JPH04334870A - Fused carbonate type fuel cell generating set - Google Patents
Fused carbonate type fuel cell generating setInfo
- Publication number
- JPH04334870A JPH04334870A JP3107121A JP10712191A JPH04334870A JP H04334870 A JPH04334870 A JP H04334870A JP 3107121 A JP3107121 A JP 3107121A JP 10712191 A JP10712191 A JP 10712191A JP H04334870 A JPH04334870 A JP H04334870A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- carbon dioxide
- fuel cell
- anode
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 38
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 31
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 31
- 238000002485 combustion reaction Methods 0.000 claims abstract description 17
- 238000001179 sorption measurement Methods 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 claims description 89
- 238000000926 separation method Methods 0.000 claims description 17
- 238000010248 power generation Methods 0.000 claims description 9
- 239000002737 fuel gas Substances 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 11
- 210000004027 cell Anatomy 0.000 description 17
- 238000010586 diagram Methods 0.000 description 10
- 239000012495 reaction gas Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 2
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、溶融炭酸塩型燃料電
池発電装置に関し、特に炭酸ガスを分離するための吸着
式ガス分離装置を備えた燃料電池発電装置に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell power generating apparatus, and more particularly to a fuel cell power generating apparatus equipped with an adsorption type gas separation device for separating carbon dioxide gas.
【0002】0002
【従来の技術】図4並びに図5は例えば特開昭62−2
74561号公報に示された溶融炭酸塩型燃料電池発電
装置における圧力スイング吸着式ガス分離装置(以下、
PSAという)を用いた炭酸ガス回収方法を説明する構
成図であり、図において、aは改質ガス系統、bはアノ
ード排出ガス系統、cはアノード反応ガス系統、dは空
気系統、eはカソード排出ガス系統、fはカソード反応
ガス系統、gはアノードリサイクルガス系統、1は溶融
炭酸塩型燃料電池本体、2は燃料極(アノード)、3は
空気極(カソード)、4は電解質、5は燃料予熱器、6
はPSA式ガス分離装置、7はアノードガス再循環ブロ
ワ、8は空気圧縮器、9は空気予熱器、10は熱交換器
、11はカソードガス再循環ブロワ、12は混合器、1
3は膨張タービン、14は発電機、15は燃焼器(また
は触媒燃焼器)である。また、図6は例えば「化学装置
」(川井、鈴木;vol.31,No.8,p.54(
1989))に示されたPSAの吸着等温線であり、炭
酸ガスの分圧に対する吸着剤中の炭酸ガス量(g/g)
を温度をパラメータとして示している。[Prior Art] FIGS. 4 and 5 are, for example, Japanese Patent Application Laid-Open No. 62-2
Pressure swing adsorption type gas separation device (hereinafter referred to as
1 is a configuration diagram illustrating a carbon dioxide recovery method using a carbon dioxide gas recovery method (referred to as PSA); in the figure, a is a reformed gas system, b is an anode exhaust gas system, c is an anode reaction gas system, d is an air system, and e is a cathode gas system. Exhaust gas system, f is cathode reaction gas system, g is anode recycle gas system, 1 is molten carbonate fuel cell main body, 2 is fuel electrode (anode), 3 is air electrode (cathode), 4 is electrolyte, 5 is Fuel preheater, 6
is a PSA type gas separation device, 7 is an anode gas recirculation blower, 8 is an air compressor, 9 is an air preheater, 10 is a heat exchanger, 11 is a cathode gas recirculation blower, 12 is a mixer, 1
3 is an expansion turbine, 14 is a generator, and 15 is a combustor (or catalytic combustor). Moreover, FIG. 6 shows, for example, "Chemical equipment" (Kawai, Suzuki; vol. 31, No. 8, p. 54 (
This is the adsorption isotherm of PSA shown in 1989), which shows the amount of carbon dioxide in the adsorbent (g/g) relative to the partial pressure of carbon dioxide.
is shown using temperature as a parameter.
【0003】次に動作について説明する。燃料電池本体
1の単電池は燃料極(アノード)2と空気極(カソード
)3との間に電解質4を介在させて構成されている。
前記燃料極2及び空気極3への反応ガス供給系統はそれ
ぞれ以下のようなものである。燃料極2へは、燃料予熱
器5を通過した改質a、及びアノード排出ガスbがPS
A式ガス分離装置6を通過して二酸化炭素が除去された
成分からなり、アノードガス再循環ブロワ7によって循
環されるアノードガスリサイクルgが混合されてアノー
ド反応ガスcとして供給される。一方、空気極3へは空
気圧縮器8と空気予熱器9とを順次通過した空気d、P
SA式分離装置6から脱着された二酸化炭素、及び熱交
換器10を通過し、カソードガス再循環ブロワ11によ
って循環されるカソード排出ガスeの一部が混合器12
で混合されて炭酸ガス濃度5〜50%に成分調整され、
カソード反応ガスfとして供給される。これらの反応ガ
スの供給により溶融炭酸塩型燃料電池本体1で直流電流
が発生する。また、カソード排出ガスeの一部は膨張タ
ービン13へ送られ、その後大気中に放出される。その
膨張タービン13の出力の一部は空気圧縮器8の動力と
して使用され、その出力の残りの一部は発電機14の動
力として使用される。Next, the operation will be explained. The unit cell of the fuel cell main body 1 is constructed by interposing an electrolyte 4 between a fuel electrode (anode) 2 and an air electrode (cathode) 3. The reaction gas supply systems to the fuel electrode 2 and air electrode 3 are as follows. The reformed a and the anode exhaust gas b that have passed through the fuel preheater 5 are sent to the fuel electrode 2 as PS
The anode gas recycle g, which consists of components from which carbon dioxide has been removed after passing through the A-type gas separation device 6 and is circulated by the anode gas recirculation blower 7, is mixed and supplied as the anode reaction gas c. On the other hand, the air d and P that have passed through the air compressor 8 and the air preheater 9 sequentially go to the air electrode 3.
The carbon dioxide desorbed from the SA separator 6 and a portion of the cathode exhaust gas e that passes through the heat exchanger 10 and is circulated by the cathode gas recirculation blower 11 are transferred to the mixer 12.
The ingredients are mixed and adjusted to a carbon dioxide concentration of 5 to 50%.
It is supplied as a cathode reaction gas f. Direct current is generated in the molten carbonate fuel cell main body 1 by supplying these reaction gases. Further, a part of the cathode exhaust gas e is sent to the expansion turbine 13 and then released into the atmosphere. A part of the output of the expansion turbine 13 is used as power for the air compressor 8, and the remaining part of the output is used as power for the generator 14.
【0004】0004
【発明が解決しようとする課題】従来の溶融炭酸塩型燃
料電池発電装置は以上のようであるので、PSAを高温
で動作させると炭酸ガス回収率が悪くなり、一方、常温
近くで動作させると回収した炭酸ガスを昇温させる熱源
が別途必要になるなどの問題点があった。[Problems to be Solved by the Invention] Conventional molten carbonate fuel cell power generation devices are as described above, so if the PSA is operated at high temperatures, the carbon dioxide recovery rate will be poor, whereas if it is operated near room temperature, the carbon dioxide recovery rate will be poor. There were problems such as the need for a separate heat source to raise the temperature of the recovered carbon dioxide.
【0005】この発明は、上記のような問題点を解消す
るためになされたもので、炭酸ガスの回収率を向上させ
、システム全体の効率を向上させることのできる溶融炭
酸塩型燃料電池発電装置を提供することを目的とする。The present invention was made to solve the above-mentioned problems, and provides a molten carbonate fuel cell power generation device that can improve the recovery rate of carbon dioxide gas and improve the efficiency of the entire system. The purpose is to provide
【0006】[0006]
【課題を解決するための手段】この発明に係わる溶融炭
酸塩型燃料電池発電装置は、溶融炭酸塩型燃料電池本体
と、該該燃料電池のアノードへ燃料系ガスを供給する系
統と、該燃料電池のカソードへ空気系ガスを供給する系
統と、アノード出口ガスに含まれる炭酸ガスを回収する
吸着式ガス分離装置と、この吸着式ガス分離装置から排
出されるオフガスの少なくとも一部を燃焼させる燃焼装
置とを備えるように構成したものである。[Means for Solving the Problems] A molten carbonate fuel cell power generation device according to the present invention includes a molten carbonate fuel cell main body, a system for supplying a fuel system gas to an anode of the fuel cell, and a system for supplying a fuel system gas to an anode of the fuel cell. A system that supplies air-based gas to the battery cathode, an adsorption gas separation device that recovers carbon dioxide contained in the anode outlet gas, and a combustion system that combusts at least a portion of the off-gas discharged from the adsorption gas separation device. The device is configured to include a device.
【0007】[0007]
【作用】この発明における燃焼装置は、吸着式ガス分離
装置で未回収の炭酸ガス並びに可燃性ガスを含む吸着式
ガス分離装置のオフガスを燃焼させることで可燃成分を
含まない炭酸ガスを主成分とする高温ガスを生成させる
ことでシステムの効率を向上させる。[Operation] The combustion device of the present invention burns unrecovered carbon dioxide and off-gas from the adsorption gas separation device containing combustible gas in an adsorption gas separation device, thereby converting carbon dioxide containing no combustible components into the main component. This increases the efficiency of the system by producing hot gas that
【0008】[0008]
実施例1.図1はこの発明の一実施例による燃料電池発
電システムの要部を示す構成図であり、図において16
は燃焼装置、17は熱交換器、18は混合器、hはリサ
イクルオフガス系統、iは燃焼非ガス系統、jはリサイ
クル混合ガス系統である。その他の符号は上記従来装置
と同一または相当するものであるから説明を省略する。Example 1. FIG. 1 is a block diagram showing the main parts of a fuel cell power generation system according to an embodiment of the present invention.
17 is a combustion device, 17 is a heat exchanger, 18 is a mixer, h is a recycled off-gas system, i is a combustion non-gas system, and j is a recycled mixed gas system. The other symbols are the same as or correspond to those of the conventional device, so the explanation will be omitted.
【0009】次に動作について説明する。燃料極(アノ
ード)2、空気極(カソード)3並びに電解質4等から
構成される燃料電池本体1において、アノード2には燃
料系ガスa、並びにアノード排ガスbがPSA式ガス分
離装置6によって炭酸ガスが分離されたPSAオフガス
hのうち燃焼装置16への供給ガスを除く成分からなり
、アノードガス循環ブロワ7によって循環されるアノー
ドリサイクルガスgが混合された後、燃料系予熱器5を
通過し、アノード反応ガスcとして供給される。一方、
カソード3への空気圧縮器8を通過した空気系ガスd、
並びに熱交換器10を通過しカソードガス循環ブロワ1
1によって循環されるカソード排ガスeの一部が混合器
12で混合され、再度、熱交換器10で予熱されたリサ
イクル混合ガスj、PSA式ガス分離装置6から脱着さ
れた炭酸ガス、及びPSA式ガス分離装置6で炭酸ガス
を分離した後のPSAオフガスhの一部または全部を燃
焼装置16で燃焼し熱交換器17を通過した燃焼排ガス
iが混合器18で混合された後、空気系予熱器9を通過
し、カソード反応ガスfとして供給される。また、カソ
ード排ガスeの一部は膨張タービン13へ送られ、その
出力の一部は空気圧縮器8の動力として、残りは発電機
14の動力として使用される。Next, the operation will be explained. In a fuel cell main body 1 composed of a fuel electrode (anode) 2, an air electrode (cathode) 3, an electrolyte 4, etc., a fuel system gas a and an anode exhaust gas b are supplied to the anode 2 and converted into carbon dioxide by a PSA type gas separation device 6. is composed of the separated PSA offgas h excluding the gas supplied to the combustion device 16, and after being mixed with the anode recycle gas g circulated by the anode gas circulation blower 7, passes through the fuel system preheater 5, Supplied as anode reaction gas c. on the other hand,
Air-based gas d passed through the air compressor 8 to the cathode 3,
The cathode gas circulates through the heat exchanger 10 and the cathode gas circulates through the blower 1.
A part of the cathode exhaust gas e circulated by 1 is mixed in a mixer 12, and a recycled mixed gas j is preheated again in a heat exchanger 10, carbon dioxide gas desorbed from a PSA type gas separation device 6, and a PSA type gas separator 6. Part or all of the PSA off-gas h after carbon dioxide has been separated in the gas separation device 6 is combusted in the combustion device 16, and the combustion exhaust gas i that has passed through the heat exchanger 17 is mixed in the mixer 18, and then air system preheating is performed. 9 and is supplied as a cathode reaction gas f. Further, a portion of the cathode exhaust gas e is sent to the expansion turbine 13, and a portion of its output is used as power for the air compressor 8, and the rest is used as power for the generator 14.
【0010】上記実施例によれば、PSAオフガス中の
可燃性ガスを燃焼させることで可燃成分を含まない炭酸
ガスを主成分とする、1200℃前後まで温度が上昇し
たガスを得ることができる。このガスのもつ熱を回収す
ることで、システム全体の効率、機器効率を上昇させる
ことができる。さらに、アノード排ガスを高温の状態で
PSAに導入しても、PSAで未回収の炭酸ガス並びに
可燃性ガスを含むPSAオフガスを燃焼装置で燃焼させ
ることで可燃成分を含まない炭酸ガス主成分のガスが得
られ、これをカソード側に供給することで炭酸ガス回収
率の改善、炭酸ガスの有効利用ができる。According to the above embodiment, by burning the combustible gas in the PSA off-gas, it is possible to obtain a gas whose temperature has risen to around 1200° C. and whose main component is carbon dioxide containing no combustible components. By recovering the heat contained in this gas, the efficiency of the entire system and equipment can be increased. Furthermore, even if the anode exhaust gas is introduced into the PSA in a high-temperature state, the PSA gas that has not been recovered in the PSA and the PSA off-gas that contains combustible gas can be burned in the combustion device, resulting in a gas that is mainly composed of carbon dioxide and does not contain combustible components. is obtained, and by supplying this to the cathode side, the carbon dioxide recovery rate can be improved and carbon dioxide gas can be used effectively.
【0011】実施例2.図2はこの発明の他の実施例を
示す要部構成図であり、図における符号は図1に示す実
施例と同様のものである。この実施例においては、空気
圧縮器8によって圧縮された空気系統のガスdを熱交換
器17に直接導くように構成している。この実施例では
上記図1の実施例とほぼ同様の効果が得られるほか、図
1における混合器12を省略することができる利点があ
る。Example 2. FIG. 2 is a block diagram of main parts showing another embodiment of the present invention, and the reference numerals in the figure are the same as those in the embodiment shown in FIG. In this embodiment, the gas d from the air system compressed by the air compressor 8 is directly guided to the heat exchanger 17. This embodiment provides substantially the same effects as the embodiment shown in FIG. 1, and also has the advantage that the mixer 12 in FIG. 1 can be omitted.
【0012】実施例3.図3はこの発明のさらに他の実
施例を示す構成図である。図において、19は熱交換器
、20はタービン発電機である。その他の符号は図1に
示す実施例と同様であるから説明を省略する。Example 3. FIG. 3 is a block diagram showing still another embodiment of the present invention. In the figure, 19 is a heat exchanger, and 20 is a turbine generator. Other symbols are the same as those in the embodiment shown in FIG. 1, so their explanation will be omitted.
【0013】上記構成において、燃料系ガスaは熱交換
器19によってアノード排ガスbのもつ熱により予熱さ
れた後、燃料予熱器5に送給される。一方、アノード排
ガスbは前記熱交換器19を経た後、PSA式ガス分離
装置6に送給される。さらに、燃焼装置16によって燃
焼したPSAオフガスは発電機20に送給され、熱エネ
ルギーの一部を電気エネルギーとして放出した後、熱交
換器17に送給される。この実施例では、上記実施例の
効果のほか、さらにシステムの効率を向上させることが
できるという効果が期待できる。In the above configuration, the fuel system gas a is preheated by the heat of the anode exhaust gas b by the heat exchanger 19, and then is sent to the fuel preheater 5. On the other hand, the anode exhaust gas b passes through the heat exchanger 19 and is then fed to the PSA type gas separation device 6. Further, the PSA off-gas combusted by the combustion device 16 is sent to the generator 20, and after releasing a part of the thermal energy as electrical energy, it is sent to the heat exchanger 17. In this embodiment, in addition to the effects of the above embodiment, it is expected that the efficiency of the system can be further improved.
【0014】なおこの他、アノード出口ガス温度より低
い温度でPSAを動作させるために上記アノード出口ガ
ス系統に熱交換器または熱交換器ならびにドレン分離器
を設けるように構成してもよい。なお、上記実施例では
燃焼装置の燃焼排ガスを熱交換器にてガスの予熱に使用
し、あるいは発電に用いた場合について説明したが、こ
れらに限るものではなく如何なる熱回収装置を用いても
よい。また吸着式ガス分離装置はPSA式のものに限定
されるものではない。さらに、上記燃焼装置は、これに
限るものではなく例えば触媒燃焼装置等如何なる形式の
ものでもよい。Additionally, in order to operate the PSA at a temperature lower than the anode outlet gas temperature, the anode outlet gas system may be provided with a heat exchanger or a heat exchanger and a drain separator. In addition, in the above example, the case where the combustion exhaust gas of the combustion device is used for preheating gas in a heat exchanger or used for power generation is explained, but the present invention is not limited to these and any heat recovery device may be used. . Further, the adsorption type gas separation device is not limited to the PSA type. Furthermore, the combustion device is not limited to this, and may be of any type, such as a catalytic combustion device.
【0015】また、本発明の溶融炭酸塩型燃料電池発電
装置の炭酸ガス回収・循環方法の各機器の構成は上記実
施例に示したものに限定されるものではない。Furthermore, the configuration of each device in the carbon dioxide recovery/circulation method of the molten carbonate fuel cell power generation apparatus of the present invention is not limited to that shown in the above embodiments.
【0016】[0016]
【発明の効果】以上のようにこの発明によれば、吸着式
ガス分離装置から排出されるオフガスの少なくとも一部
を燃焼させる燃焼装置とを備えるように構成したことに
より、炭酸ガスの回収率を向上させ、システム全体の効
率を上昇させることのできる溶融炭酸塩型燃料電池発電
装置が得られる効果がある。As described above, according to the present invention, the recovery rate of carbon dioxide can be improved by being configured to include a combustion device that burns at least a part of the off-gas discharged from the adsorption type gas separation device. This has the effect of providing a molten carbonate fuel cell power generation device that can improve the efficiency of the entire system.
【図1】この発明の一実施例による溶融炭酸塩型燃料電
池発電装置の要部を説明する構成図である。FIG. 1 is a configuration diagram illustrating the main parts of a molten carbonate fuel cell power generation device according to an embodiment of the present invention.
【図2】この発明の他の実施例を示す構成図である。FIG. 2 is a configuration diagram showing another embodiment of the invention.
【図3】この発明のさらに他の実施例を示す構成図であ
る。FIG. 3 is a configuration diagram showing still another embodiment of the present invention.
【図4】従来の装置を示す構成図である。FIG. 4 is a configuration diagram showing a conventional device.
【図5】従来装置の他の例を示す構成図である。FIG. 5 is a configuration diagram showing another example of a conventional device.
【図6】炭酸ガスの分圧に対する吸着剤中の炭酸ガス量
(g/g)を温度をパラメータとして示す特性図である
。FIG. 6 is a characteristic diagram showing the amount of carbon dioxide gas (g/g) in the adsorbent with respect to the partial pressure of carbon dioxide gas, using temperature as a parameter.
a 改質ガス系統 b アノード排ガス系統 1 溶融炭酸塩型燃料電池本体 2 燃料極(アノード) 3 空気極(カソード) 6 吸着式ガス分離装置 16 燃焼装置 a Reformed gas system b Anode exhaust gas system 1 Molten carbonate fuel cell body 2 Fuel electrode (anode) 3 Air electrode (cathode) 6 Adsorption type gas separation equipment 16 Combustion device
Claims (1)
電池のアノードへ燃料系ガスを供給する系統と、該燃料
電池のカソードへ空気系ガスを供給する系統と、アノー
ド出口ガスに含まれる炭酸ガスを回収する吸着式ガス分
離装置と、この吸着式ガス分離装置から排出されるオフ
ガスの少なくとも一部を燃焼させる燃焼装置とを備えた
溶融炭酸塩型燃料電池発電装置。Claim 1: A molten carbonate fuel cell main body, a system for supplying fuel gas to the anode of the fuel cell, a system for supplying air gas to the cathode of the fuel cell, and a gas contained in the anode outlet gas. A molten carbonate fuel cell power generation device comprising an adsorption gas separation device that recovers carbon dioxide gas and a combustion device that burns at least a portion of off-gas discharged from the adsorption gas separation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3107121A JPH04334870A (en) | 1991-05-13 | 1991-05-13 | Fused carbonate type fuel cell generating set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3107121A JPH04334870A (en) | 1991-05-13 | 1991-05-13 | Fused carbonate type fuel cell generating set |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04334870A true JPH04334870A (en) | 1992-11-20 |
Family
ID=14451022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3107121A Pending JPH04334870A (en) | 1991-05-13 | 1991-05-13 | Fused carbonate type fuel cell generating set |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04334870A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0692527A2 (en) | 1994-07-13 | 1996-01-17 | Canon Kabushiki Kaisha | Ink set and ink-jet color recording method using the same |
EP0712912A2 (en) | 1994-11-17 | 1996-05-22 | Canon Kabushiki Kaisha | Water-based dispersion ink for bubble jet printing and ink-jet recording method and apparatus using same |
JP2014530453A (en) * | 2011-09-15 | 2014-11-17 | エルジー フューエル セル システムズ インクLg Fuel Cell Systems Inc. | Solid oxide fuel cell system |
JP2016512917A (en) * | 2013-03-15 | 2016-05-09 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | Integrated power generation and carbon capture using fuel cells |
JP2021101427A (en) * | 2016-04-21 | 2021-07-08 | フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. | Post-treatment of anode exhaust gas from molten carbonate fuel cell in order to recover carbon dioxide |
US11508981B2 (en) | 2016-04-29 | 2022-11-22 | Fuelcell Energy, Inc. | Methanation of anode exhaust gas to enhance carbon dioxide capture |
US11975969B2 (en) | 2020-03-11 | 2024-05-07 | Fuelcell Energy, Inc. | Steam methane reforming unit for carbon capture |
US12095129B2 (en) | 2018-11-30 | 2024-09-17 | ExxonMobil Technology and Engineering Company | Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization |
-
1991
- 1991-05-13 JP JP3107121A patent/JPH04334870A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0692527A2 (en) | 1994-07-13 | 1996-01-17 | Canon Kabushiki Kaisha | Ink set and ink-jet color recording method using the same |
US6399674B1 (en) | 1994-07-13 | 2002-06-04 | Canon Kabushiki Kaisha | Ink set and ink-jet color recording method using the same |
EP0712912A2 (en) | 1994-11-17 | 1996-05-22 | Canon Kabushiki Kaisha | Water-based dispersion ink for bubble jet printing and ink-jet recording method and apparatus using same |
US5658376A (en) * | 1994-11-17 | 1997-08-19 | Canon Kabushiki Kaisha | Water-based dispersion ink for bubble jet printing and ink-jet recording method and apparatus using same |
JP2014530453A (en) * | 2011-09-15 | 2014-11-17 | エルジー フューエル セル システムズ インクLg Fuel Cell Systems Inc. | Solid oxide fuel cell system |
US9570766B2 (en) | 2011-09-15 | 2017-02-14 | Lg Fuel Cell Systems, Inc. | Solid oxide fuel cell system |
JP2016512917A (en) * | 2013-03-15 | 2016-05-09 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | Integrated power generation and carbon capture using fuel cells |
JP2021101427A (en) * | 2016-04-21 | 2021-07-08 | フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. | Post-treatment of anode exhaust gas from molten carbonate fuel cell in order to recover carbon dioxide |
US11949135B2 (en) | 2016-04-21 | 2024-04-02 | Fuelcell Energy, Inc. | Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture |
US11508981B2 (en) | 2016-04-29 | 2022-11-22 | Fuelcell Energy, Inc. | Methanation of anode exhaust gas to enhance carbon dioxide capture |
US12095129B2 (en) | 2018-11-30 | 2024-09-17 | ExxonMobil Technology and Engineering Company | Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization |
US11975969B2 (en) | 2020-03-11 | 2024-05-07 | Fuelcell Energy, Inc. | Steam methane reforming unit for carbon capture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101137207B1 (en) | Integrated high efficiency fossil fuel power plant/fuel cell system with co2 emissions abatement | |
JPH02301968A (en) | Method for operating fuel battery | |
JPH11233129A (en) | Solid electrolyte fuel cell generating system | |
JP2002319428A (en) | Molten carbonate fuel cell power generation equipment | |
JPH11297336A (en) | Composite power generating system | |
JPS6359229B2 (en) | ||
JPH04334870A (en) | Fused carbonate type fuel cell generating set | |
JPH11169661A (en) | Carbon dioxide capture device | |
JPH0845523A (en) | Fuel cell/gas turbine combined generation system | |
JPS6185773A (en) | Combined fuel cell power generation equipment | |
JP4154680B2 (en) | Fuel cell power generator that injects steam into the anode exhaust gas line | |
JP2001058801A (en) | Power generation system to separate carbon dioxide | |
JPS60258862A (en) | Fuel cell generation system | |
CN113224363A (en) | Power generation system of molten carbonate fuel cell and working method thereof | |
JP3257604B2 (en) | Fuel cell generator | |
JPH04254796A (en) | Direct reduction of metal ore | |
JP3865167B2 (en) | Fuel cell power generator with carbon dioxide recovery device | |
JPS63166158A (en) | Fuel cell power generating system | |
JPS63126173A (en) | Power generating system of fused carbonate type fuel cell | |
JPH01183073A (en) | How to stop operation of fuel cell power generation equipment | |
JPH01187775A (en) | Fuel battery with fusion carbonate | |
JPH10144332A (en) | Pollution-free electric power plant | |
JPH05101839A (en) | Fuel cell power generating device with molten carbonate | |
JPH0821412B2 (en) | Fuel cell power generation method | |
JPH11162488A (en) | Fuel cell power generator with steam injection to cathode |