシリカ
からなる中空球体をPTFE微粉末に混和し、これを圧
延などの剪断力が加わる条件下で成形加工することによ
り、母材であるPTFEを繊維質化させて中空球体を包
み込み、実質的に中空球体に封入された気体部分が空隙
部分として残る独立気孔性の多孔質構造にすることを既
に提案している(特公平1−25769号参照)。
[0005] Therefore, in order to improve the drawbacks of the prior art, the present inventor created a hollow sphere made of glass or silica in which an inert gas such as nitrogen gas or carbon dioxide gas is sealed, using PTFE fine powder. By molding this under conditions where shearing force is applied, such as rolling, the base material PTFE becomes fibrous and envelops the hollow sphere, and the gas portion enclosed in the hollow sphere is essentially It has already been proposed to create a porous structure with independent pores that remain as voids (see Japanese Patent Publication No. 1-25769).

【0006】[0006]

【発明が解決しようとする課題】上記構成の独立気孔性
多孔質PTFEにおいては、従来の連続気孔性多孔質P
TFEが有する欠点の大半は改善され、実用上の問題点
はほぼ解消されたが、より一層の低誘電率化を目的とし
て中空球体の配合量を大幅に増やした場合には、微小中
空球体間に存在するPTFEが少ないことから、成形加
工を行う際の圧縮力等が中空球体にかかりやすくなり、
そのため中空球体の破壊が生じて配合量の割りには電気
的特性が向上しないという課題が残されていた。
[Problems to be Solved by the Invention] In the closed-pore porous PTFE having the above structure, the conventional open-pore porous P
Most of the shortcomings of TFE have been improved and most of the practical problems have been eliminated, but when the amount of hollow spheres is significantly increased with the aim of lowering the dielectric constant, Since there is less PTFE present in the hollow sphere, compressive force during molding is more likely to be applied to the hollow sphere.
As a result, the problem remained that the hollow spheres were destroyed and the electrical properties were not improved in proportion to the amount added.

【0007】また、上記多孔質PTFEでは、圧延ある
いはペースト押出し等の成形加工工程において発生する
剪断力によりPTFE粒子を繊維質化し、それら微小繊
維によって中空球体を抱持するようになっているから、
成形品中に存在する無数の微小繊維は押出し方向、圧延
方向に強く配向する傾向がある。このような多孔質PT
FEのテープを絶縁材料として用いると、導体に巻き付
ける際に配向方向に沿って裂けやすいばかりか、焼成後
においても配向が残っているので、そのままではクラッ
クが生じやすい。このため、使用に際しては配向方向と
直角の方向にも圧延したり、あるいは焼成を繰り返すこ
とにより配向を緩和する必要があるなど、作業性は必ず
しも良いとはいえなかった。
[0007] Furthermore, in the above-mentioned porous PTFE, the PTFE particles are made into fibers by the shearing force generated during the forming process such as rolling or paste extrusion, and the hollow spheres are held by these fine fibers.
The countless fine fibers present in the molded article tend to be strongly oriented in the extrusion and rolling directions. Such porous PT
When an FE tape is used as an insulating material, it is not only easy to tear along the orientation direction when it is wrapped around a conductor, but also tends to crack due to the orientation remaining even after firing. For this reason, when used, it is necessary to relax the orientation by rolling in a direction perpendicular to the orientation direction or by repeating firing, and the workability is not necessarily good.

【0008】この発明は、これら従来技術の問題点に鑑
みなされたもので、独立気孔でありながら従来のものよ
りも低誘電率化が可能であり、しかも特定の方向への配
向が少なく成形加工性が向上したPTFE発泡体及び製
造方法の提供をその目的とする。
The present invention was developed in view of these problems in the prior art, and although it has independent pores, it is possible to have a lower dielectric constant than the prior art, and there is less orientation in a specific direction, making it easier to form and process. The object of the present invention is to provide a PTFE foam with improved properties and a manufacturing method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
、この発明によるPTFE発泡体では、発泡剤が封入さ
れた熱可塑性樹脂からなる多数の膨張性球体と、これら
膨張性球体の周囲にあってその膨張圧により結節間を連
結する微小繊維が延伸され三次元的に広がる微細繊維質
構造を形成してその空隙部分で該膨張性球体を包持する
四フッ化エチレン樹脂を備えた構成とする。
[Means for Solving the Problems] In order to achieve the above object, the PTFE foam according to the present invention includes a large number of expandable spheres made of a thermoplastic resin in which a blowing agent is encapsulated, and a foam that surrounds these expandable spheres. The microfibers connecting the nodules are stretched by the expansion pressure to form a three-dimensionally expanding microfibrous structure, and the expandable sphere is surrounded by the voids of the tetrafluoroethylene resin. do.

【0010】また、かかるPTFE発泡体は、未発泡状
態の発泡剤が封入された熱可塑性樹脂からなる球体と未
焼成四フッ化エチレン樹脂粉末の混和物を所定の形状に
成形した後、この成形物を発泡剤の発泡温度以上に加熱
して該球体を膨張させ、この膨張圧により未焼成四フッ
化エチレン樹脂の繊維質化を促進すると共に成形物中に
膨張性球体による独立気孔を形成せしめることによって
得られる。なお、このPTFE発泡体は、未焼成のまま
でも使用は可能であり、また膨張性球体を形成する熱可
塑性樹脂がPTFEの融点以上の耐熱性を有するもので
あれば、焼成してもよい。
[0010] Such PTFE foam is produced by molding a mixture of thermoplastic resin spheres encapsulating an unfoamed foaming agent and unfired tetrafluoroethylene resin powder into a predetermined shape, and then molding the mixture into a predetermined shape. The spheres are expanded by heating the object to a temperature higher than the foaming temperature of the blowing agent, and this expansion pressure promotes the formation of fibers in the unfired tetrafluoroethylene resin and forms closed pores in the molded object due to the expandable spheres. obtained by Note that this PTFE foam can be used in its unfired state, or it may be fired as long as the thermoplastic resin forming the expandable sphere has a heat resistance higher than the melting point of PTFE.

【0011】本発明において膨張性球体とは、内部に低
沸点の液体あるいは熱分解により気体を発生する化学発
泡剤を内包する球体で、外殻部分が熱可塑性樹脂からな
り、加熱により内部の発泡剤が気化して膨張したものを
いう。この膨張性球体の配合量は、発泡体の使用目的、
他の添加剤の有無等によって適宜選択されるため特に限
定はされないが、通常は、発泡前の混和物においてPT
FE粉末10重量部に対して0.1から90重量部の範
囲で用いられる。また、その球径についても同様に限定
されるものではなく、使用目的等に応じて膨張後の球径
で数ミクロンメートルから数百ミクロンメートル程度に
なるものが好適に用いられる。
[0011] In the present invention, an expandable sphere is a sphere that contains a low-boiling liquid or a chemical foaming agent that generates gas through thermal decomposition.The outer shell is made of thermoplastic resin, and the inside expands when heated. It refers to the substance that has expanded due to vaporization. The amount of the expandable spheres is determined by the purpose of use of the foam,
There is no particular limitation as it is selected appropriately depending on the presence or absence of other additives, but usually, PT
It is used in a range of 0.1 to 90 parts by weight per 10 parts by weight of FE powder. Further, the diameter of the sphere is not similarly limited, and a sphere having a diameter of several micrometers to several hundred micrometers after expansion is suitably used depending on the purpose of use.

【0012】上記膨張性球体の内部に封入される低沸点
液体の具体例としては、石油エーテル、イソブタン、ヘ
プタン、ヘキサンなどの炭化水素、モノクロロトリフロ
ロメタン、ジクロロジフロロメタン、トリクロロトリフ
ロロエタン、ジクロロテトラフロロエタンなどの低沸点
ハロゲン化炭化水素、あるいはメチルシラン等が挙げら
れる。また、化学発泡剤としては、アゾ系発泡剤として
アゾビスイソブチロニトリル、アゾジカルボンアミド、
ジエチルアゾジカルボキシレート、ジアゾアミノベンゼ
ン、アゾシクロヘキシルニトリル等、ヒドラジド系のも
のとしてベンゼンスルフォニルヒドラジド、p−トルエ
ンスルフォニルヒドラジド、p,p’−オキシビスベン
ゼンスルフォニルヒドラジド等、セミカルバジド系発泡
剤としてp,p’−オキシビスベンゼンスルフォニルセ
ミカルバジド、p−トルエンスルフォニルセミカルバジ
ド等、ニトロソ系発泡剤としてN,N’−ジニトロソペ
ンタメチレンテトラミン等の熱分解型の有機発泡剤、あ
るいは炭酸アンモニウム、重炭酸ナトリウム、亜硝酸ア
ンモニウムなどの無機発泡剤の使用が可能である。
Specific examples of the low-boiling liquid sealed inside the expandable sphere include petroleum ether, hydrocarbons such as isobutane, heptane, and hexane, monochlorotrifluoromethane, dichlorodifluoromethane, trichlorotrifluoroethane, Examples include low-boiling halogenated hydrocarbons such as dichlorotetrafluoroethane, methylsilane, and the like. In addition, as chemical blowing agents, azo-based blowing agents such as azobisisobutyronitrile, azodicarbonamide,
Diethyl azodicarboxylate, diazoaminobenzene, azocyclohexyl nitrile, etc.; hydrazide blowing agents such as benzenesulfonyl hydrazide, p-toluenesulfonyl hydrazide, p, p'-oxybisbenzenesulfonyl hydrazide; p,p semicarbazide blowing agents; '-Oxybisbenzenesulfonyl semicarbazide, p-toluenesulfonyl semicarbazide, etc.; pyrolytic organic blowing agents such as N,N'-dinitrosopentamethylenetetramine as a nitros foaming agent; or ammonium carbonate, sodium bicarbonate, ammonium nitrite. It is possible to use inorganic blowing agents such as.

【0013】そして、これら発泡剤を内包する熱可塑性
樹脂としては、例えばポリエチレン、ポリプロピレン、
ポリスチレン、ポリ塩化ビニリデン、ポリアクリロニト
リル、ポリアクリル酸エステル、ポリメタアクリル酸エ
ステル、熱溶融性フッ素樹脂等の単独重合体もしくは共
重合体などが使用可能であり、加熱により軟化して上記
発泡剤の気化を妨げないものであれば、これに限定され
ることはなく、その材質は、発泡体の使用目的、発泡剤
の種類などに応じて適宜選定される。
[0013] Examples of thermoplastic resins containing these blowing agents include polyethylene, polypropylene,
Homopolymers or copolymers of polystyrene, polyvinylidene chloride, polyacrylonitrile, polyacrylic esters, polymethacrylic esters, heat-melting fluororesins, etc. can be used, and they soften when heated to form the foaming agent. The material is not limited to this as long as it does not hinder vaporization, and the material is appropriately selected depending on the purpose of use of the foam, the type of foaming agent, etc.

【0014】また、本発明において、前記膨張性球体を
包持するPTFEは、結節間を連結する微小繊維が三次
元的に広がる微細繊維質構造を形成している。この三次
元的に広がる微細繊維質構造とは、ペースト押出しある
いは圧延等の成形加工時に加えられる力により、膨張性
球体を膨張させる前の成形物中にあって特定の方向に強
く配向していた無数の微小繊維が、膨張性球体の膨張に
よってあらゆる方向に延ばされ、その結果、特定方向の
配向性が大幅に減少したもので、発泡体の各方向の断面
において、網状構造が観測される多孔構造をいう。
[0014] Furthermore, in the present invention, the PTFE surrounding the expandable spheres forms a fine fibrous structure in which fine fibers connecting the nodules spread three-dimensionally. This fine fibrous structure that spreads three-dimensionally is a structure that is strongly oriented in a specific direction in the molded product before the expandable sphere is expanded by the force applied during molding processes such as paste extrusion or rolling. Countless microfibers are stretched in all directions by the expansion of the expandable sphere, and as a result, the orientation in a particular direction is greatly reduced, and a network structure is observed in the cross section of the foam in each direction. Refers to a porous structure.

【0015】[0015]

【作用】未焼成のPTFE微粉末は、例えば押出工程で
ダイから押し出される時、あるいはロールで圧延される
時や攪拌を受けた時のように、剪断力を受けると微小繊
維によって相互に結節が結合された微細な繊維状組織と
なる性質を備えている。この繊維化は、他の高分子材料
には見られない特異な性質で、押出し、圧延の方向に微
小繊維が強く配向する傾向があり、これが従来の独立気
孔性多孔質PTFEでは重要であると同時に、作業性を
低下させる原因にもなっていた。
[Function] When unfired PTFE fine powder is subjected to shearing force, for example, when it is extruded from a die in an extrusion process, rolled with rolls, or stirred, fine fibers form knots. It has the property of forming a bonded fine fibrous structure. This fiberization is a unique property not seen in other polymeric materials, and the microfibers tend to be strongly oriented in the direction of extrusion and rolling, which is considered to be important in conventional closed-cell porous PTFE. At the same time, it also caused a decrease in work efficiency.

【0016】これに対して、本発明によるPTFE発泡
体では、発泡剤が内部に封入された熱可塑性樹脂からな
る球体と未焼成PTFE微粉末の混和物を所望の形状に
成形した後、この成形物を加熱することにより発泡剤を
気化させて球体を膨張させ、この膨張圧によって球体周
囲に存在している未焼成PTFEを延伸し、繊維化をさ
らに促進するものである。この場合、球体は各々が膨張
するので、それぞれの球体の周囲にあつて押出あるいは
圧延の方向に配向していた無数の微小繊維が、その膨張
圧によっ実質的にあらゆる方向に延ばされる。その結果
、成形加工時に生じていた微小繊維の押出あるいは圧延
方向への強い配向が緩和され、結節を介して微小繊維が
三次元的に結合した繊維質構造となる。これにより、発
泡体の機械的強度は均質化されて裂けにくいものとなり
、従来のように配向を減少させるための工程が不要にな
る。
On the other hand, in the PTFE foam according to the present invention, a mixture of thermoplastic resin spheres in which a blowing agent is encapsulated and unfired PTFE fine powder is molded into a desired shape, and then this molding is performed. By heating the object, the foaming agent is vaporized to expand the sphere, and the expansion pressure stretches the unfired PTFE existing around the sphere, further promoting fiberization. In this case, each of the spheres expands, so that the countless microfibers surrounding each sphere and oriented in the direction of extrusion or rolling are elongated in virtually every direction by the expansion pressure. As a result, the strong orientation of the microfibers in the extrusion or rolling direction that occurred during the molding process is relaxed, resulting in a fibrous structure in which the microfibers are three-dimensionally bonded via nodes. This homogenizes the mechanical strength of the foam and makes it difficult to tear, eliminating the need for a conventional process for reducing orientation.

【0017】また、未膨張の球体をPTFE粉末と混合
するから大量充填が可能であり、そして成形後にこれを
加熱して膨張させるので、特に大量充填した場合にも膨
張した球体が外力によって破壊されることはなく、空隙
率の極めて高い発泡体を得ることができる。
Furthermore, since the unexpanded spheres are mixed with the PTFE powder, it is possible to fill them in large quantities, and since they are heated and expanded after molding, the expanded spheres will not be destroyed by external force, especially when a large quantity is filled. A foam with extremely high porosity can be obtained.

【0018】[0018]

【実施例】以下、本発明のPTFE発泡体について具体
例をもって説明するが、もちろん実施例に限定されるも
のではなく、この発明の技術思想内での変更実施は可能
である。
EXAMPLES The PTFE foam of the present invention will be explained below using specific examples, but of course the present invention is not limited to the examples and modifications can be made within the technical idea of the present invention.

【0019】液体イソブタンが内部に封入された塩化ビ
ニリデン−アクリロニトリル系共重合樹脂からなる未発
泡の球体(日本フィライト社製:エクスパンセルDU−
551、平均粒径5ミクロンメートル、膨張後の平均粒
径20ミクロンメートル)30重量部を、PTFEの固
形分に換算して70重量部のPTFEディスパージョン
(三井デュポンフロロケミカル社製:テフロン41J)
に加えて攪拌した後、この混合物から水分を除去し、こ
れに液体潤滑剤としてソルベントナフサを添加した。次
に、上記混和物をシート状に押し出し、このシートをさ
らに長手方向に圧延して厚さ50ミクロンメートルのテ
ープに成形した。そして、このテープに含まれるソルベ
ントナフサを、球体が膨張しない程度の温度に加熱して
除去した後、これを170℃の加熱炉で10秒間の加熱
を行い、上記未発泡の球体を膨張させた。この加熱によ
り、テープの厚さは50ミクロンメートルから200ミ
クロンメートルに増加し、本発明によるPTFE発泡体
を得た。
[0019] Unfoamed spheres made of vinylidene chloride-acrylonitrile copolymer resin with liquid isobutane sealed inside (manufactured by Nippon Philite Co., Ltd.: Expancel DU-
551, average particle size 5 micrometers, average particle size after expansion 20 micrometers) 30 parts by weight, converted to PTFE solid content, 70 parts by weight PTFE dispersion (Mitsui DuPont Fluorochemical Co., Ltd.: Teflon 41J)
After stirring, the mixture was dehydrated and solvent naphtha was added as a liquid lubricant. Next, the mixture was extruded into a sheet, and this sheet was further longitudinally rolled to form a tape having a thickness of 50 micrometers. The solvent naphtha contained in this tape was removed by heating to a temperature that would not cause the spheres to expand, and then heated for 10 seconds in a heating furnace at 170°C to expand the unfoamed spheres. . This heating increased the thickness of the tape from 50 micrometers to 200 micrometers, yielding a PTFE foam according to the invention.

【0020】図1は本発明によるPTFE発泡体である
加熱により球体を膨張させた後の状態、図2は膨張性球
体を膨張させる前の状態をそれぞれ示す電子顕微鏡写真
である。この写真から明らかなように、膨張性球体の膨
張により、PTFEの結節間を結合している微小繊維が
あらゆる方向に延伸されてその配向が緩和されると共に
、それら微小繊維間に保持されている膨張性球体の周囲
にはかなりの空隙部分が残り、膨張性球体内の空孔と合
わせて高い空孔率が維持されていることがわかる。なお
、図3はガラス製中空球体をPTFE微粉末に混入した
組成物をロールで圧延することにより、PTFE粒子を
繊維化して該中空球体をその空隙部分に担持させた従来
の独立気孔性多孔質PTFE(本出願人が特公平1−2
5769号として提案したもの)の内部構造を示す電子
顕微鏡写真であり、PTFEの繊維が一方向に配向して
いることが明らかである。
FIG. 1 is an electron micrograph showing the state of the PTFE foam according to the present invention after being expanded by heating, and FIG. 2 is an electron micrograph showing the state of the expandable sphere before being expanded. As is clear from this photograph, due to the expansion of the expandable sphere, the microfibers connecting the PTFE nodules are stretched in all directions, relaxing their orientation, and being held between the microfibers. It can be seen that a considerable amount of void remains around the expandable sphere, and together with the pores inside the expandable sphere, a high porosity is maintained. FIG. 3 shows a conventional closed-cell porous material in which the PTFE particles are made into fibers and the hollow spheres are supported in the voids by rolling a composition in which glass hollow spheres are mixed with PTFE fine powder. PTFE (the applicant is
This is an electron micrograph showing the internal structure of the product (proposed as No. 5769), and it is clear that the PTFE fibers are oriented in one direction.

【0021】このような特異な内部構造を有するテープ
状PTFE発泡体では、ペースト押出し及び圧延の際の
剪断力によってテープの長手方向に強く配向していたP
TFEの微小繊維は、膨張性球体が膨張する際の等方的
な膨張圧により実質的にあらゆる方向に延伸され、幅方
向や厚さ方向などの強度が相対的に高まり、各方向にお
ける引張強度の差が減少することになる。即ち、上記実
施例のテープ状PTFE発泡体の引張強度は、長手方向
に微小繊維が強く配向している発泡前の状態では長手方
向1.87kg/平方センチメートル、幅方向0.06
kg/平方センチメートルであったものが、発泡後には
それぞれ0.78kg/平方センチメートル、0.12
kg/平方センチメートルとなり、テープの長手方向と
幅方向の差が大幅に減少していることからも、膨張性球
体の膨張による機械的強度均質化効果は顕著である。こ
のようなテープは、微小繊維の配向が大幅に緩和されて
特定の方向への配向が少なく、かつ三次元延伸により全
体的に機械的強度が向上しているので、未焼成の状態で
そのまま使用した場合にも、従来のもののように裂けた
り、あるいは焼成後にクラックが発生することはない。 このことは、PTFE発泡体を使用する上での作業性や
得られる成形物の特性に好影響を与えるものである。
In the tape-shaped PTFE foam having such a unique internal structure, the P is strongly oriented in the longitudinal direction of the tape due to the shearing force during paste extrusion and rolling.
TFE microfibers are stretched in virtually all directions due to isotropic expansion pressure when the expandable sphere expands, and their strength in the width direction and thickness direction is relatively increased, and the tensile strength in each direction is increased. The difference will decrease. That is, the tensile strength of the tape-shaped PTFE foam of the above example is 1.87 kg/cm2 in the longitudinal direction and 0.06 kg/cm2 in the width direction in the state before foaming in which the fine fibers are strongly oriented in the longitudinal direction.
kg/cm2, but after foaming, it becomes 0.78 kg/cm2 and 0.12 kg/cm2, respectively.
kg/square centimeter, and the difference between the longitudinal direction and the width direction of the tape is significantly reduced, indicating that the mechanical strength homogenization effect due to the expansion of the expandable spheres is remarkable. In such tapes, the orientation of the microfibers is greatly relaxed, so there is less orientation in a specific direction, and the overall mechanical strength is improved by three-dimensional stretching, so it can be used as is in the unfired state. Even in this case, unlike conventional products, it does not split or crack after firing. This has a positive effect on the workability of using the PTFE foam and the properties of the molded product obtained.

【0022】次に、上記PTFE発泡体の絶縁材料とし
ての電気的特性を評価するため、このテープを用いて特
性インピーダンスが50オームの同軸ケーブルを作製し
、その伝搬遅延時間を測定したところ、3.45ns/
mであった。このことから、このテープ状PTFE発泡
体の比誘電率は1.05となり、極めて低誘電率の絶縁
材料であった。
Next, in order to evaluate the electrical properties of the PTFE foam as an insulating material, a coaxial cable with a characteristic impedance of 50 ohms was prepared using this tape, and its propagation delay time was measured. .45ns/
It was m. From this, the relative dielectric constant of this tape-shaped PTFE foam was 1.05, and it was an insulating material with an extremely low dielectric constant.

【0023】さらに、耐圧縮性については、このテープ
状PTFE発泡体に10kg/平方センチメートルの荷
重を10分間かける前と後におけるテープの誘電率を調
べたところ、負荷前に1.05であったものが負荷後で
は1.07であり、その変化は僅かであった。このよう
に、本発明による発泡体は圧縮力に対してその空孔が潰
れにくく、電気的特性の変化が少ないものになっている
Furthermore, regarding the compression resistance, when the dielectric constant of the tape was examined before and after applying a load of 10 kg/cm2 for 10 minutes to this tape-shaped PTFE foam, it was 1.05 before loading. was 1.07 after loading, and the change was slight. In this way, the foam according to the present invention has pores that are less likely to collapse under compressive force, and changes in electrical properties are less likely to occur.

【0024】なお、上記実施例ではテープ状に成形した
PTFE発泡体について説明したが、例えばペースト押
出しにより導体の外周にチューブ状に被覆してもよく、
その形状は限定されない。さらに、本発明によるPTF
E発泡体は絶縁材料に限らず、例えば遮音材、軽量構造
材などの従来の発泡体が使用されていた用途に適用でき
ることは言うまでもない。
[0024] In the above embodiment, a PTFE foam formed into a tape shape was explained, but it may also be coated around the outer periphery of a conductor in a tube shape by, for example, paste extrusion.
Its shape is not limited. Furthermore, PTF according to the present invention
It goes without saying that the E-foam is not limited to insulating materials, and can be applied to applications in which conventional foams have been used, such as sound insulation materials and lightweight structural materials.

【0025】[0025]

【発明の効果】以上説明したように、この発明によるP
TFE発泡体では、発泡剤を内包する未膨張の球体をP
TFE粉末に混ぜた混和物を所望の形状に成形した後、
この成形物を加熱して球体を膨張させ、その際の膨張圧
を利用してPTFEを三次元的に繊維化するので、極め
て空孔率の高い独立気孔性多孔質体が能率的かつ安定し
て得られるばかりか、特定の方向への繊維の配向が少な
くなるために機械的強度の差が各方向において小さくな
るという実用上優れた効果が得られる。
[Effect of the invention] As explained above, the P
In TFE foam, unexpanded spheres containing a blowing agent are
After molding the mixture mixed with TFE powder into the desired shape,
This molded product is heated to expand the sphere, and the expansion pressure is used to three-dimensionally form the PTFE into fibers, so a closed-cell porous material with extremely high porosity is efficiently and stably produced. Not only this, but also the practically excellent effect that the difference in mechanical strength becomes smaller in each direction due to less orientation of the fibers in a specific direction can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明によるテープ状PTFE発泡体の繊維の
形状を示す顕微鏡写真である。
FIG. 1 is a micrograph showing the shape of fibers of a tape-shaped PTFE foam according to the present invention.

【図2】同じく発泡前の表面部分の繊維の形状を示す顕
微鏡写真である。
FIG. 2 is a micrograph showing the shape of fibers in the surface portion before foaming.

【図3】従来の独立気孔性多孔質PTFEの表面部分の
繊維の形状を示す顕微鏡写真である。
FIG. 3 is a micrograph showing the shape of fibers in the surface portion of conventional closed-cell porous PTFE.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】発泡剤が封入された熱可塑性樹脂からなる
多数の膨張性球体と、これら膨張性球体の周囲にあって
その膨張圧により結節間を連結する微小繊維が延伸され
三次元的に広がる微細繊維質構造を形成してその空隙部
分で該膨張性球体を包持する四フッ化エチレン樹脂とを
備える四フッ化エチレン樹脂発泡体。
Claim 1: A large number of expansible spheres made of thermoplastic resin filled with a foaming agent, and microfibers surrounding these expansible spheres that connect the nodules by the expansion pressure and are stretched three-dimensionally. A polytetrafluoroethylene resin foam comprising a polytetrafluoroethylene resin that forms an expanding fine fibrous structure and encloses the expandable sphere in the void portion thereof.
【請求項2】未発泡状態の発泡剤が封入された熱可塑性
樹脂からなる球体と未焼成四フッ化エチレン樹脂粉末の
混和物を所定の形状に成形した後、この成形物を発泡剤
の発泡温度以上に加熱して該球体を膨張させ、この膨張
圧により未焼成四フッ化エチレン樹脂の繊維質化を促進
すると共に成形物中に膨張性球体による独立気孔を形成
せしめる四フッ化エチレン樹脂発泡体の製造方法。
[Claim 2] After molding a mixture of a thermoplastic resin sphere encapsulating an unfoamed blowing agent and unfired tetrafluoroethylene resin powder into a predetermined shape, the molded product is subjected to foaming of the blowing agent. Tetrafluoroethylene resin foaming, in which the spheres are expanded by heating above the temperature, and the expansion pressure promotes fibrous formation of the unfired tetrafluoroethylene resin and forms closed pores in the molded product due to the expandable spheres. How the body is manufactured.
JP13558291A 1991-05-10 1991-05-10 Polytetrafluoroethylene resin foam and method for producing the same Expired - Fee Related JP3198121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13558291A JP3198121B2 (en) 1991-05-10 1991-05-10 Polytetrafluoroethylene resin foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13558291A JP3198121B2 (en) 1991-05-10 1991-05-10 Polytetrafluoroethylene resin foam and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04335044A true JPH04335044A (en) 1992-11-24
JP3198121B2 JP3198121B2 (en) 2001-08-13

Family

ID=15155193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13558291A Expired - Fee Related JP3198121B2 (en) 1991-05-10 1991-05-10 Polytetrafluoroethylene resin foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP3198121B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429869A (en) * 1993-02-26 1995-07-04 W. L. Gore & Associates, Inc. Composition of expanded polytetrafluoroethylene and similar polymers and method for producing same
US5468314A (en) * 1993-02-26 1995-11-21 W. L. Gore & Associates, Inc. Process for making an electrical cable with expandable insulation
US5565154A (en) * 1993-09-21 1996-10-15 W. L. Gore & Associates, Inc. Methods for making puffed insulative material
US5945217A (en) * 1997-10-14 1999-08-31 Gore Enterprise Holdings, Inc. Thermally conductive polytrafluoroethylene article
JP2006209081A (en) * 2004-12-27 2006-08-10 Sony Corp Hologram recording/reproducing device and optical unit
JP2008120964A (en) * 2006-11-15 2008-05-29 Nitto Denko Corp Production method of polytetrafluoroethylene porous material
JP2010282859A (en) * 2009-06-05 2010-12-16 Panasonic Corp Circuit protection element
WO2017018105A1 (en) * 2015-07-29 2017-02-02 日東電工株式会社 Fluororesin porous body, metal layer-equipped porous body using same, and wiring substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429869A (en) * 1993-02-26 1995-07-04 W. L. Gore & Associates, Inc. Composition of expanded polytetrafluoroethylene and similar polymers and method for producing same
US5468314A (en) * 1993-02-26 1995-11-21 W. L. Gore & Associates, Inc. Process for making an electrical cable with expandable insulation
US5750931A (en) * 1993-02-26 1998-05-12 W. L. Gore & Associates, Inc. Electrical cable with improved insulation and process for making same
US5565154A (en) * 1993-09-21 1996-10-15 W. L. Gore & Associates, Inc. Methods for making puffed insulative material
US5571592A (en) * 1993-09-21 1996-11-05 Mcgregor; Gordon L. Puffed insulative material
US5945217A (en) * 1997-10-14 1999-08-31 Gore Enterprise Holdings, Inc. Thermally conductive polytrafluoroethylene article
JP2006209081A (en) * 2004-12-27 2006-08-10 Sony Corp Hologram recording/reproducing device and optical unit
JP2008120964A (en) * 2006-11-15 2008-05-29 Nitto Denko Corp Production method of polytetrafluoroethylene porous material
JP2010282859A (en) * 2009-06-05 2010-12-16 Panasonic Corp Circuit protection element
WO2017018105A1 (en) * 2015-07-29 2017-02-02 日東電工株式会社 Fluororesin porous body, metal layer-equipped porous body using same, and wiring substrate

Also Published As

Publication number Publication date
JP3198121B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
US5141972A (en) Insulating material and production thereof
CA1154216A (en) Foamed perfluorocarbon resin compositions
US5429869A (en) Composition of expanded polytetrafluoroethylene and similar polymers and method for producing same
US8207447B2 (en) PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire/cable using PTFE porous body
DE69727725T2 (en) Foamed fluoropolymer
HUP0103869A2 (en) Perforated foams
JP3198121B2 (en) Polytetrafluoroethylene resin foam and method for producing the same
JPS6093709A (en) Coaxial cable for transmitting ultrahigh frequency signal
US5087641A (en) Porous polytetrafluoroethylene resin material
US4360602A (en) Foamed chlorinated polyvinyl chloride and compositions for making same
GB2209167A (en) Composite material of low dielectric constant
JP5041843B2 (en) Low thermal conductive heat resistant foam and method for producing the same
JP3195006B2 (en) Polytetrafluoroethylene resin foam and method for producing the same
US20030011958A1 (en) Extruded polytetrafluoroethylene foam
JP6228877B2 (en) Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles
JP2001067944A (en) Fluororesin-coated electric wire and manufacture of fluororesin-coated electric wire
JPS639131Y2 (en)
JP2007090892A (en) Composite article using ptfe porous article
JPH0275636A (en) conductive polyethylene foam particles
EP4324872A1 (en) Production method of a sealing product with low density and thermal conductivity
CN109233125A (en) A kind of EPS abatvoix produced using supercritical carbon dioxide process
JPH05258615A (en) Insulated electric cable and its manufacture
JPS6333781B2 (en)
CN101694791A (en) Low-loss cable and preparation method thereof
KR100770028B1 (en) Highly foamable polystyrene particles with excellent noise reduction and insulation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees