JPH04332106A - Magnetostatic wave element - Google Patents
Magnetostatic wave elementInfo
- Publication number
- JPH04332106A JPH04332106A JP10143791A JP10143791A JPH04332106A JP H04332106 A JPH04332106 A JP H04332106A JP 10143791 A JP10143791 A JP 10143791A JP 10143791 A JP10143791 A JP 10143791A JP H04332106 A JPH04332106 A JP H04332106A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- temperature coefficient
- permanent magnet
- garnet film
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Thin Magnetic Films (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Non-Reversible Transmitting Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はマイクロ波帯域で使用す
る静磁波素子に関する。さらに詳しくは、急激な温度変
化に対しても、動作周波数が安定した静磁波素子に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostatic wave device used in the microwave band. More specifically, the present invention relates to a magnetostatic wave element whose operating frequency is stable even in the face of rapid temperature changes.
【0002】0002
【従来の技術】静磁波素子はGGG(ガドリニウム・ガ
リウム・ガーネット)単結晶基板上にYIG(イットリ
ウム・鉄・ガーネット)膜を液相エピタキシャル成長さ
せ、その膜をリソグラフィーやエッチング技術により所
望の形状に加工し、マイクロ・ストリップ・ラインを形
成したものである。かかる静磁波素子は、YIGに直流
磁界を印加した状態で、マイクロ波により静磁波を励起
し、共振器、フィルターなどへの利用が考えられている
。静磁波素子は印加する直流磁界により、動作周波数を
可変制御することができるという特徴がある。[Prior art] Magnetostatic wave elements are made by growing a YIG (yttrium iron garnet) film on a GGG (gadolinium gallium garnet) single crystal substrate by liquid phase epitaxial growth, and processing the film into a desired shape using lithography and etching techniques. However, a micro strip line is formed. Such a magnetostatic wave element excites magnetostatic waves using microwaves while applying a DC magnetic field to YIG, and is considered to be used in resonators, filters, and the like. A magnetostatic wave element is characterized in that its operating frequency can be variably controlled by applying a DC magnetic field.
【0003】図7は、たとえば特開平1−191502
公報に掲載された従来の静磁波素子の構成をあらわす図
である。
図7において1はYIG膜、2は磁気回路、3はヨーク
、4は永久磁石、5はコイル、8は軟磁性材料の磁極で
ある。FIG. 7 shows, for example, Japanese Patent Application Laid-Open No. 1-191502.
1 is a diagram showing the configuration of a conventional magnetostatic wave element published in a publication. In FIG. 7, 1 is a YIG film, 2 is a magnetic circuit, 3 is a yoke, 4 is a permanent magnet, 5 is a coil, and 8 is a magnetic pole made of a soft magnetic material.
【0004】次にかかる構成を有する静磁波素子の動作
について説明する。YIG膜の面に垂直な方向に直流磁
場Hを印加したばあい、静磁波素子の動作周波数fは数
式(1)で表される。Next, the operation of the magnetostatic wave element having such a configuration will be explained. When a DC magnetic field H is applied in a direction perpendicular to the plane of the YIG film, the operating frequency f of the magnetostatic wave element is expressed by equation (1).
【0005】
f=γ(H−N・4πMs) (1
)ここで4πMsはYIGの飽和磁化(Gauss)、
γは磁気回転比(2.8 MHz/Oe)、またNは反
磁界係数である。しかしYIGの飽和磁化は温度依存性
をもつために、直流磁場Hが一定であっても動作周波数
fが温度によって変化するという欠点がある。数式(1
)より動作周波数fが温度Tによらない条件は、反磁界
係数を1として数式(2)で表される。f=γ(H−N・4πMs) (1
) Here, 4πMs is the saturation magnetization (Gauss) of YIG,
γ is the gyromagnetic ratio (2.8 MHz/Oe), and N is the demagnetizing field coefficient. However, since the saturation magnetization of YIG is temperature dependent, there is a drawback that the operating frequency f changes depending on the temperature even if the DC magnetic field H is constant. Formula (1
), the condition where the operating frequency f does not depend on the temperature T is expressed by equation (2) with the demagnetizing field coefficient being 1.
【0006】
δH/δT=δ4πMs/δT (2)すな
わち磁場の絶対値の温度係数とYIGによる反磁界の絶
対値の温度係数を等しくすることにより、動作周波数の
温度による変化は補償できる。なお本明細書においては
、以下YIGによる反磁界はYIGの飽和磁化(Gau
ss)と表現するものとする。また、温度係数(%/℃
)と絶対値の温度係数(Gauss/℃またはOe/℃
)とは区別して記載している。図7において永久磁石4
によりギャップの磁場に温度による変化を生じさせて温
度補償を行い、コイル5に電流を流すことにより動作周
波数を可変制御できる。[0006] δH/δT=δ4πMs/δT (2) That is, by making the temperature coefficient of the absolute value of the magnetic field equal to the temperature coefficient of the absolute value of the demagnetizing field due to YIG, changes in the operating frequency due to temperature can be compensated for. In this specification, the demagnetizing field due to YIG is defined as the saturation magnetization (Gau
ss). Also, temperature coefficient (%/℃
) and absolute temperature coefficient (Gauss/℃ or Oe/℃
) are listed separately. In Figure 7, permanent magnet 4
By causing temperature-related changes in the magnetic field of the gap to perform temperature compensation, and by passing current through the coil 5, the operating frequency can be variably controlled.
【0007】[0007]
【発明が解決しようとする課題】従来の静磁波素子は以
上のように構成されているので、急激な温度変化に対し
て磁気回路とYIG膜などの磁性薄膜が同じ温度になり
温度補償がなされるまで動作周波数が不安定になるとい
う問題がある。[Problem to be Solved by the Invention] Since the conventional magnetostatic wave element is constructed as described above, the magnetic circuit and the magnetic thin film such as the YIG film are kept at the same temperature and temperature compensation is not performed against sudden temperature changes. The problem is that the operating frequency becomes unstable until the
【0008】本発明は前記のような問題を解消するため
になされたもので、急激な温度変化に対しても動作周波
数が安定な静磁波素子をうることを目的とする。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a magnetostatic wave element whose operating frequency is stable even under sudden temperature changes.
【0009】[0009]
【課題を解決するための手段】本発明の静磁波素子は、
非磁性基板上に形成された磁性ガーネット膜と、コイル
、ヨークおよび残留磁束密度の温度係数が −0.03
〜−0.05(%/℃)の永久磁石からなり、前記磁性
ガーネット膜に垂直に直流磁界を印加する磁気回路とか
らなり、前記磁性ガーネット膜が飽和磁化の絶対値の温
度係数が −1〜−1.5(Gauss/℃)の磁性ガ
ーネットで形成されてなることを特徴としている。[Means for Solving the Problems] The magnetostatic wave element of the present invention includes:
The temperature coefficient of the magnetic garnet film formed on the non-magnetic substrate, the coil, the yoke, and the residual magnetic flux density is -0.03.
-0.05 (%/℃), and a magnetic circuit that applies a direct current magnetic field perpendicularly to the magnetic garnet film, and the magnetic garnet film has a temperature coefficient of the absolute value of saturation magnetization of -1. It is characterized by being made of magnetic garnet with a temperature of -1.5 (Gauss/°C).
【0010】本発明の静磁波素子は、磁気回路に温度係
数が −0.03〜−0.05(%/℃)の永久磁石を
用いて、飽和磁化の絶対値の温度係数が −1〜−1.
5(Gauss/℃)の磁性ガーネットで形成された磁
性ガーネット膜の動作周波数の温度補償をしたものであ
る。さらに本発明の液相エピタキシャル磁性ガーネット
膜は前記磁性ガーネット膜を形成するのに適したもので
ある。The magnetostatic wave element of the present invention uses a permanent magnet with a temperature coefficient of -0.03 to -0.05 (%/°C) in the magnetic circuit, and the temperature coefficient of the absolute value of saturation magnetization is -1 to -1. -1.
5 (Gauss/° C.), the operating frequency of a magnetic garnet film formed of magnetic garnet is temperature-compensated. Furthermore, the liquid phase epitaxial magnetic garnet film of the present invention is suitable for forming the above magnetic garnet film.
【0011】[0011]
【作用】急激な温度変化に対し動作周波数を安定させる
ためには、永久磁石により発生するギャップの磁場を安
定させることと、ギャップの磁場とYIG膜の飽和磁化
の絶対値の温度係数をできるだけ小さい値で整合をとる
ことが必要である。[Operation] In order to stabilize the operating frequency against rapid temperature changes, it is necessary to stabilize the gap magnetic field generated by the permanent magnet, and to minimize the temperature coefficient of the absolute value of the gap magnetic field and the saturation magnetization of the YIG film. It is necessary to match the values.
【0012】図1は本発明の静磁波素子の一実施例をあ
らわしており、同図において、永久磁石4の断面積をS
m、厚さを1m/2、ギャップ7の断面積をSg、長さ
を1gとする。また永久磁石4がギャップに発生する磁
場をHg、磁束密度をBg、永久磁石内の磁場をHm、
磁束密度をBm、漏洩係数をσとする。磁束については
数式(3)がなりたつ。ただしコイル電流は0である。FIG. 1 shows an embodiment of the magnetostatic wave element of the present invention, in which the cross-sectional area of the permanent magnet 4 is represented by S.
m, the thickness is 1 m/2, the cross-sectional area of the gap 7 is Sg, and the length is 1 g. In addition, the magnetic field generated by the permanent magnet 4 in the gap is Hg, the magnetic flux density is Bg, and the magnetic field inside the permanent magnet is Hm.
Let Bm be the magnetic flux density and σ be the leakage coefficient. Equation (3) holds for magnetic flux. However, the coil current is 0.
【0013】
BgSgσ=BmSm
(3)アンペールの回路定理により
Hg1g=Hm1m
(4)数式(3)、(4)より
Bm/Hm=μ0(Sgσ/Sm
)(1m/1g) (5)静磁エネ
ルギーを考えると
BgHgSgσ1g=BmHmS
m1m (6)こ
こで磁石の保磁力が充分大きければリコイル透磁率を1
とみなすことができる。永久磁石の保留磁束密度をBr
とすると
Bm=Br−μ0Hm
(7)数式(5)、(6)、(7)より
Hg=1/(μ0(Sgσ/Sm
+1g/1m))・Br (8)したが
ってギャップの磁場の絶対値の温度係数は数式(9)で
表される。BgSgσ=BmSm
(3) According to Ampere's circuit theorem, Hg1g=Hm1m
(4) From formulas (3) and (4), Bm/Hm=μ0(Sgσ/Sm
) (1m/1g) (5) Considering the magnetostatic energy, BgHgSgσ1g=BmHmS
m1m (6) Here, if the coercive force of the magnet is large enough, the recoil permeability is set to 1.
It can be considered as The retained magnetic flux density of the permanent magnet is Br
Then, Bm=Br-μ0Hm
(7) From formulas (5), (6), and (7), Hg=1/(μ0(Sgσ/Sm
+1g/1m))・Br (8) Therefore, the temperature coefficient of the absolute value of the magnetic field in the gap is expressed by equation (9).
【0014】
δHg/δT=1/(μ0(Sgσ/Sm
+1g/1m))・δBr/δT (9)
次に数式(8) 、(9) より
(δHg/δT)/Hg=(δBr/δT
)/Br (10)
数式(10)から、永久磁石により発生するギャップの
磁場の温度係数は、永久磁石の形状にはよらず、残留磁
束密度の温度係数によってのみ決まることがわかる。ま
たギャップ間に設置される磁性ガーネット膜1は永久磁
石4の体積に比べれば充分に小さく、熱容量も無視でき
る。
したがって温度変化に対して、磁気回路と磁性ガーネッ
ト膜が同じ温度になり、動作周波数の温度補償がなされ
るまでの律速は永久磁石にある。δHg/δT=1/(μ0(Sgσ/Sm
+1g/1m))・δBr/δT (9) Next, from formulas (8) and (9), (δHg/δT)/Hg=(δBr/δT
)/Br (10) From equation (10), it can be seen that the temperature coefficient of the magnetic field in the gap generated by the permanent magnet is determined only by the temperature coefficient of the residual magnetic flux density, regardless of the shape of the permanent magnet. Moreover, the magnetic garnet film 1 placed between the gaps is sufficiently small compared to the volume of the permanent magnet 4, and its heat capacity can be ignored. Therefore, with respect to temperature changes, the permanent magnet is rate-limiting until the magnetic circuit and the magnetic garnet film reach the same temperature and the operating frequency is temperature compensated.
【0015】ギャップ磁場の温度係数は永久磁石の温度
係数のみで決まり、また温度補償の律速は永久磁石にあ
る。以上の理由により、残留磁束密度の温度係数の小さ
な永久磁石を用いることで急激な温度変化に対して安定
な磁場をギャップに発生させることができることがわか
る。表1に市販されている各種永久磁石の特性を示す。
残留磁束密度の温度係数が小さいのはSm−Co系磁石
とアルニコ磁石であり、いずれかを使用することで安定
な磁場をうることができる。しかし必要な大きさのギャ
ップ磁場をうるためには保磁力の大きい永久磁石で磁気
回路を構成するのが望ましいので、Sm−Co系磁石を
採用するのが好ましい。なおこれらの永久磁石の温度係
数の範囲を −0.03〜 −0.05(%/℃)であ
る。The temperature coefficient of the gap magnetic field is determined only by the temperature coefficient of the permanent magnet, and the temperature compensation is rate-determined by the permanent magnet. For the above reasons, it can be seen that by using a permanent magnet with a small temperature coefficient of residual magnetic flux density, it is possible to generate a stable magnetic field in the gap against rapid temperature changes. Table 1 shows the characteristics of various commercially available permanent magnets. Sm-Co magnets and alnico magnets have a small temperature coefficient of residual magnetic flux density, and a stable magnetic field can be obtained by using either of them. However, in order to obtain a gap magnetic field of the required magnitude, it is desirable to configure the magnetic circuit with a permanent magnet having a large coercive force, and therefore it is preferable to employ an Sm--Co magnet. Note that the temperature coefficient range of these permanent magnets is -0.03 to -0.05 (%/°C).
【0016】[0016]
【表1】
温度補償については、ギャップの磁場とYIGの飽和磁
化の絶対値の温度係数をなるべく小さい値で整合をとる
ことが望ましい。ギャップの磁場の絶対値の温度係数は
数式(9)からわかるように、ギャップや永久磁石の断
面積、長さにより調整することができる。しかし実際に
はその寸法は磁性ガーネット膜の大きさにより制限され
る。たとえば厚さ0.4mmのGGG基板上に10〜1
00μmYIG膜がついた結晶を設置するためには、ギ
ャップの長さが1mm以上は必要である。ギャップと永
久磁石の断面積の比をSg/Sm=0.5、ギャップの
長さを2mmとして、さらに実験的にもとめた漏洩係数
σ=4.5を用いて永久磁石の厚み1m(図1における
二つの永久磁石の長さの和)とギャップの磁場とその絶
対値の温度係数を計算した結果を図2および図3に示す
。図3よりSm−Co系磁石を用いたばあい、ギャップ
の磁場の絶対値の温度係数は−1.5〜0 Oe /℃
が設定可能であることがわかる。ただしSg/Smの値
をさらに小さくすることによりギャップの磁場の絶対値
の温度係数を大きく設定することは可能であるが、ギャ
ップの断面積を小さくすることは均一な磁場をうるため
に望ましくない。[Table 1] Regarding temperature compensation, it is desirable to match the temperature coefficient of the absolute value of the magnetic field of the gap and the saturation magnetization of YIG to a value as small as possible. As can be seen from equation (9), the temperature coefficient of the absolute value of the magnetic field in the gap can be adjusted by changing the cross-sectional area and length of the gap and the permanent magnet. However, in reality, its dimensions are limited by the size of the magnetic garnet film. For example, 10 to 1
In order to install a crystal with a 00 μm YIG film, the gap length must be 1 mm or more. Assuming that the ratio of the cross-sectional area of the gap to the permanent magnet is Sg/Sm = 0.5, the length of the gap is 2 mm, and the experimentally determined leakage coefficient σ = 4.5, the thickness of the permanent magnet is 1 m (Figure 1 Figures 2 and 3 show the results of calculating the temperature coefficient of the gap magnetic field (the sum of the lengths of the two permanent magnets), the gap magnetic field, and its absolute value. From Figure 3, when using Sm-Co magnets, the temperature coefficient of the absolute value of the magnetic field in the gap is -1.5 to 0 Oe/℃.
It can be seen that it can be set. However, it is possible to increase the temperature coefficient of the absolute value of the magnetic field in the gap by further reducing the value of Sg/Sm, but it is not desirable to reduce the cross-sectional area of the gap in order to obtain a uniform magnetic field. .
【0017】一方、YIGの飽和磁化の絶対値の温度係
数はガーネット成分の磁性元素である鉄を非磁性元素ガ
リウムに置換することによって調整される。しかし、ガ
リウムのイオン半径は鉄より小さいので、GGG基板と
の格子定数の整合をとるためにイットリウムの一部をイ
ットリウムよりイオン半径の大きいランタンで置換する
必要がある。具体的には、たとえば高純度の酸化鉛、酸
化ほう素、酸化鉄、酸化イットリウム、酸化ガリウム、
酸化ランタン粉末を秤量、混合し、白金坩堝に仕込んで
1150℃に加熱し充分に溶融した後に所定の温度にま
で徐冷し、保持する。ついで(111)面のGGG単結
晶基板を水平に回転させながら融液中にディッピングし
て磁性ガーネット膜をエピタキシャル成長させることが
できる。以上のようにして作製されたYIG膜の飽和磁
化とその絶対値の温度係数、組成を表2に、また飽和磁
化とその絶対値の温度係数の関係を図4に示す。On the other hand, the temperature coefficient of the absolute value of the saturation magnetization of YIG is adjusted by replacing the magnetic element iron of the garnet component with the nonmagnetic element gallium. However, since the ionic radius of gallium is smaller than that of iron, it is necessary to replace a portion of yttrium with lanthanum, which has a larger ionic radius than yttrium, in order to match the lattice constant with the GGG substrate. Specifically, for example, high purity lead oxide, boron oxide, iron oxide, yttrium oxide, gallium oxide,
Lanthanum oxide powder is weighed, mixed, charged into a platinum crucible, heated to 1150°C to sufficiently melt, and then slowly cooled to a predetermined temperature and held. Next, a magnetic garnet film can be epitaxially grown by dipping the (111)-plane GGG single crystal substrate into a melt while rotating it horizontally. Table 2 shows the saturation magnetization, the temperature coefficient of its absolute value, and the composition of the YIG film produced as described above, and FIG. 4 shows the relationship between the saturation magnetization and the temperature coefficient of its absolute value.
【0018】[0018]
【表2】
飽和磁化の絶対値の温度係数を小さくするためには、飽
和磁化の値を小さくすれば実現できる。同時に反磁界も
小さくなるので印加する直流磁場も小さくてすみ、コイ
ル、永久磁石などの磁気回路を小型化することができる
という利点もある。しかし飽和磁化が小さくなりすぎる
とマイクロ波によって励起される静磁波が弱くなり、素
子として良好に機能しなくなる。たとえば飽和磁化が4
00 Gauss以下のガーネット膜で発振器を作製す
ると外部Qが大きく、良好な発振特性をうることが難し
くなる。
また図4からもわかるように飽和磁化の絶対値の温度係
数もあまり変化せず、飽和磁化を小さくする利点が無く
なる。したがって飽和磁化の絶対値の温度係数の下限は
−1.0 Gauss/℃であり、このときの飽和磁化
の値は400 Gauss である。[Table 2] The temperature coefficient of the absolute value of saturation magnetization can be reduced by reducing the value of saturation magnetization. At the same time, since the demagnetizing field becomes smaller, the applied DC magnetic field can also be smaller, which has the advantage that magnetic circuits such as coils and permanent magnets can be made smaller. However, if the saturation magnetization becomes too small, the magnetostatic waves excited by the microwaves will become weak and the device will not function well. For example, the saturation magnetization is 4
If an oscillator is manufactured using a garnet film of 0.00 Gauss or less, the external Q will be large and it will be difficult to obtain good oscillation characteristics. Further, as can be seen from FIG. 4, the temperature coefficient of the absolute value of saturation magnetization does not change much, and the advantage of reducing saturation magnetization is lost. Therefore, the lower limit of the temperature coefficient of the absolute value of saturation magnetization is -1.0 Gauss/°C, and the value of saturation magnetization at this time is 400 Gauss.
【0019】以上の磁気回路と液相エピキタシャル磁性
ガーネット膜の検討により、整合可能な飽和磁化の絶対
値の温度係数は−1.0から−1.5 Gauss/℃
のあいだであることがわかった。なお磁性ガーネット膜
の表2で代表される組成をまとめてみると式(I) で
表される。Based on the above study of the magnetic circuit and the liquid phase epitaxial magnetic garnet film, the temperature coefficient of the absolute value of the saturation magnetization that can be matched is -1.0 to -1.5 Gauss/°C.
It turned out to be between. The composition of the magnetic garnet film represented in Table 2 is summarized as shown in formula (I).
【0020】
Y3−zLazFe5−
tGatO12 t=10
z−0.54 (0.12≦z≦0.14)
(I)Y3-zLazFe5-
tGatO12 t=10
z-0.54 (0.12≦z≦0.14)
(I)
【0021】[0021]
【実施例】つぎに、本発明の実施例を添付図面に基づい
て説明する。図1において1は磁性ガーネット膜、2は
磁気回路、3はヨーク、4は永久磁石、5はコイル、6
は磁極、7はギャップである。本実施例では3mm径で
均一な磁場が発生するように永久磁石の直径を8m 、
ギャップの直径を6mmとした。このばあい断面積の比
Sg/Smは0.5625である。なお、永久磁石の直
径およびギャッブの直径は本発明においてとくに限定さ
れないが、通常はいずれも4〜20mmで、ギャップの
直径は永久磁石の直径より小さくし磁界を集中させる構
造がとられる。また永久磁石の断面形状は円形に限られ
ず、矩形などの他の形状であってもよい。Embodiments Next, embodiments of the present invention will be described with reference to the accompanying drawings. In FIG. 1, 1 is a magnetic garnet film, 2 is a magnetic circuit, 3 is a yoke, 4 is a permanent magnet, 5 is a coil, and 6
is a magnetic pole, and 7 is a gap. In this example, the diameter of the permanent magnet is 8 m so that a uniform magnetic field is generated with a diameter of 3 mm.
The diameter of the gap was 6 mm. In this case, the cross-sectional area ratio Sg/Sm is 0.5625. Although the diameter of the permanent magnet and the diameter of the gap are not particularly limited in the present invention, they are usually both 4 to 20 mm, and the diameter of the gap is smaller than the diameter of the permanent magnet to concentrate the magnetic field. Further, the cross-sectional shape of the permanent magnet is not limited to a circle, but may be other shapes such as a rectangle.
【0022】ヨーク材としては一般構造用圧延構材やパ
ーマロイなどを用いることができるが、本実施例におい
てはヨーク材として一般構造用圧延鋼材SS41を使用
した。永久磁石は表1に示されるものを用いることがで
きるが、本実施例では磁石Aを用いた。ギャップの磁場
を調整するために、ギャップの長さを変えて磁場を測定
した。図5はギャップの長さ1gと磁場Hg、図6はギ
ャップの長さ1gと磁場Hgの絶対値の温度係数の関係
を表している。なお作製した磁気回路の漏洩係数を求め
たところ4.5であった。[0022] As the yoke material, general structural rolled steel material, permalloy, etc. can be used, but in this embodiment, general structural rolled steel material SS41 was used as the yoke material. Although the permanent magnets shown in Table 1 can be used, magnet A was used in this example. To adjust the magnetic field in the gap, the magnetic field was measured by changing the length of the gap. FIG. 5 shows the relationship between the gap length 1 g and the magnetic field Hg, and FIG. 6 shows the relationship between the gap length 1 g and the temperature coefficient of the absolute value of the magnetic field Hg. The leakage coefficient of the produced magnetic circuit was found to be 4.5.
【0023】表2において番号5のYIGの飽和磁化の
絶対値の温度係数が−1.10 Gauss /℃であ
る。図6より、ギャップ長さが2mmのときの磁場の絶
対値の温度係数は−1.10 Oe/℃であることから
温度補償ができる。えられた静磁波素子の動作周波数を
測定したところ、コイル電流0のとき4.73GHzで
あった。In Table 2, the temperature coefficient of the absolute value of saturation magnetization of YIG numbered 5 is -1.10 Gauss/°C. From FIG. 6, since the temperature coefficient of the absolute value of the magnetic field when the gap length is 2 mm is -1.10 Oe/°C, temperature compensation can be performed. When the operating frequency of the obtained magnetostatic wave element was measured, it was 4.73 GHz when the coil current was 0.
【0024】[0024]
【発明の効果】以上説明したとおり、本発明によれば、
残留磁束密度の温度係数が−0.03〜−0.05 %
/℃の永久磁石を用いて磁気回路を構成したので安定な
磁場を発生させることができる。また式(I)で表され
る液相エピタキシャル磁性ガーネット膜は飽和磁化の絶
対値の温度係数が −1〜−1.5 Gauss/℃で
あり、前記磁気回路と温度補償を行うのに適しており、
整合をとる絶対値の温度係数も小さいので急激な温度変
化に対しても安定な素子をうることができる。[Effects of the Invention] As explained above, according to the present invention,
Temperature coefficient of residual magnetic flux density is -0.03 to -0.05%
Since the magnetic circuit is constructed using permanent magnets with a temperature of /°C, a stable magnetic field can be generated. Furthermore, the liquid phase epitaxial magnetic garnet film represented by formula (I) has a temperature coefficient of the absolute value of saturation magnetization of -1 to -1.5 Gauss/°C, and is suitable for temperature compensation with the magnetic circuit. Ori,
Since the temperature coefficient of the absolute value for matching is also small, it is possible to obtain an element that is stable even against rapid temperature changes.
【図1】本発明の静磁波素子の一実施例の断面図である
。FIG. 1 is a sectional view of an embodiment of a magnetostatic wave element of the present invention.
【図2】本発明における磁石の厚さとギャップ磁場との
関係を示すグラフである。FIG. 2 is a graph showing the relationship between magnet thickness and gap magnetic field in the present invention.
【図3】本発明における磁石の厚さとギャップ磁場の絶
対値の温度係数との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the thickness of the magnet and the temperature coefficient of the absolute value of the gap magnetic field in the present invention.
【図4】本発明におけるYIG膜の飽和磁化とその絶対
値の温度係数を示したグラフである。FIG. 4 is a graph showing the saturation magnetization of the YIG film in the present invention and the temperature coefficient of its absolute value.
【図5】図1に示される実施例におけるギャップの長さ
とギャップ磁場との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the gap length and the gap magnetic field in the embodiment shown in FIG. 1;
【図6】図1に示される実施例におけるギャップの長さ
とギャップ磁場の絶対値の温度係数との関係を示すグラ
フである。FIG. 6 is a graph showing the relationship between the gap length and the temperature coefficient of the absolute value of the gap magnetic field in the embodiment shown in FIG.
【図7】従来の静磁波素子を示す断面図である。FIG. 7 is a sectional view showing a conventional magnetostatic wave element.
1 磁性ガーネット膜 2 磁気回路 3 ヨーク 4 永久磁石 5 コイル 1 Magnetic garnet film 2 Magnetic circuit 3 York 4 Permanent magnet 5 Coil
Claims (3)
ット膜と、コイル、ヨークおよび残留磁束密度の温度係
数が −0.03〜−0.05(%/℃)の永久磁石か
らなり、前記磁性ガーネット膜に垂直に直流磁界を印加
する磁気回路とからなり、前記磁性ガーネット膜が飽和
磁化の絶対値の温度係数が −1〜−1.5(Gaus
s /℃)の磁性ガーネットで形成されてなることを特
徴とする静磁波素子。1. Consisting of a magnetic garnet film formed on a non-magnetic substrate, a coil, a yoke, and a permanent magnet with a temperature coefficient of residual magnetic flux density of -0.03 to -0.05 (%/°C), It consists of a magnetic circuit that applies a direct current magnetic field perpendicularly to the magnetic garnet film, and the magnetic garnet film has a temperature coefficient of the absolute value of saturation magnetization of -1 to -1.5 (Gauss).
A magnetostatic wave element characterized in that it is formed of magnetic garnet (s/°C).
るのに適した、式(I): Y3−zLazFe5−
tGatO12 t=10
z−0.54 (0.12≦z≦0.14)
(I)で表わされる液相エピタキ
シャル磁性ガーネット膜。2. Formula (I): Y3-zLazFe5-, suitable for forming the magnetic garnet film of claim 1.
tGatO12 t=10
z-0.54 (0.12≦z≦0.14)
A liquid phase epitaxial magnetic garnet film represented by (I).
Y3−zLazFe5−
tGatO12 t=10
z−0.54 (0.12≦z≦0.14)
(I)で表わされる液相エピタキ
シャル磁性ガーネット膜である請求項1記載の静磁波素
子。3. The magnetic garnet film has the formula (I):
Y3-zLazFe5-
tGatO12 t=10
z-0.54 (0.12≦z≦0.14)
2. The magnetostatic wave device according to claim 1, which is a liquid phase epitaxial magnetic garnet film represented by (I).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10143791A JP2723374B2 (en) | 1991-05-07 | 1991-05-07 | Magnetostatic wave element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10143791A JP2723374B2 (en) | 1991-05-07 | 1991-05-07 | Magnetostatic wave element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04332106A true JPH04332106A (en) | 1992-11-19 |
JP2723374B2 JP2723374B2 (en) | 1998-03-09 |
Family
ID=14300670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10143791A Expired - Fee Related JP2723374B2 (en) | 1991-05-07 | 1991-05-07 | Magnetostatic wave element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2723374B2 (en) |
-
1991
- 1991-05-07 JP JP10143791A patent/JP2723374B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2723374B2 (en) | 1998-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0458605A (en) | Surface acoustic wave element | |
US5601935A (en) | Surface magnetostatic wave device | |
EP0157216A1 (en) | Magnetic apparatus | |
JP2723374B2 (en) | Magnetostatic wave element | |
KR950005158B1 (en) | YIG Thin Film Microwave Devices | |
KR950005157B1 (en) | YIG Thin Film Microwave Devices | |
JP2694440B2 (en) | Magnetic device | |
JPH0738528B2 (en) | YIG thin film microwave device | |
JP2672434B2 (en) | Magnetic device | |
JP2910015B2 (en) | Microwave oscillator | |
JPH0738527B2 (en) | YIG thin film microwave device | |
JP2872497B2 (en) | Magnetostatic wave element | |
JPH04346089A (en) | Composite permanent magnet and magnetic device | |
JPH07105648B2 (en) | YIG thin film microwave device | |
JPH03223199A (en) | Magnetic garnet single crystal and microwave element materials | |
JPH03280602A (en) | Microwave device | |
Nilsen et al. | Microwave Properties of a Calcium‐Vanadium‐Bismuth Garnet | |
Adler et al. | The influence of surface conditions on magnetic properties of sintered Co5Sm magnets | |
JP3387341B2 (en) | Surface magnetostatic wave device | |
JPS62200709A (en) | Yig thin film microwave device | |
JPH05315817A (en) | Magnetic device | |
JP3324304B2 (en) | Method of processing magnetic garnet single crystal film for magnetostatic wave device and apparatus for manufacturing magnetic garnet single crystal film provided with the processing means | |
JPH04332107A (en) | Magnetic device | |
JPH03262301A (en) | Microwave equipment | |
JPH06112705A (en) | Magnetic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |