[go: up one dir, main page]

JPH04330279A - Polypeptide - Google Patents

Polypeptide

Info

Publication number
JPH04330279A
JPH04330279A JP3081136A JP8113691A JPH04330279A JP H04330279 A JPH04330279 A JP H04330279A JP 3081136 A JP3081136 A JP 3081136A JP 8113691 A JP8113691 A JP 8113691A JP H04330279 A JPH04330279 A JP H04330279A
Authority
JP
Japan
Prior art keywords
val
ala
leu
glu
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3081136A
Other languages
Japanese (ja)
Other versions
JP2892171B2 (en
Inventor
Masanori Mita
三田 正範
Hiroichi Kotani
小谷 博一
Ikunoshin Katou
郁之進 加藤
Susumu Tsunasawa
綱沢 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Shuzo Co Ltd
Original Assignee
Takara Shuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co Ltd filed Critical Takara Shuzo Co Ltd
Priority to JP3081136A priority Critical patent/JP2892171B2/en
Publication of JPH04330279A publication Critical patent/JPH04330279A/en
Application granted granted Critical
Publication of JP2892171B2 publication Critical patent/JP2892171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To obtain a polypeptide having a base sequence or aminoacylase I activity necessary for the genetic diagnosis or treatment of pulmonary small cell carcinoma and nephrocarcinoma by clarifying the gene structure and amino acid sequence of aminoacylase I. CONSTITUTION:A polypeptide having the amino acid sequence expressed by the sequence number 1 or 2 of the sequence table and exhibiting porcine aminoacylase I or human aminoacylase I activity or a base sequence coding the polypeptide and expressed by the sequence number 6 or 7 of the sequence table. A probe and primer can be prepared based on the DNA sequence and an antibody can be prepared based on the amino acid sequence.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はアミノアシラーゼIのア
ミノ酸配列を有するポリペプチド及びそのDNA配列に
関する。
FIELD OF THE INVENTION The present invention relates to a polypeptide having the amino acid sequence of aminoacylase I and its DNA sequence.

【0002】0002

【従来の技術】アミノアシラーゼI〔N−acylam
ino acid aminohydrolase 、
(EC3.5.1.14.)〕は、N−アシルアミノ酸
を有機酸とアミノ酸に加水分解する酵素である。動物組
織、カビ、細菌に広く存在し、ホ乳類においては、特に
腎臓に高い活性を有する。本酵素は一世紀以上前よりそ
の存在は知られており、酵素的性質についてはよく知ら
れている。例えば、本酵素の基質特異性は高く、L−ア
ミノ酸だけを基質とする。そのため、化学合成されたラ
セミ体のN−アシルアミノ酸よりL−アミノ酸を光学分
割するのに、研究室あるいは工業的規模で用いられてい
る〔ニューヨーク市、ジョン  ワイリーアンドサンズ
社、1961年発行、グリーンシュタイン  J.M.
( Greenstein, J.M.)及びウイニッ
ツ  M (Winitz, M.)著、アミノ酸の化
学 ( Chemistry of the Amin
o Acids )、第2巻、第1753〜1816頁
〕。構造的には、分子量46000±2000Da(ラ
ウリル硫酸ナトリウム−ポリアクリルアミド電気泳動法
)、98000±5000Da(沈降平衡法)であり、
同じサブユニット2つから成る二量体の形で存在すると
推定される〔ヒーセD ( Heese, D.)、ロ
フレル  H.G.( Loeffler, H.G.
)及びロームK.H.( Roehm,K.H.)、バ
イオロジカル  ケミストリー  ホップ−ザイラー(
 Biol. Chem. Hoppe−Seyler
 )、第369巻、第559〜566頁(1988)〕
。 ところで、肺小細胞ガン及び腎ガンにおいて、ヒト第3
染色体短腕のp14−p23の部分に高頻度で染色体の
欠失が見出されている。この部分に本酵素がコードされ
ていることが推定されており、実際ある種の肺小細胞ガ
ン細胞系では、本酵素活性がなくなっていることが確認
されている〔ミラー  Y.E.( Miller, 
Y.E.)、カオ  B.( Kao,B.)及びガズ
ダー  A.( Gazder,A.)、アメリカン 
 ジャーナル  オブ  ヒューマン  ジェネティク
ス ( Amer.J.Hum.Genet.)、第4
1巻、第A32頁(1987)〕。このようにアミノア
シラーゼIは、ラセミ化アミノ酸の光学分割に極めて有
効な手段である。更にヒトアミノアシラーゼIをコード
するDNA配列は、肺小細胞ガンあるいは、腎ガンのマ
ーカーとして、同ガンの遺伝子診断あるいは治療に有用
であると考えられる。
[Prior art] Aminoacylase I [N-acylam
ino acid aminohydrolase,
(EC3.5.1.14.)] is an enzyme that hydrolyzes N-acylamino acids into organic acids and amino acids. It is widely present in animal tissues, molds, and bacteria, and in mammals, it has particularly high activity in the kidneys. The existence of this enzyme has been known for over a century, and its enzymatic properties are well known. For example, the substrate specificity of this enzyme is high, and only L-amino acids are used as substrates. Therefore, it is used on a laboratory or industrial scale to optically resolve L-amino acids from chemically synthesized racemic N-acylamino acids [New York City, John Wiley & Sons, Inc., 1961, Green. Stein J. M.
(Greenstein, J.M.) and Winitz, M., Chemistry of the Amin.
o Acids), Vol. 2, pp. 1753-1816]. Structurally, the molecular weight is 46,000 ± 2,000 Da (sodium lauryl sulfate-polyacrylamide electrophoresis method), 98,000 ± 5,000 Da (sedimentation equilibrium method),
It is presumed that it exists in the form of a dimer consisting of two identical subunits [Heese, D., Loffler, H.; G. (Loeffler, H.G.
) and Rohm K. H. (Roehm, K.H.), Biological Chemistry Hopf-Seiler (
Biol. Chem. Hoppe-Seyler
), Volume 369, Pages 559-566 (1988)]
. By the way, in small cell lung cancer and kidney cancer, human
Chromosomal deletions are frequently found in the p14-p23 region of the short arm of the chromosome. It is presumed that this enzyme is encoded in this region, and it has been confirmed that this enzyme activity is actually lost in certain small lung cell carcinoma cell lines [Miller Y. et al. E. (Miller,
Y. E. ), Kao B. (Kao, B.) and Gazder A. (Gazder, A.), American
Journal of Human Genetics (Amer.J.Hum.Genet.), No. 4
Volume 1, page A32 (1987)]. As described above, aminoacylase I is an extremely effective means for optical resolution of racemized amino acids. Furthermore, the DNA sequence encoding human aminoacylase I is considered to be useful as a marker for small cell lung cancer or renal cancer in the genetic diagnosis or treatment of the same cancer.

【0003】0003

【発明が解決しようとする課題】アミノアシラーゼIは
、動物組織に広く分布し、特にブタ腎臓の酵素について
精製され〔ヘンセリング  J.( Henselin
g,J.)及びローム  K.H.、ビオシミカ  エ
  ビオフィジカ  アクタ ( Biochim. 
Biophys. Acta ) 、第959巻、第3
70〜377頁(1988)〕、市販もされている。 しかし、その遺伝子構造やアミノ酸配列は依然として不
明である。また、アミノアシラーゼIの工業的に有利な
製造方法についても開示されていない。本発明の目的は
、アミノアシラーゼIの遺伝子構造とアミノ酸配列を明
らかにし、肺小細胞ガンあるいは腎ガンなどの遺伝子診
断あるいは治療に必要な塩基配列、またアミノアシラー
ゼI活性を有するポリペプチドを提供することにある。
[Problem to be Solved by the Invention] Aminoacylase I is widely distributed in animal tissues, and has been particularly purified as an enzyme from pig kidney [Henseling J. et al. ( Henselin
g, J. ) and Rohm K. H. , Biochimica e biophysica acta (Biochim.
Biophys. Acta), Volume 959, No. 3
70-377 (1988)] and is also commercially available. However, its genetic structure and amino acid sequence are still unknown. Furthermore, an industrially advantageous method for producing aminoacylase I is not disclosed. The purpose of the present invention is to clarify the gene structure and amino acid sequence of aminoacylase I, and to provide a nucleotide sequence necessary for genetic diagnosis or treatment of small cell lung cancer or renal cancer, and a polypeptide having aminoacylase I activity. There is a particular thing.

【0004】0004

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は配列表の配列番号1あるいは配列番
号2で表されるアミノ酸配列を有していることを特徴と
するアミノアシラーゼI活性を有するポリペプチドに関
する。また、本発明の第2の発明は第1の発明のポリペ
プチドをコードする塩基配列に関する。
[Means for Solving the Problems] To summarize the present invention, the first invention of the present invention is characterized by having an amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing. The present invention relates to a polypeptide having aminoacylase I activity. Furthermore, the second invention of the present invention relates to a base sequence encoding the polypeptide of the first invention.

【0005】以下本発明を具体的に説明する。アミノア
シラーゼIをコードするcDNAのクローニングの方法
は公知の方法が用いられる。例えば、アミノアシラーゼ
Iが特に多く分布する腎臓から、ポリ(A)を含むRN
Aを抽出し、これをオリゴ(dT)を結合させたセルロ
ース担体等で精製する。これをテンプレート(鋳型)と
して逆転写酵素を作用させてcDNA合成を行い、岡山
−バーグ法あるいはガブラー−ホフマン法( Gubl
er−Hoffmann 法)等の方法により、プラス
ミドやファージベクターに接続して、宿主に導入し、c
DNAライブラリーを作製する。このようなライブラリ
ーは、市販もされており、例えばクローンテック社から
購入することもできる。cDNAライブラリーから目的
のアミノアシラーゼIをコードするcDNAクローンを
スクリーニングするためには、まずアミノアシラーゼI
の部分アミノ酸配列を決定し、それから推定した合成D
NAプローブを作成しなければならない。部分アミノ酸
配列を決定するためには、まず精製アミノアシラーゼI
に、特異性の高いタンパク質加水分解酵素を作用させ加
水分解し、ペプチドを逆相HPLCを用いて分離精製す
る。これをエドマン分解法によりアミノ酸配列分析を行
い、決定するのが効果的である。この部分アミノ酸配列
から合成DNAプローブをデザインするには2種類の方
法がある。一つは考えられる組合せの配列をすべて合成
してゆく方法である。もう一つは、今まで調べられてき
たコドンの使用頻度の高いものを用いて長いDNAを合
成して使う方法である。また、ある種のアミノアシラー
ゼIをコードするcDNAの塩基配列が決定している場
合に、他の起源のアミノアシラーゼIをコードするcD
NAクローンをスクリーニングするためには、既にその
配列が明らかにされているアミノアシラーゼIのcDN
A断片をプローブとして用いるのが効果的である。DN
Aプローブは化学的に合成しても良いし、cDNAを含
むベクターから制限酵素で切り出して精製してもよい。 DNAプローブでライブラリーをスクリーニングする手
段としては、まずライブラリーをプレート上で増幅させ
、生育したコロニー又はプラークをニトロセルロースや
ナイロンのフィルターに移し取り、変性処理によりDN
Aをフィルターに固定する。このフィルターをあらかじ
め32P等で標識したDNAプローブを含む溶液中でイ
ンキュベートし、フィルター上のDNAと、プローブD
NAとのハイブリッドを形成させる(以下、この操作を
ハイブリダイゼーションという)。インキュベーション
の温度は、用いるプローブのTm(融解温度)を目安と
して設定する。ハイブリダイゼーション後、非特異的吸
着を洗い流し、オートラジオグラフィーにより、プロー
ブとハイブリッドを形成したクローンを同定する。この
操作を再度行ってクローンを単離し、次の分析を行う。 組換え体が大腸菌の場合は、試験管等で少量培養を行い
、プラスミドを常法によって抽出、制限酵素による切断
反応を行い、アガロース又はアクリルアミドゲル電気泳
動に付して、クローン化された挿入断片の生成を調べる
。更にその泳動パターンをニトロセルロースやナイロン
膜に移し取り、前述の方法によりハイブリダイゼーショ
ンを行って挿入断片がDNAプローブとハイブリッドを
形成するか否かを調べる。最終的には挿入断片の塩基配
列を公知の方法により決定する。組換え体がファージの
場合も基本的には同様のステップでクローンの分析を行
う。あらかじめ培養した宿主大腸菌にクローン化ファー
ジを感染させ、その溶菌液からファージDNAを調製す
る。ファージDNAの具体的な調製法に関しては、例え
ば続生化学実験講座1「遺伝子研究法II」の第100
頁(東京化学同人出版)に記載されている。ファージD
NAを制限酵素で切断してゲル電気泳動に付し、挿入断
片の確認を行い、更に、プローブDNAとハイブリダイ
ズすることを調べる。最終的には塩基配列を決定するこ
とにより、クローンの確認を行う。決定された塩基配列
を、アミノアシラーゼIのペプチド断片のアミノ酸配列
や、C末端分析、アミノ酸組成分析、分子量等と比較し
てその遺伝子構造及びアミノ酸配列を知ることができる
。また、得られたcDNAの構造遺伝子を適当な宿主細
胞、例えば酵母において発現できるように発現ベクター
に接続して、該宿主細胞に導入し、これを培養すること
により、アミノアシラーゼ活性を持つポリペプチドを生
産させることができる。発現の確認は、通常のアミノア
シラーゼI活性測定法により活性を測定することによっ
て行うことができる。例えば、2−アセトアミドアクリ
ル酸、L−アラニンデヒドロゲナーゼ、β−ニコチンア
ミドアデニンジヌクレオチド二ナトリウム塩(NADH
)を含むアミノアシラーゼIの活性測定系に、例えば組
換え体酵母の細胞抽出液を加える。このとき2−アセト
アミドアクリル酸がアミノアシラーゼIにより加水分解
された後、脱アミノしてピルビン酸とアンモニアを生じ
る。これをL−アラニンデヒドロゲナーゼがアラニンに
合成する時に消費されるNADHの減少を分光光度計で
測定することによって、アミノアシラーゼI活性を測定
することができる。形質転換体の培養物からアミノアシ
ラーゼIポリペプチドの精製には、通常のクロマトグラ
フィーの手法が用いられる。すなわち、例えば培養菌体
を破砕し、上清を得る。これを硫酸アンモニウムを用い
た塩析により分画し、次いで疎水、イオン交換、ゲルろ
過等のクロマトグラフィーによって所望のポリペプチド
を得ることができる。以上のことから、本発明によりア
ミノアシラーゼIの塩基配列、一次構造が明らかとなり
、肺小細胞ガンあるいは腎ガンに対する遺伝子診断用の
塩基配列、また、アミノアシラーゼIの遺伝子工学的製
造法を提供することが可能となった。
The present invention will be explained in detail below. A known method can be used to clone the cDNA encoding aminoacylase I. For example, RN containing poly(A) is extracted from the kidney where aminoacylase I is particularly abundant.
A is extracted and purified using a cellulose carrier bound with oligo(dT). Using this as a template, reverse transcriptase is used to synthesize cDNA, using the Okayama-Berg method or the Gubler-Hoffman method (Gubl.
er-Hoffmann method), connect it to a plasmid or phage vector, introduce it into a host, and c
Create a DNA library. Such libraries are also commercially available, and can be purchased, for example, from Clonetech. In order to screen a cDNA clone encoding the desired aminoacylase I from a cDNA library, first, aminoacylase I
Determining the partial amino acid sequence of and deducing the synthetic D
NA probes must be created. To determine the partial amino acid sequence, first, purified aminoacylase I
The peptide is hydrolyzed by the action of a highly specific protein hydrolase, and the peptide is separated and purified using reversed-phase HPLC. It is effective to determine this by performing amino acid sequence analysis using the Edman degradation method. There are two methods for designing synthetic DNA probes from this partial amino acid sequence. One method is to synthesize all possible combinations of sequences. The other method is to synthesize and use long DNA using frequently used codons that have been investigated so far. In addition, if the base sequence of a cDNA encoding a certain type of aminoacylase I has been determined, a cDNA encoding an aminoacylase I of another origin may be used.
In order to screen NA clones, the cDNA of aminoacylase I whose sequence has already been revealed is used.
It is effective to use the A fragment as a probe. D.N.
The A probe may be chemically synthesized or purified by cutting it out with a restriction enzyme from a vector containing cDNA. To screen a library with a DNA probe, first the library is amplified on a plate, the grown colonies or plaques are transferred to a nitrocellulose or nylon filter, and the DNA is denatured by denaturation.
Fix A to the filter. This filter is incubated in a solution containing a DNA probe previously labeled with 32P, etc., and the DNA on the filter and probe D
A hybrid is formed with NA (hereinafter, this operation is referred to as hybridization). The incubation temperature is set based on the Tm (melting temperature) of the probe used. After hybridization, nonspecific adsorption is washed away and clones that have hybridized to the probe are identified by autoradiography. This operation is repeated to isolate clones for the next analysis. If the recombinant is Escherichia coli, culture a small amount in a test tube, extract the plasmid using a conventional method, perform a cleavage reaction with restriction enzymes, and perform agarose or acrylamide gel electrophoresis to extract the cloned insert fragment. Examine the generation of. Furthermore, the electrophoresis pattern is transferred to a nitrocellulose or nylon membrane, and hybridization is performed using the method described above to examine whether the inserted fragment forms a hybrid with the DNA probe. Finally, the base sequence of the inserted fragment is determined by a known method. When the recombinant is a phage, the clones are analyzed using basically the same steps. A previously cultured host E. coli is infected with the cloned phage, and phage DNA is prepared from the lysate. For specific preparation methods for phage DNA, see, for example, Section 100 of Sekibiochemistry Experiment Course 1 "Gene Research Methods II".
Page (Tokyo Kagaku Dojin Publishing). Phage D
The inserted fragment is confirmed by cutting the NA with a restriction enzyme and subjected to gel electrophoresis, and further, hybridization with the probe DNA is examined. Finally, the clone is confirmed by determining the base sequence. By comparing the determined base sequence with the amino acid sequence of the peptide fragment of aminoacylase I, C-terminal analysis, amino acid composition analysis, molecular weight, etc., the gene structure and amino acid sequence can be determined. In addition, the structural gene of the obtained cDNA is connected to an expression vector so that it can be expressed in a suitable host cell, for example, yeast, and by introducing it into the host cell and culturing it, a polypeptide having aminoacylase activity can be obtained. can be produced. Expression can be confirmed by measuring the activity using a conventional aminoacylase I activity assay method. For example, 2-acetamidoacrylic acid, L-alanine dehydrogenase, β-nicotinamide adenine dinucleotide disodium salt (NADH
), for example, a recombinant yeast cell extract is added to an aminoacylase I activity measurement system. At this time, 2-acetamidoacrylic acid is hydrolyzed by aminoacylase I and then deaminated to produce pyruvic acid and ammonia. Aminoacylase I activity can be measured by spectrophotometrically measuring the decrease in NADH consumed when L-alanine dehydrogenase synthesizes alanine. Conventional chromatographic techniques are used to purify aminoacylase I polypeptides from cultures of transformants. That is, for example, cultured bacterial cells are disrupted to obtain a supernatant. This can be fractionated by salting out using ammonium sulfate, and then the desired polypeptide can be obtained by chromatography such as hydrophobic, ion exchange, and gel filtration. Based on the above, the present invention has revealed the base sequence and primary structure of aminoacylase I, and provides a base sequence for genetic diagnosis of small cell lung cancer or kidney cancer, as well as a method for producing aminoacylase I using genetic engineering. It became possible.

【0006】[0006]

【実施例】次に本発明の実施例を示すが、これらは本発
明を限定するものではない。
[Examples] Next, examples of the present invention will be shown, but these are not intended to limit the present invention.

【0007】実施例1  ブタアミノアシラーゼIcD
NAクローニング (1−1)cDNAライブラリーからのスクリーニング
<ポジティブクローンの同定、単離>ブタ腎臓ポリ(A
)RNAは、クローンテック社(米国)から入手した(
コード番号6683)。このポリ(A)RNA2μgよ
りアマルシャム社製cDNA合成キット(コード番号R
PN.1256)を使って、オリゴ(dT)プライマー
によりcDNAを合成した。次に同じくアマシャム社製
cDNAクローニングシステム・λgt10(コード番
号PRN.1257)を使って、無細胞系で、cDNA
をλgt10のEcoRIサイトに組込んだものを、ラ
ムダーファージにパッケージングし、cDNAライブラ
リーを作製した。ただし、配列表の配列番号3で表され
るEcoRIリンカーは宝酒造(株)製のものを、パッ
ケージングには、ストラタジーン社(米国)のギガパッ
クゴールド(GIGAPACK GOLD )を用いた
。前記cDNAライブラリーを、宿主菌としてC600
hfl株を用い、14cm×10cmの角シャーレ8枚
に、1枚当り約16000個のプラークを形成させた。 すなわち4mg/mlのマルトースを含むL培地でC6
00hflを37℃で一晩培養した培養液0.2mlに
、ファージ液0.1mlを混ぜ37℃で15分間保温し
た。これに軟寒天(L培地に終濃度0.6%となるよう
にアガロースを加え、オートクレーブで処理した後、5
0℃に保ったもの)8mlを加え、L−プレート上に広
げ、固化後37℃で10時間程度保温してファージのプ
ラークを形成させた(以下、この操作をプレーティング
と略す)。次にこのプレートより2枚のハイブリダイゼ
ーション用フィルターを調製した。 すなわち、プレート表面にアマシャム社製ナイロン膜〔
商品名ハイボンド(Hybond−N)〕を30秒間接
触させ、これを0.5M  NaOH、1.5M  N
aClの溶液に浸したろ紙上で5分間(変性)、0.5
M  トリス (Tris) −HCl緩衝液( pH
 7.0)、1.5MNaClの溶液に浸したろ紙上で
5分間(中和)処理した後、2×SSC〔NaClの1
7.53g、クエン酸ナトリウム8.82gを1リット
ルの水に溶かしたもの〕でリンスし、ろ紙上で乾燥させ
た(以下この処理をフィルター処理と略す)。2枚目の
フィルター処理は、プレートとナイロン膜の接触時間を
2分間として行った。UVランプで5分間このフィルタ
ーを照射してDNAを固定化した。ハイブリダイゼーシ
ョンのプローブとしては、ブタ腎臓アミノアシラーゼI
(シグマ社)の部分アミノ酸配列より推定した、17塩
基の合成DNAの混合物(配列表の配列番号4で表され
る)を用いた。部分アミノ酸配列は、精製されたブタ腎
臓アミノアシラーゼIをタンパク質加水分解酵素アクロ
モバクタープロテアーゼI消化後HPLCで分取し、気
相式ペプチドシークエンサーで決定した。配列表の配列
番号5が、該アミノ酸配列である。この合成DNA50
ngを宝酒造社製メガラベルキット(コード番号607
0)を用いて32Pで標識し、8.6×108 cpm
/μgの比活性のプローブDNAを得た。このプローブ
の全量と上記調製したフィルターを用い、6×SSC、
1%SDS100μg/mlのニシン精子DNA、5×
デンハルト( Denhardt′s)〔ウシ血清アル
ブミン、ポリビニルピロリドン、フィコールをそれぞれ
0.1%の濃度で含む〕を含む約100mlの溶液中で
45℃で一晩ハイブリダイゼーションを行った。次に室
温の6×SSC中で10分間フィルターを洗浄した。更
に40℃の2×SSC中で10分間を2回洗浄した後、
フィルターをろ紙上に移し余分な水分を除いた。これを
、ワットマン3MMろ紙にはり付け、増感紙を当てて一
晩−70℃でオートラジオグラフを行った。 その結果合計51個のポジティブシグナルを得た。これ
らのシグナルに相当する位置のプラークを寒天ごと0.
2mlのSM溶液〔NaCl  5.8g、MgSO4
 ・7H2 O  2g、1Mトリス−HCl緩衝液(
 pH  7.5)50ml、2%ゼラチン5mlを水
に溶かし全量を1リットルとする〕中に回収、懸濁した
。これらファージ液の内から適当に10個を選び以下の
操作に供した。これらファージ液を希釈してプレーティ
ングし(約300プラーク/φ9cm丸形シャーレ)上
記と同様の操作を行った(以下2次スクリーニングと略
す)。その結果、全クローンに関してシングルプラーク
を単離することができた。これらのクローンをλpkA
mA 1〜10と命名した。 (1−2)塩基配列分析 <λDNAの調製>クローン化できたファージを宿主菌
として大腸菌L87株を用いて液体培養(遺伝子研究法
II、第100頁、東京化学同人出版)を行った。これ
によって40mlの培養液から調製し、約40μgのλ
DNAを得た。 <挿入断片の同定と抽出精製>調製した上記DNA20
μgを100μlの1×EcoRI緩衝液(組成は宝酒
造・遺伝子工学用試薬カタログ記載)中120ユニット
のEcoRIと共に37℃1.5時間保温し、更に終濃
度50μg/mlとなるようにRNaseAを加え10
分間保温した。この反応液中から5μlを取出し、1.
0%アガロースゲルで電気泳動し挿入断片の大きさを求
めた。その結果、0.6〜1.4kbの大きさの断片が
挿入されていることが判明した。これらの内で一番長い
1.4kbの挿入断片を持つλpkAmA 10を選び
、以下の操作に供した。先にEcoRI消化した残りの
反応液全量を1.0%アガロースゲルで電気泳動した。 泳動後ゲルを1μg/mlのエチジウムブロマイド溶液
で10分間染色した後、紫外線照射下で目的の挿入断片
を含む部分をゲルから切り出した。これを、宝酒造(株
)製イージートラップ(EASYTRAP) キットを
用いて抽出精製し、約200ngの1.4kbDNA断
片を得た。 <挿入断片の制限酵素サイトの同定と塩基配列決定>λ
pkAmA 10の挿入断片50ngとM13mp18
(宝酒造)のRFDNAをEcoRI消化したもの50
ngをライゲーションキット(宝酒造  コード番号6
021)を用いてライゲーションを行った。このライゲ
ーション反応液の一部を用いて大腸菌JM109を形質
転換し、X−Gal (5−ブロモ−4−クロロ−3−
インドリル−β−D−ガラクトシド)とIPTG(イソ
プロピル−β−D−チオガラクトシド)を含む軟寒天に
、JM109をL培地で一晩培養した培養液0.2ml
と混ぜL−プレートにまいた。このプレートを37℃で
一晩保温し、形成した白いプラークを選ぶことによって
、断片が挿入されている組換え体を得た。得られた白色
プラークを大腸菌JM109を宿主菌として液体培養を
行い、アルカリ溶菌法によりRFDNAを調製した〔文
献:1982年、コールド  スプリング  ハーバー
ラボラトリー発行、T.マニアスティス(T.Mani
astis)ほか著、モレキュラー・クローニング、ア
・ラボラトリー・マニュアル( MolecularC
loning , A  Laboratory Ma
nual ) 、第368頁〕。このRFDNAの一部
をEcoRIで消化し、1%アガロースゲル電気泳動に
より、1.4kbの断片が挿入されていることを確認し
た。次に挿入断片の向きと、制限酵素サイトの存在を調
べた。得られたRFDNAの一部を、数種の制限酵素で
切断し、1%アガロースゲル電気泳動により分析した。 その結果、制限酵素KpnI、SacI、StuI、P
stI、Hind III 、Hinc II等のサイ
トが1個又は2個存在することが判明した。また、M1
3mp18のベクターDNAに対してそれぞれ逆向きに
、1.4kb断片が挿入されているクローンが得られて
いることも判明した。1つの方向のものをMpkAmA
 10−2、もう一方のものをMpkAmA 10−5
と命名した。次に、1.4kb挿入断片の全塩基配列を
決定するために、以下のようにして、MpkAmA 1
0−2、MpkAmA 10−5より、種々の長さのD
NAを欠失させた誘導体を作製した。まずMpkAmA
 10−2をKpnI、StuIとSmaI、PstI
、Hind III 、MpkAmA 10−5をHi
nd III 、PstI、SacI、KpnIでそれ
ぞれ消化し、マルチクローニングサイト内の制限酵素サ
イトと挿入断片内のサイトで切断して、種々の大きさで
DNAを欠失させた。次にこれらベクターDNAをセル
フライゲーションさせた後、大腸菌JM109に導入し
形質転換体を得た。これら誘導体クローンと、MpkA
mA 10−2、MpkAmA 10−5を培養してシ
ングルストランドDNA(ssDNA)を調製し、ジデ
オキシ法によってDNAシークエンシングを行った。そ
の結果、λpkAmA 10の挿入断片の塩基配列を決
定した。その結果を図1に示す。すなわち図1はブタア
ミノアシラーゼIcDNAの制限酵素地図、及び塩基配
列を決定した部分とその向きを示す図である。このcD
NA塩基配列分析の結果から、配列表の配列番号6のブ
タアミノアシラーゼI構成遺伝子の全塩基配列及びアミ
ノ酸配列が決定された。すなわち配列番号6はcDNA
塩基配列分析より得た、アミノアシラーゼIの1例の塩
基配列及びそれに対応するアミノ酸配列を示すものであ
る。
Example 1 Porcine aminoacylase IcD
NA cloning (1-1) Screening from cDNA library <Identification and isolation of positive clones> Pig kidney poly(A
) RNA was obtained from Clonetech (USA) (
Code number 6683). From 2 μg of this poly(A) RNA, cDNA synthesis kit manufactured by Amersham (Code number R) was used.
P.N. 1256), cDNA was synthesized using an oligo(dT) primer. Next, cDNA was extracted in a cell-free system using Amersham's cDNA cloning system λgt10 (code number PRN.1257).
was integrated into the EcoRI site of λgt10 and packaged into lambda phage to prepare a cDNA library. However, the EcoRI linker represented by SEQ ID NO: 3 in the sequence listing was manufactured by Takara Shuzo Co., Ltd., and GIGAPACK GOLD manufactured by Stratagene (USA) was used for packaging. The cDNA library was used as a host strain in C600.
Using the hfl strain, approximately 16,000 plaques were formed on each of eight 14 cm x 10 cm square petri dishes. That is, C6 in L medium containing 4 mg/ml maltose.
0.1 ml of phage solution was mixed with 0.2 ml of a culture solution obtained by culturing 00hfl overnight at 37°C, and the mixture was incubated at 37°C for 15 minutes. To this, add agarose to soft agar (L medium to a final concentration of 0.6%), autoclave it,
(maintained at 0°C) was added, spread on an L-plate, and after solidification was kept at 37°C for about 10 hours to form phage plaques (hereinafter, this operation is abbreviated as plating). Next, two hybridization filters were prepared from this plate. That is, a nylon membrane made by Amersham [
product name Hybond-N] for 30 seconds, and then mixed with 0.5M NaOH, 1.5M N
5 minutes on filter paper soaked in a solution of aCl (denaturing), 0.5
M Tris-HCl buffer (pH
7.0), after treatment for 5 minutes (neutralization) on a filter paper soaked in a solution of 1.5M NaCl,
7.53 g of sodium citrate and 8.82 g of sodium citrate dissolved in 1 liter of water] and dried on filter paper (hereinafter this treatment will be abbreviated as filter treatment). The second filter treatment was performed with a contact time of 2 minutes between the plate and the nylon membrane. The filter was irradiated with a UV lamp for 5 minutes to immobilize the DNA. As a hybridization probe, pig kidney aminoacylase I
A mixture of 17 base synthetic DNAs (represented by SEQ ID NO: 4 in the sequence listing) deduced from the partial amino acid sequence of Sigma Corporation (Sigma) was used. The partial amino acid sequence was determined using a gas-phase peptide sequencer after the purified pig kidney aminoacylase I was digested with protein hydrolase Achromobacter protease I and fractionated by HPLC. SEQ ID NO: 5 in the sequence listing is the amino acid sequence. This synthetic DNA50
Mega label kit made by Takara Shuzo Co., Ltd. (code number 607)
0) and labeled with 32P using 8.6 x 108 cpm
Probe DNA with a specific activity of /μg was obtained. Using the entire amount of this probe and the filter prepared above, 6×SSC,
1% SDS 100μg/ml herring sperm DNA, 5x
Hybridization was carried out overnight at 45° C. in approximately 100 ml of a solution containing Denhardt's (containing bovine serum albumin, polyvinylpyrrolidone, and Ficoll at a concentration of 0.1% each). The filters were then washed for 10 minutes in 6x SSC at room temperature. After further washing twice for 10 minutes in 2×SSC at 40°C,
The filter was transferred onto filter paper to remove excess water. This was attached to Whatman 3MM filter paper, and an intensifying screen was applied to perform autoradiography at -70°C overnight. As a result, a total of 51 positive signals were obtained. Plaques at positions corresponding to these signals were placed on the agar at 0.00%.
2 ml of SM solution [NaCl 5.8 g, MgSO4
・7H2O 2g, 1M Tris-HCl buffer (
50 ml of 2% gelatin (pH 7.5) was dissolved in water to make a total volume of 1 liter] and suspended. Ten phages were appropriately selected from among these phage solutions and subjected to the following operations. These phage solutions were diluted and plated (approximately 300 plaques/φ9 cm round petri dish), and the same operation as above was performed (hereinafter abbreviated as secondary screening). As a result, a single plaque could be isolated for all clones. These clones were λpkA
They were named mA 1-10. (1-2) Base sequence analysis <Preparation of λDNA> The cloned phage was cultured in liquid using E. coli strain L87 as a host bacterium (Gene Research Methods II, p. 100, Tokyo Kagaku Dojin Publishing). This allows approximately 40 μg of λ to be prepared from 40 ml of culture solution.
I got the DNA. <Identification and extraction and purification of inserted fragment> The above prepared DNA 20
μg was incubated at 37°C for 1.5 hours with 120 units of EcoRI in 100 μl of 1× EcoRI buffer (composition listed in the Takara Shuzo Genetic Engineering Reagent Catalog), and then RNase A was added to a final concentration of 50 μg/ml for 10 minutes.
It was kept warm for minutes. Take out 5 μl from this reaction solution, 1.
The size of the inserted fragment was determined by electrophoresis on 0% agarose gel. As a result, it was found that a fragment with a size of 0.6 to 1.4 kb was inserted. Among these, λpkAmA 10 having the longest insert of 1.4 kb was selected and subjected to the following operation. The entire amount of the remaining reaction solution that had been previously digested with EcoRI was electrophoresed on a 1.0% agarose gel. After electrophoresis, the gel was stained with a 1 μg/ml ethidium bromide solution for 10 minutes, and then a portion containing the desired inserted fragment was cut out from the gel under ultraviolet irradiation. This was extracted and purified using Takara Shuzo Co., Ltd.'s EASYTRAP kit to obtain about 200 ng of a 1.4 kb DNA fragment. <Identification of restriction enzyme site of insert fragment and base sequence determination>λ
50 ng of insert of pkAmA 10 and M13mp18
(Takara Shuzo) RF DNA digested with EcoRI 50
ng ligation kit (Takara Shuzo code number 6)
Ligation was performed using 021). E. coli JM109 was transformed using a portion of this ligation reaction solution, and X-Gal (5-bromo-4-chloro-3-
0.2 ml of culture solution obtained by culturing JM109 overnight in L medium on soft agar containing indolyl-β-D-galactoside) and IPTG (isopropyl-β-D-thiogalactoside).
and spread it on an L-plate. This plate was incubated at 37° C. overnight and the white plaques formed were selected to obtain recombinants in which the fragment had been inserted. The obtained white plaques were cultured in liquid using Escherichia coli JM109 as the host bacteria, and RF DNA was prepared by the alkaline lysis method [Reference: 1982, published by Cold Spring Harbor Laboratory, T. Maniastis (T. Mani)
Molecular Cloning, A Laboratory Manual (MolecularC) et al.
loning, A Laboratory Ma
nual), page 368]. A part of this RF DNA was digested with EcoRI, and it was confirmed by 1% agarose gel electrophoresis that a 1.4 kb fragment had been inserted. Next, we examined the orientation of the inserted fragment and the presence of restriction enzyme sites. A portion of the obtained RF DNA was digested with several types of restriction enzymes and analyzed by 1% agarose gel electrophoresis. As a result, the restriction enzymes KpnI, SacI, StuI, P
It was found that one or two sites such as stI, Hind III, Hinc II, etc. were present. Also, M1
It was also found that clones were obtained in which a 1.4 kb fragment was inserted in the opposite direction to the vector DNA of 3mp18. MpkAmA for one direction
10-2, the other one MpkAmA 10-5
It was named. Next, in order to determine the entire nucleotide sequence of the 1.4 kb insert, MpkAmA 1
0-2, MpkAmA 10-5, D of various lengths
A derivative lacking NA was produced. First, MpkAmA
10-2 with KpnI, StuI and SmaI, PstI
, Hind III, MpkAmA 10-5 as Hi
ndIII, PstI, SacI, and KpnI, respectively, and cut at the restriction enzyme site within the multi-cloning site and the site within the inserted fragment to delete DNA of various sizes. Next, these vector DNAs were subjected to self-ligation and then introduced into E. coli JM109 to obtain a transformant. These derivative clones and MpkA
Single strand DNA (ssDNA) was prepared by culturing mA 10-2 and MpkAmA 10-5, and DNA sequencing was performed by the dideoxy method. As a result, the nucleotide sequence of the inserted fragment of λpkAmA 10 was determined. The results are shown in Figure 1. That is, FIG. 1 is a diagram showing a restriction enzyme map of porcine aminoacylase I cDNA, as well as portions where the base sequence has been determined and their orientations. This cD
From the results of the NA base sequence analysis, the entire base sequence and amino acid sequence of the porcine aminoacylase I constituent gene of SEQ ID NO: 6 in the sequence listing was determined. That is, SEQ ID NO: 6 is cDNA
The nucleotide sequence of one example of aminoacylase I and the corresponding amino acid sequence obtained from nucleotide sequence analysis are shown.

【0008】実施例2  ヒトアミノアシラーゼIcD
NAクローニング (2−1)cDNAライブラリーからのスクリーニング
ヒト肝臓ポリ(A)RNAは、クローンテック社から入
手した。このポリ(A)RNA2μgより、実施例1と
同様にして、ヒト肝臓−λgt10−cDNAライブラ
リーを作製し、フィルターを調製した。ハイブリダイゼ
ーションのプローブDNAとしては、λpkAmA 1
0挿入断片中のNcoI−StuI断片(約530bp
)を用いた。すなわち、ブタアミノアシラーゼIcDN
Aを含むMpkAmA 10−2  DNAを、Nco
I、StuI消化後アガロースゲル電気泳動をした。泳
動後ゲルを1μg/mlのエチジウムブロマイド溶液で
10分間染色した後、紫外線照射下で目的のDNA断片
を含む部分をゲルから切り出した。これをイージートラ
ップキットを用いて抽出精製した。得られた断片は、ラ
ンダムプライマーDNAラベリングキット(宝酒造  
コード番号6045)を用いて32Pで標識し、ハイブ
リダイゼーションに用いた。ハイブリダイゼーションは
、実施例1と同様の条件で行った。 ただし、ハイブリダイゼーションの温度は65℃とし、
洗浄は、最後に55℃の0.2×SSC中で30分間を
2回行った。その結果3個のポジティブシグナルを得た
。これらプラークを2次スクリーニングを行い、それぞ
れ単離した。このクローンをλhAmA1〜3と命名し
た。 (2−2)塩基配列分析 上記3クローンについてλDNAを調製し、EcoRI
消化して挿入DNA断片の大きさを調べた。その結果1
.1〜1.4kbのDNA断片が挿入されていることが
判明した。一番長い1.4kbの挿入断片を持つλhA
mA3よりEcoRIで挿入断片を切り出し、M13m
p18に組込んだ。得られた両方向のクローンをそれぞ
れMhAmA3−2、MhAmA3−3と命名した。次
に、1.4kb挿入断片の全塩基配列を決定するために
、以下のようにして、MhAmA3−2、MhAmA3
−3より、種々の大きさのDNAを欠失させた誘導体を
作製した。まず各RFDNAをHinc II、Pst
Iでそれぞれ消化し、マルチクローニングサイト内の制
限酵素サイトと挿入断片内のサイトで切断して、種々の
大きさでDNAを欠失させた。次にこれらベクターDN
Aをセルフライゲーションさせた後、大腸菌JM109
に導入して形質転換体を得た。またタカラ(TaKaR
a)キロシークエンス用デレーションキット(宝酒造)
を用い、MhAmA3−2、MhAmA3−3について
、シークエンス用プライマーのアニーリング位置の側か
ら挿入断片を分解していき、種々の大きさのDNAを欠
失させた誘導体を作製した。これら誘導体の適当なもの
と、MhAmA3−2、MhAmA3−3を培養してs
sDNAを調製し、ジデオキシ法によってDNAシーク
エンシングを行った。その結果λhAmA3の挿入断片
の塩基配列を決定した。その結果を図2に示す。すなわ
ち図2はヒトアミノアシラーゼIcDNAの制限酵素地
図及び塩基配列を決定した部分とその向きを示す図であ
る。このcDNA塩基配列分析の結果から、ヒトアミノ
アシラーゼI構成遺伝子の全塩基配列及びアミノ酸配列
が決定された。その結果を配列表の配列番号7に示す。 すなわち配列番号7はcDNA塩基配列分析より得たア
ミノアシラーゼIの1例の塩基配列及びそれに対応する
アミノ酸配列を示すものである。
Example 2 Human aminoacylase IcD
NA Cloning (2-1) Screening from cDNA Library Human liver poly(A) RNA was obtained from Clontech. A human liver-λgt10-cDNA library was prepared from 2 μg of this poly(A) RNA in the same manner as in Example 1, and a filter was prepared. As a probe DNA for hybridization, λpkAmA 1
NcoI-StuI fragment (approximately 530 bp) in the 0 insert
) was used. That is, porcine aminoacylase IcDN
MpkAmA 10-2 DNA containing A was converted into Nco
After digestion with I and StuI, agarose gel electrophoresis was performed. After electrophoresis, the gel was stained with a 1 μg/ml ethidium bromide solution for 10 minutes, and then a portion containing the desired DNA fragment was excised from the gel under ultraviolet irradiation. This was extracted and purified using an Easy Trap kit. The obtained fragments were used with a random primer DNA labeling kit (Takara Shuzo Co., Ltd.).
It was labeled with 32P using code number 6045) and used for hybridization. Hybridization was performed under the same conditions as in Example 1. However, the temperature of hybridization was 65°C.
The final washing was carried out twice for 30 minutes in 0.2×SSC at 55°C. As a result, three positive signals were obtained. These plaques were subjected to secondary screening and isolated. This clone was named λhAmA1-3. (2-2) Base sequence analysis Prepare λDNA for the above three clones, and
After digestion, the size of the inserted DNA fragment was examined. Result 1
.. It was found that a DNA fragment of 1 to 1.4 kb was inserted. λhA with the longest insert of 1.4 kb
Excise the insert fragment from mA3 with EcoRI and insert it into M13m.
It was incorporated into p18. The obtained clones in both directions were named MhAmA3-2 and MhAmA3-3, respectively. Next, in order to determine the entire base sequence of the 1.4 kb inserted fragment, MhAmA3-2, MhAmA3
-3, derivatives with various sizes of DNA deleted were prepared. First, each RFDNA was transformed into Hinc II, Pst
Each DNA was digested with I and cut at the restriction enzyme site within the multi-cloning site and the site within the inserted fragment to delete DNA of various sizes. Next, these vector DN
After self-ligation of A, E. coli JM109
to obtain transformants. Also, Takara (TaKaR)
a) Delation kit for kilosequencing (Takara Shuzo)
Using this method, the inserted fragments of MhAmA3-2 and MhAmA3-3 were decomposed from the side of the annealing position of the sequencing primer to produce derivatives in which DNA of various sizes were deleted. MhAmA3-2 and MhAmA3-3 are cultured with appropriate ones of these derivatives.
sDNA was prepared and DNA sequencing was performed using the dideoxy method. As a result, the base sequence of the inserted fragment of λhAmA3 was determined. The results are shown in FIG. That is, FIG. 2 is a diagram showing the restriction enzyme map of human aminoacylase I cDNA, the portions where the base sequence was determined, and their orientations. From the results of this cDNA base sequence analysis, the entire base sequence and amino acid sequence of the human aminoacylase I constituent gene was determined. The results are shown in SEQ ID NO: 7 in the sequence listing. That is, SEQ ID NO: 7 shows the base sequence of an example of aminoacylase I obtained by cDNA base sequence analysis and the corresponding amino acid sequence.

【0009】実施例3  アミノアシラーゼIポリペプ
チドを発現するプラスミドの構築 以下の手順でλpkAmA 10、あるいはλhAmA
3挿入断片中のアミノアシラーゼIをコードする部分を
切り出し、酵母のアルコールデヒドロゲナーゼプロモー
ターを持つ大腸菌−酵母シャトルベクターであるpJM
124〔文献:ジ  エムボジャーナル ( The 
EMBO Journal ) 、第8巻、第2067
頁(1989)〕に組込んだ発現プラスミド(それぞれ
 pYAmA101、 pYhAmA 101と命名)
を構築した。 (3−1)ブタアミノアシラーゼI様ポリペプチド発現
プラスミド pYAmA101の構築 λpkAmA 10のEcoRI挿入断片をM13mp
18に組込んだMpkAmA 10−2RFDNAを、
制限酵素NcoI、Eco47III で消化し、遊離
する約1230bpのDNA断片を分離精製した。そし
て、DNAブランティング  キット( Blunti
ng Kit )(宝酒造  コード番号6025)を
用いて、NcoI突出末端を平滑化した。これを、プラ
スミドpJM124をBamHI消化してBamHI挿
入断片をはずし、平滑末端化したものに組込んだ。得ら
れたプラスミドを pYAmA101と命名した。すな
わちプラスミド pYAmA101は、酵母アルコール
デヒドロゲナーゼプロモーターの下流に、ブタアミノア
シラーゼIの407アミノ酸残基のポリペプチドをコー
ドする。このプラスミド pYAmA101を酵母BJ
2168〔MATa、ura3−52、leu2、tr
p1、prc−407、prb1−1122、pep4
−3〕、あるいはDKD−5D−H〔MATa、leu
2−3、leu2−112、trp1、his3〕にア
ルカリ金属処理法〔文献:ジャーナル  オブ  バク
テリオロジー ( Journal of Bacte
riology )第153巻、第163頁(1983
)〕によって導入した。pYAmA 101を導入した
酵母BJ2168を Saccharomyces c
erevisiae BJ2168/pYAmA 10
1と表示し、工業技術院微生物工業技術研究所に寄託し
た〔微工研菌寄第12002号(FERM  P−12
002)〕。 (3−2)ヒトアミノアシラーゼI様ポリペプチド発現
プラスミド pYhAmA 101の構築λhAmA3
のEcoRI挿入断片をM13mp18に組込んだMh
AmA3−3  RFDNAを、制限酵素SacI、E
coRIで消化し、遊離する約1360bpのDNA断
片を分離精製した。そして、DNAブランティング  
キット(宝酒造  コード番号6025)を用いて、突
出末端を平滑化した。これを、プラスミドpJM124
をBamHI消化して、BamHI挿入断片をはずし、
平滑末端化したものに組込んだ。得られたプラスミドを
pYhAmA101と命名した。すなわちプラスミドp
YhAmA101は、酵母アルコールデヒドロゲナーゼ
プロモーターの下流に、ヒトアミノアシラーゼIの40
8アミノ酸残基のポリペプチドをコードする。このプラ
スミドpYhAmA101を酵母BJ2168〔MAT
a、ura3−5、leu2、trp1、prc−40
7、prb1−1122、pep4−3〕、あるいはD
KD−5D−H〔MATa、leu2−3、leu2−
112、trp1、his3〕にアルカリ金属処理法〔
文献:ジャーナル  オブ  バクテリオロジー、第1
53巻、第163頁(1983)〕によって導入した。 pYhAmA101を導入した酵母BJ2168を S
accharomycescerevisiae BJ
2168/pYhAmA101と表示し、工業技術院微
生物工業技術研究所に寄託した〔微工研菌寄第1200
3号(FERM  P−12003)〕。
Example 3 Construction of a plasmid expressing aminoacylase I polypeptide λpkAmA 10 or λhAmA
The part encoding aminoacylase I in the 3-insert fragment was cut out and pJM, an E. coli-yeast shuttle vector containing a yeast alcohol dehydrogenase promoter, was extracted.
124 [Reference: The Embo Journal (The
EMBO Journal), Volume 8, No. 2067
(1989)] (named pYAmA101 and pYhAmA 101, respectively)
was built. (3-1) Construction of porcine aminoacylase I-like polypeptide expression plasmid pYAmA101
MpkAmA 10-2RF DNA incorporated into 18,
It was digested with restriction enzymes NcoI and Eco47III, and the released DNA fragment of approximately 1230 bp was separated and purified. And a DNA blunting kit (Blunti)
ng Kit) (Takara Shuzo code number 6025) to blunt the NcoI protruding end. This was inserted into plasmid pJM124 which was digested with BamHI to remove the BamHI insert fragment and made into blunt ends. The obtained plasmid was named pYAmA101. That is, plasmid pYAmA101 encodes a polypeptide of 407 amino acid residues of porcine aminoacylase I downstream of the yeast alcohol dehydrogenase promoter. This plasmid pYAmA101 was transferred to yeast BJ
2168 [MATa, ura3-52, leu2, tr
p1, prc-407, prb1-1122, pep4
-3], or DKD-5D-H [MATa, leu
2-3, leu2-112, trp1, his3] using an alkali metal treatment method [Reference: Journal of Bacte.
riology) Volume 153, Page 163 (1983
)]. The yeast BJ2168 introduced with pYAmA 101 was transformed into Saccharomyces c
erevisiae BJ2168/pYAmA 10
1 and deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology [FERM P-12
002)]. (3-2) Construction of human aminoacylase I-like polypeptide expression plasmid pYhAmA 101 λhAmA3
Mh in which the EcoRI insert of
AmA3-3 RF DNA was digested with restriction enzymes SacI, E
After digestion with coRI, a DNA fragment of about 1360 bp released was separated and purified. And DNA blunting
The protruding ends were blunted using a kit (Takara Shuzo code number 6025). This is plasmid pJM124
was digested with BamHI to remove the BamHI insert fragment,
It was incorporated into a blunt-ended version. The resulting plasmid was named pYhAmA101. That is, plasmid p
YhAmA101 is a promoter of human aminoacylase I downstream of the yeast alcohol dehydrogenase promoter.
It encodes a polypeptide of 8 amino acid residues. This plasmid pYhAmA101 was transferred to yeast BJ2168 [MAT
a, ura3-5, leu2, trp1, prc-40
7, prb1-1122, pep4-3], or D
KD-5D-H [MATa, leu2-3, leu2-
112, trp1, his3] using an alkali metal treatment method [
Literature: Journal of Bacteriology, No. 1
53, p. 163 (1983)]. Yeast BJ2168 introduced with pYhAmA101 was transformed into S
accharomyces cerevisiae BJ
It was designated as 2168/pYhAmA101 and deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology.
No. 3 (FERM P-12003)].

【0010】実施例4  アミノアシラーゼIポリペプ
チドの酵母における発現 実施例3で得られた Saccharomyces c
erevisiae BJ2168/pYAmA 10
1(FERM  P−12002)あるいは Sacc
haromyces cerevisiae BJ21
68/pYhAmA101(FERM  P−1200
3)を20μg/mlのL−トリプトファン、30μg
/mlのL−ロイシン、20μg/mlのL−ヒスチジ
ン、20μg/mlのウラシルを含む5mlのSD培地
〔0.67%バクトイーストニトロジェンベースw/o
アミノ酸(ディフコ<Difco社>)、2%デキスト
ロース〕に接種し、30℃で二晩培養を行い集菌した。 上清を捨てて、菌体を2mlの水で洗浄し、遠心した後
、400μlの0.2M  リン酸ナトリウム緩衝液(
 pH 7.2)に懸濁した。これに等容のガラスビー
ズ(直径0.35〜0.5mm)を加え、氷冷しながら
激しくかくはんして菌体を破砕した。遠心してガラスビ
ーズと細胞残渣を除き、上清を回収し酵母抽出液とした
。この様にして得た抽出液のアミノアシラーゼI活性を
アセトアミドアクリル酸法で測定した〔文献:アナリテ
ィカル  バイオケミストリー ( Analytic
al Biochemistry )、第165巻、第
142頁(1987)〕。以下詳細に説明する。まず反
応用緩衝液(40mMリン酸、40mM酢酸、40mM
ホウ酸、0.08mM塩化コバルト、20mM硫酸アン
モニウムを含み、水酸化ナトリウムでpHを7.6に調
整)を調製した。次に基質溶液(1mmolの2−アセ
トアミドアクリル酸を1.2mlの1N水酸化ナトリウ
ム水溶液に溶解し、0.8mlの反応用緩衝液を加えた
もの)、NADH溶液(反応用緩衝液に3.2mMとな
るようにNADHを溶解したもの)、30U/ml  
L−アラニンデヒドロゲナーゼ溶液を調製した。反応用
緩衝液700μl、基質溶液100μl、NADH溶液
50μl、L−アラニンデヒドロゲナーゼ溶液50μl
を混和し、37℃で約5分間予熱した後、100μlの
上記抽出液を加え、37℃で30分間保温した。このと
き、分光光度計でNADHによる340nmの波長の吸
収の減少を測定することにより、アミノアシラーゼI活
性を測定した。酵素活性の定量は、酵素力価既知のブタ
腎臓アミノアシラーゼI(シグマ社)を同様にして測定
したものと比較して行った。アミノアシラーゼI活性測
定の結果、先に調製した各抽出液100μlは、約1ユ
ニットのアミノアシラーゼI活性を持っていた。なお、
プラスミドを保持しない、酵母BJ2168を同様に処
理したが、アミノアシラーゼ活性はほとんど認められな
かった(0.03ユニット/100μl抽出液以下)。
Example 4 Expression of aminoacylase I polypeptide in yeast Saccharomyces c obtained in Example 3
erevisiae BJ2168/pYAmA 10
1 (FERM P-12002) or Sacc
haromyces cerevisiae BJ21
68/pYhAmA101 (FERM P-1200
3) with 20 μg/ml L-tryptophan, 30 μg
5 ml SD medium [0.67% Bacto yeast Nitrogen base w/o
Amino acid (Difco), 2% dextrose] was inoculated and cultured at 30°C for two nights to collect bacteria. Discard the supernatant, wash the bacterial cells with 2 ml of water, centrifuge, and add 400 μl of 0.2 M sodium phosphate buffer (
pH 7.2). An equal volume of glass beads (diameter 0.35 to 0.5 mm) was added to this, and the cells were crushed by stirring vigorously while cooling on ice. Glass beads and cell debris were removed by centrifugation, and the supernatant was collected and used as a yeast extract. The aminoacylase I activity of the extract thus obtained was measured by the acetamidoacrylic acid method [Reference: Analytical Biochemistry (Analytic)
al Biochemistry), Volume 165, Page 142 (1987)]. This will be explained in detail below. First, reaction buffer (40mM phosphoric acid, 40mM acetic acid, 40mM
(containing boric acid, 0.08mM cobalt chloride, 20mM ammonium sulfate, and adjusting the pH to 7.6 with sodium hydroxide) was prepared. Next, a substrate solution (1 mmol of 2-acetamidoacrylic acid dissolved in 1.2 ml of 1N sodium hydroxide aqueous solution and 0.8 ml of reaction buffer added), NADH solution (3. NADH dissolved to 2mM), 30U/ml
An L-alanine dehydrogenase solution was prepared. 700 μl of reaction buffer, 100 μl of substrate solution, 50 μl of NADH solution, 50 μl of L-alanine dehydrogenase solution
After mixing and preheating at 37°C for about 5 minutes, 100 μl of the above extract was added and kept at 37°C for 30 minutes. At this time, aminoacylase I activity was measured by measuring the decrease in absorption at a wavelength of 340 nm by NADH using a spectrophotometer. The enzyme activity was quantified by comparing it with that measured in the same manner using pig kidney aminoacylase I (Sigma) whose enzyme titer was known. As a result of aminoacylase I activity measurement, 100 μl of each of the previously prepared extracts had approximately 1 unit of aminoacylase I activity. In addition,
Yeast BJ2168, which does not carry the plasmid, was treated in the same manner, but almost no aminoacylase activity was observed (0.03 units/100 μl or less of extract).

【0011】[0011]

【発明の効果】以上の結果から、本発明によりブタ、ヒ
トアミノアシラーゼIのアミノ酸配列及びそのDNA配
列が明らかとなり、アミノアシラーゼIポリペプチドの
遺伝子工学的製造方法が提供された。また生体的でアミ
ノアシラーゼIの存在、あるいは発現の様子を調べるタ
ーゲットが提供されたことにより、このDNA配列を基
にプローブやプライマーを作成することや、アミノ酸配
列を基に抗体を作成することなどが可能となった。
EFFECTS OF THE INVENTION Based on the above results, the present invention has revealed the amino acid sequences of porcine and human aminoacylase I and their DNA sequences, and provided a genetic engineering method for producing aminoacylase I polypeptides. In addition, by providing a target for investigating the presence or expression of aminoacylase I in living organisms, it is now possible to create probes and primers based on this DNA sequence, and to create antibodies based on the amino acid sequence. became possible.

【配列表】配列番号:1 配列の長さ:407 配列の型:アミノ酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列の特徴:1−407  ブタアミノアシラーゼI配
列:      Met Ala Ser Lys Gly 
Arg Glu Gly Glu His Pro S
er Val Thr Leu       1   
            5            
      10                 
 15     Phe Arg Gln Tyr L
eu Arg Ile Arg Thr Val Gl
n Pro Glu Pro Asp        
              20         
         25              
    30     Tyr Gly Ala Al
a Val Ala Phe Leu Glu Glu
 Arg Ala Arg Gln Leu     
                 35      
            40           
       45     Gly Leu Gly
 Cys Gln Lys Val Glu Val 
Val Pro Gly His Val Val  
                    50   
               55        
          60     Thr Val 
Leu Thr Trp Pro Gly Thr A
sn Pro Thr Leu Ser Ser Il
e                      65
                  70     
             75     Leu L
eu Asn Ser His Thr Asp Va
l Val Pro Val Phe Lys Glu
 His                     
 80                  85  
                90     Tr
p Ser His Asp Pro Phe Glu
 Gly Phe Lys Asp Ala Asp 
Gly Tyr                  
    95                 10
0                 105    
 Ile Tyr Gly Arg Gly Ala 
Gln Asp Met Lys Cys Val S
er Ile Gln               
      110                
 115                 120 
    Tyr Leu Glu Ala Val A
rg Arg Leu Lys Val Glu Gl
y His His Phe            
         125             
    130                 1
35     Pro Arg Thr Ile Hi
s Met Thr Phe Val Pro Asp
 Glu Glu Val Gly         
            140          
       145               
  150     Gly His Gln Gly
 Met Glu Leu Phe Val Lys 
Arg Pro Glu Phe Gln      
               155       
          160            
     165     Ala Leu Arg 
Ala Gly Phe Ala Leu Asp G
lu Gly Leu Ala Ser Pro   
                  170    
             175         
        180     Thr Asp A
la Phe Thr Val Phe Tyr Se
r Glu Arg Ser Pro Trp Trp
                     185 
                190      
           195     Leu Ar
g Val Thr Ser Thr Gly Lys
 Pro Gly His Gly Ser Arg 
Phe                     2
00                 205   
              210     Ile
 Glu Asp Thr Ala Ala Glu 
Lys Leu His Lys Val Ile A
sn Ser                   
  215                 220
                 225     
Ile Leu Ala Phe Arg Glu L
ys Glu Lys Gln Arg Leu Gl
n Ser Asn                
     230                 
235                 240  
   Gln Leu Lys Pro Gly Al
a Val Thr Ser Val Asn Leu
 Thr Met Leu             
        245              
   250                 25
5     Glu Gly Gly Val Ala
 Tyr Asn Val Val Pro Ala 
Thr Met Ser Ala          
           260           
      265                
 270     Cys Phe Asp Phe 
Arg Val Ala Pro Asp Val A
sp Leu Lys Ala Phe       
              275        
         280             
    285     Glu Glu Gln L
eu Gln Ser Trp Cys Gln Al
a Ala Gly Glu Gly Val    
                 290     
            295          
       300     Thr Phe Gl
u Phe Val Gln Lys Trp Met
 Glu Thr Gln Val Thr Ser 
                    305  
               310       
          315     Thr Asp
 Asp Ser Asp Pro Trp Trp 
Ala Ala Phe Ser Gly Val P
he                     32
0                 325    
             330     Lys 
Asp Met Lys Leu Ala Leu G
lu Leu Glu Ile Cys Pro Al
a Ser                    
 335                 340 
                345     T
hr Asp Ala Arg Tyr Ile Ar
g Ala Ala Gly Val Pro Ala
 Leu Gly                 
    350                 3
55                 360   
  Phe Ser Pro Met Asn His
 Thr Pro Val Leu Leu His 
Asp His Asp              
       365               
  370                 375
     Glu Arg Leu His Glu 
Ala Val Phe Leu Arg Gly V
al Asp Ile Tyr           
          380            
     385                 
390     Thr Gln Leu Leu S
er Ala Leu Ala Ser Val Pr
o Ala Leu Pro Ser        
             395         
        400              
   405     Glu Ser 配列番号:2 配列の長さ:408 配列の型:アミノ酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列の特徴:1−408  ヒトアミノアシラーゼI配
列:      Met Thr Ser Lys Gly 
Pro Glu Glu Glu His Pro S
er Val Thr Leu       1   
            5            
      10                 
 15     Phe Arg Gln Tyr L
eu Arg Ile Arg Thr Val Gl
n Pro Lys Pro Asp        
              20         
         25              
    30     Tyr Gly Ala Al
a Val Ala Phe Phe Glu Glu
 Thr Ala Arg Gln Leu     
                 35      
            40           
       45     Gly Leu Gly
 Cys Gln Lys Val Glu Val 
Ala Pro Gly Tyr Val Val  
                    50   
               55        
          60     Thr Val 
Leu Thr Trp Pro Gly Thr A
sn Pro Thr Leu Ser Ser Il
e                      65
                  70     
             75     Leu L
eu Asn Ser His Thr Asp Va
l Val Pro Val Phe Lys Glu
 His                     
 80                  85  
                90     Tr
p Ser His Asp Pro Phe Glu
 Ala Phe Lys Asp Ser Glu 
Gly Tyr                  
    95                 10
0                 105    
 Ile Tyr Ala Arg Gly Ala 
Gln Asp Met Lys Cys Val S
er Ile Gln               
      110                
 115                 120 
    Tyr Leu Glu Ala Val A
rg Arg Leu Lys Val Glu Gl
y His Arg Phe            
         125             
    130                 1
35     Pro Arg Thr Ile Hi
s Met Thr Phe Val Pro Asp
 Glu Glu Val Gly         
            140          
       145               
  150     Gly His Gln Gly
 Met Glu Leu Phe Val Gln 
Arg Pro Glu Phe His      
               155       
          160            
     165     Ala Leu Arg 
Ala Gly Phe Ala Leu Asp G
lu Gly Ile Ala Asn Pro   
                  170    
             175         
        180     Thr Asp A
la Phe Thr Val Phe Tyr Se
r Glu Arg Ser Pro Trp Trp
                     185 
                190      
           195     Val Ar
g Val Thr Ser Thr Gly Arg
 Pro Gly His Ala Ser Arg 
Phe                     2
00                 205   
              210     Met
 Glu Asp Thr Ala Ala Glu 
Lys Leu His Lys Val Val A
sn Ser                   
  215                 220
                 225     
Ile Leu Ala Phe Arg Glu L
ys Glu Trp Gln Arg Leu Gl
n Ser Asn                
     230                 
235                 240  
   Pro His Leu Lys Glu Gl
y Ser Val Thr Ser Val Asn
 Leu Thr Lys             
        245              
   250                 25
5     Leu Glu Gly Gly Val
 Ala Tyr Asn Val Ile Pro 
Ala Thr Met Ser          
           260           
      265                
 270     Ala Ser Phe Asp 
Phe Arg Val Ala Pro Asp V
al Asp Phe Lys Ala       
              275        
         280             
    285     Phe Glu Glu G
ln Leu Gln Ser Trp Cys Gl
n Ala Ala Gly Glu Gly    
                 290     
            295          
       300     Val Thr Le
u Glu Phe Ala Gln Lys Trp
 Met His Pro Gln Val Thr 
                    305  
               310       
          315     Pro Thr
 Asp Asp Ser Asn Pro Trp 
Trp Ala Ala Phe Ser Arg V
al                     32
0                 325    
             330     Cys 
Lys Asp Met Asn Leu Thr L
eu Glu Pro Glu Ile Met Pr
o Ala                    
 335                 340 
                345     A
la Thr Asp Asn Arg Tyr Il
e Arg Ala Val Gly Val Pro
 Ala Leu                 
    350                 3
55                 360   
  Gly Phe Ser Pro Met Asn
 Arg Thr Pro Val Leu Leu 
His Asp His              
       365               
  370                 375
     Asp Glu Arg Leu His 
Glu Ala Val Phe Leu Arg G
ly Val Asp Ile           
          380            
     385                 
390     Tyr Thr Arg Leu L
eu Pro Ala Leu Ala Ser Va
l Pro Ala Leu Pro        
             395         
        400              
   405     Ser Asp Ser 配列番号:3 配列の長さ:10 配列の型:核酸 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列の特徴:1−10 linker 配列: CCGAATTCGG  10 配列番号:4 配列の長さ:17 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) ハイポセティカル配列:NO アンチセンス:NO 配列の特徴:1−17  probe 配列: TGGATGGARA CNCARGT  17配列番
号:5 配列の長さ:6 配列の型:アミノ酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間部フラグメント(ブタアミノアシ
ラーゼI) 配列番号:6 配列の長さ:1221 配列の型:核酸 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類: cDNA to mRNAハイポセティ
カル配列:NO アンチセンス:NO 配列の特徴:1−1221  CDS  (ブタアミノ
アシラーゼI) 配列:    ATG GCC AGC AAG GGT CG
C GAG GGC GAG CAC CCA TCC
 GTG ACG CTC      45   Me
t Ala Ser Lys Gly Arg Glu
 Gly Glu His Pro Ser Val 
Thr Leu           1      
         5               
   10                  15
   TTC CGT CAG TAC CTG CG
C ATC CGC ACC GTC CAG CCT
 GAG CCC GAC      90   Ph
e Arg Gln Tyr Leu Arg Ile
 Arg Thr Val Gln Pro Glu 
Pro Asp                  
        20               
   25                  30
   TAC GGG GCT GCT GTG GC
C TTC CTT GAG GAG AGA GCC
 CGC CAG CTG     135   Ty
r Gly Ala Ala Val Ala Phe
 Leu Glu Glu Arg Ala Arg 
Gln Leu                  
        35               
   40                  45
   GGC CTG GGC TGT CAG AA
A GTG GAG GTG GTA CCT GGC
 CAT GTG GTG     180   Gl
y Leu Gly Cys Gln Lys Val
 Glu Val Val Pro Gly His 
Val Val                  
        50               
   55                  60
   ACC GTG CTG ACC TGG CC
G GGC ACC AAC CCC ACA CTC
 TCC TCC ATC     225   Th
r Val Leu Thr Trp Pro Gly
 Thr Asn Pro Thr Leu Ser 
Ser Ile                  
        65               
   70                  75
   TTG CTC AAC TCC CAC AC
A GAT GTG GTG CCT GTC TTC
 AAG GAG CAT     270   Le
u Leu Asn Ser His Thr Asp
 Val Val Pro Val Phe Lys 
Glu His                  
        80               
   85                  90
   TGG AGT CAT GAC CCC TT
T GAG GGC TTC AAG GAT GCA
 GAT GGC TAC     315   Tr
p Ser His Asp Pro Phe Glu
 Gly Phe Lys Asp Ala Asp 
Gly Tyr                  
       95                
 100                 105 
   ATC TAT GGC AGG GGC GC
C CAG GAC ATG AAG TGC GTC
 AGC ATC CAG     360   Il
e Tyr Gly Arg Gly Ala Gln
 Asp Met Lys Cys Val Ser 
Ile Gln                  
      110                
 115                 120 
  TAC CTG GAG GCT GTG AGG
 AGG CTG AAG GTT GAG GGC 
CAC CAT TTC     405   Tyr
 Leu Glu Ala Val Arg Arg 
Leu Lys Val Glu Gly His H
is Phe                   
     125                 
130                 135  
 CCC AGA ACC ATC CAC ATG 
ACC TTT GTG CCA GAT GAG G
AG GTT GGA     450   Pro 
Arg Thr Ile His Met Thr P
he Val Pro Asp Glu Glu Va
l Gly                    
    140                 1
45                 150   
GGT CAC CAA GGC ATG GAG C
TC TTT GTG AAG CGG CCC GA
G TTC CAG     495   Gly H
is Gln Gly Met Glu Leu Ph
e Val Lys Arg Pro Glu Phe
 Gln                     
   155                 16
0                 165   G
CC CTG AGG GCT GGC TTT GC
C CTG GAT GAA GGC CTA GCC
 AGC CCC     540   Ala Le
u Arg Ala Gly Phe Ala Leu
 Asp Glu Gly Leu Ala Ser 
Pro                      
  170                 175
                 180   AC
T GAC GCC TTC ACT GTC TTT
 TAC AGT GAG CGG AGC CCC 
TGG TGG     585   Thr Asp
 Ala Phe Thr Val Phe Tyr 
Ser Glu Arg Ser Pro Trp T
rp                       
 185                 190 
                195   CTA
 AGG GTC ACG AGC ACT GGG 
AAG CCA GGG CAT GGC TCG C
GC TTC     630   Leu Arg 
Val Thr Ser Thr Gly Lys P
ro Gly His Gly Ser Arg Ph
e                        
200                 205  
               210   ATT 
GAG GAC ACA GCA GCA GAG A
AG CTG CAC AAG GTC ATC AA
C TCT     675   Ile Glu A
sp Thr Ala Ala Glu Lys Le
u His Lys Val Ile Asn Ser
                        2
15                 220   
              225   ATC C
TG GCT TTT CGG GAG AAG GA
G AAG CAG AGG CTG CAG TCA
 AAC     720   Ile Leu Al
a Phe Arg Glu Lys Glu Lys
 Gln Arg Leu Gln Ser Asn 
                       23
0                 235    
             240   CAG CT
G AAG CCG GGG GCT GTG ACC
 TCC GTG AAC CTG ACT ATG 
CTA     765   Gln Leu Lys
 Pro Gly Ala Val Thr Ser 
Val Asn Leu Thr Met Leu  
                      245
                 250     
            255   GAG GGT
 GGC GTG GCC TAT AAC GTC 
GTT CCT GCC ACC ATG AGT G
CC     810   Glu Gly Gly 
Val Ala Tyr Asn Val Val P
ro Ala Thr Met Ser Ala   
                     260 
                265      
           270   TGC TTT 
GAC TTC CGC GTA GCA CCG G
AT GTG GAC CTG AAG GCT TT
C     855   Cys Phe Asp P
he Arg Val Ala Pro Asp Va
l Asp Leu Lys Ala Phe    
                    275  
               280       
          285   GAG GAG C
AG CTG CAG AGT TGG TGC CA
G GCA GCT GGC GAG GGG GTC
     900   Glu Glu Gln Le
u Gln Ser Trp Cys Gln Ala
 Ala Gly Glu Gly Val     
                   290   
              295        
         300    ACC TTT G
AG TTT GTT CAG AAG TGG AT
G GAG ACG CAA GTG ACA TCT
     945   Thr Phe Glu Ph
e Val Gln Lys Trp Met Glu
 Thr Gln Val Thr Ser     
                   305   
              310        
         315   ACT GAT GA
C TCA GAC CCC TGG TGG GCA
 GCA TTT AGT GGG GTC TTC 
    990   Thr Asp Asp Ser
 Asp Pro Trp Trp Ala Ala 
Phe Ser Gly Val Phe      
                  320    
             325         
        330   AAG GAT ATG
 AAG CTT GCC CTA GAG CTA 
GAG ATC TGC CCT GCT TCC  
  1035   Lys Asp Met Lys 
Leu Ala Leu Glu Leu Glu I
le Cys Pro Ala Ser       
                 335     
            340          
       345   ACT GAC GCC 
CGC TAT ATT CGT GCG GCG G
GG GTT CCG GCT CTG GGC   
 1080   Thr Asp Ala Arg T
yr Ile Arg Ala Ala Gly Va
l Pro Ala Leu Gly        
                350      
           355           
      360   TTC TCA CCC A
TG AAC CAC ACA CCG GTG CT
G CTC CAT GAC CAT GAT    
1125   Phe Ser Pro Met As
n His Thr Pro Val Leu Leu
 His Asp His Asp         
               365       
          370            
     375   GAG CGG CTG CA
T GAG GCC GTG TTT CTC CGT
 GGG GTT GAC ATA TAC    1
170   Glu Arg Leu His Glu
 Ala Val Phe Leu Arg Gly 
Val Asp Ile Tyr          
              380        
         385             
    390   ACT CAG CTG CTG
 TCT GCC TTG GCC AGC GTG 
CCC GCA CTG CCC AGT    12
15   Thr Gln Leu Leu Ser 
Ala Leu Ala Ser Val Pro A
la Leu Pro Ser           
             395         
        400              
   405   GAA AGC         
                         
                      122
1   Glu Ser              
                         
                  配列番号:7 配列の長さ:1224 配列の型:核酸 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類: cDNA to mRNAハイポセティ
カル配列:NO アンチセンス:NO 配列の特徴:1−1224  CDS (ヒトアミノア
シラーゼI)配列:    ATG ACC AGC AAG GGT CC
C GAG GAG GAG CAC CCA TCG
 GTG ACG CTC      45   Me
t Thr Ser Lys Gly Pro Glu
 Glu Glu His Pro Ser Val 
Thr Leu     1            
   5                  10 
                 15   TTC
 CGC CAG TAC CTG CGT ATC 
CGC ACT GTC CAG CCC AAG C
CT GAC      90   Phe Arg 
Gln Tyr Leu Arg Ile Arg T
hr Val Gln Pro Lys Pro As
p                    20  
                25       
           30   TAT GGA G
CT GCT GTG GCT TTC TTT GA
G GAG ACA GCC CGC CAG CTG
     135   Tyr Gly Ala Al
a Val Ala Phe Phe Glu Glu
 Thr Ala Arg Gln Leu     
               35        
          40             
     45   GGC CTG GGC TGT
 CAG AAA GTA GAG GTG GCA 
CCT GGC TAT GTG GTG     1
80   Gly Leu Gly Cys Gln 
Lys Val Glu Val Ala Pro G
ly Tyr Val Val           
         50              
    55                  6
0   ACC GTG TTG ACC TGG C
CA GGC ACC AAC CCT ACA CT
C TCC TCC ATC     225   T
hr Val Leu Thr Trp Pro Gl
y Thr Asn Pro Thr Leu Ser
 Ser Ile                 
   65                  70
                  75   TT
G CTC AAC TCC CAC ACG GAT
 GTG GTG CCT GTC TTC AAG 
GAA CAT     270   Leu Leu
 Asn Ser His Thr Asp Val 
Val Pro Val Phe Lys Glu H
is                    80 
                 85      
            90   TGG AGT 
CAC GAC CCC TTT GAG GCC T
TC AAG GAT TCT GAG GGC TA
C     315   Trp Ser His A
sp Pro Phe Glu Ala Phe Ly
s Asp Ser Glu Gly Tyr    
                95       
          100            
     105   ATC TAT GCC AG
G GGT GCC CAG GAC ATG AAG
 TGC GTC AGC ATC CAG     
360   Ile Tyr Ala Arg Gly
 Ala Gln Asp Met Lys Cys 
Val Ser Ile Gln          
         110             
    115                 1
20   TAC CTG GAA GCT GTG 
AGG AGG CTG AAG GTG GAG G
GC CAC CGG TTC     405   
Tyr Leu Glu Ala Val Arg A
rg Leu Lys Val Glu Gly Hi
s Arg Phe                
   125                 13
0                 135   C
CC AGA ACC ATC CAC ATG AC
C TTT GTG CCT GAT GAG GAG
 GTT GGG     450   Pro Ar
g Thr Ile His Met Thr Phe
 Val Pro Asp Glu Glu Val 
Gly                   140
                 145     
            150   GGT CAC
 CAA GGC ATG GAG CTG TTC 
GTG CAG CGG CCT GAG TTC C
AC     495   Gly His Gln 
Gly Met Glu Leu Phe Val G
ln Arg Pro Glu Phe His   
                155      
           160           
      165   GCC CTG AGG G
CA GGC TTT GCC CTG GAT GA
G GGC ATA GCC AAT CCC    
 540   Ala Leu Arg Ala Gl
y Phe Ala Leu Asp Glu Gly
 Ile Ala Asn Pro         
          170            
     175                 
180   ACT GAT GCC TTC ACT
 GTC TTT TAT AGT GAG CGG 
AGT CCC TGG TGG     585  
 Thr Asp Ala Phe Thr Val 
Phe Tyr Ser Glu Arg Ser P
ro Trp Trp               
    185                 1
90                 195   
GTG CGG GTT ACC AGC ACT G
GG AGG CCA GGC CAT GCC TC
A CGC TTC     630   Val A
rg Val Thr Ser Thr Gly Ar
g Pro Gly His Ala Ser Arg
 Phe                   20
0                 205    
             210   ATG GA
G GAC ACA GCA GCA GAG AAG
 CTG CAC AAG GTT GTA AAC 
TCC     675   Met Glu Asp
 Thr Ala Ala Glu Lys Leu 
His Lys Val Val Asn Ser  
                 215     
            220          
       225   ATC CTG GCA 
TTC CGG GAG AAG GAA TGG C
AG AGG CTG CAG TCA AAC   
  720   Ile Leu Ala Phe A
rg Glu Lys Glu Trp Gln Ar
g Leu Gln Ser Asn        
           230           
      235                
 240   CCC CAC CTG AAA GA
G GGG TCC GTG ACC TCC GTG
 AAC CTG ACT AAG     765 
  Pro His Leu Lys Glu Gly
 Ser Val Thr Ser Val Asn 
Leu Thr Lys              
     245                 
250                 255  
 CTA GAG GGT GGC GTG GCC 
TAT AAC GTG ATA CCT GCC A
CC ATG AGC     810   Leu 
Glu Gly Gly Val Ala Tyr A
sn Val Ile Pro Ala Thr Me
t Ser                   2
60                 265   
              270   GCC A
GC TTT GAC TTC CGT GTG GC
A CCG GAT GTG GAC TTC AAG
 GCT     855   Ala Ser Ph
e Asp Phe Arg Val Ala Pro
 Asp Val Asp Phe Lys Ala 
                  275    
             280         
        285   TTT GAG GAG
 CAG CTG CAG AGC TGG TGC 
CAG GCA GCT GGC GAG GGG  
   900   Phe Glu Glu Gln 
Leu Gln Ser Trp Cys Gln A
la Ala Gly Glu Gly       
            290          
       295               
  300   GTC ACC CTA GAG T
TT GCT CAG AAG TGG ATG CA
C CCC CAA GTG ACA     945
   Val Thr Leu Glu Phe Al
a Gln Lys Trp Met His Pro
 Gln Val Thr             
      305                
 310                 315 
  CCT ACT GAT GAC TCA AAC
 CCT TGG TGG GCA GCT TTT 
AGC CGG GTC     990   Pro
 Thr Asp Asp Ser Asn Pro 
Trp Trp Ala Ala Phe Ser A
rg Val                   
320                 325  
               330   TGC 
AAG GAT ATG AAC CTC ACT C
TG GAG CCT GAG ATC ATG CC
T GCT    1035   Cys Lys A
sp Met Asn Leu Thr Leu Gl
u Pro Glu Ile Met Pro Ala
                   335   
              340        
         345   GCC ACT GA
C AAC CGC TAT ATC CGC GCG
 GTG GGG GTC CCA GCT CTA 
   1080   Ala Thr Asp Asn
 Arg Tyr Ile Arg Ala Val 
Gly Val Pro Ala Leu      
             350         
        355              
   360   GGC TTC TCA CCC 
ATG AAC CGC ACA CCT GTG C
TG CTG CAC GAC CAC    112
5   Gly Phe Ser Pro Met A
sn Arg Thr Pro Val Leu Le
u His Asp His            
       365               
  370                 375
   GAT GAA CGG CTG CAT GA
G GCT GTG TTC CTC CGT GGG
 GTG GAC ATA    1170   As
p Glu Arg Leu His Glu Ala
 Val Phe Leu Arg Gly Val 
Asp Ile                  
 380                 385 
                390   TAT
 ACA CGC CTG CTG CCT GCC 
CTT GCC AGT GTG CCT GCC C
TG CCC    1215   Tyr Thr 
Arg Leu Leu Pro Ala Leu A
la Ser Val Pro Ala Leu Pr
o                   395  
               400       
          405   AGT GAC A
GC                       
                         
    1224   Ser Asp Ser
[Sequence list] Sequence number: 1 Sequence length: 407 Sequence type: Number of amino acid chains: Single chain Topology: Linear sequence type: Peptide sequence characteristics: 1-407 Porcine aminoacylase I sequence: Met Ala Ser Lys Gly
Arg Glu Gly Glu His Pro S
er Val Thr Leu 1
5
10
15 Phe Arg Gln Tyr L
eu Arg Ile Arg Thr Val Gl
n Pro Glu Pro Asp
20
25
30 Tyr Gly Ala Al
a Val Ala Phe Leu Glu Glu
Arg Ala Arg Gln Leu
35
40
45 Gly Leu Gly
Cys Gln Lys Val Glu Val
Val Pro Gly His Val Val
50
55
60 Thr Val
Leu Thr Trp Pro Gly Thr A
sn Pro Thr Leu Ser Ser Il
e 65
70
75 Leu L
eu Asn Ser His Thr Asp Va
l Val Pro Val Phe Lys Glu
His
80 85
90Tr
p Ser His Asp Pro Phe Glu
Gly Phe Lys Asp Ala Asp
Gly Tyr
95 10
0 105
Ile Tyr Gly Arg Gly Ala
Gln Asp Met Lys Cys Val S
er Ile Gln
110
115 120
Tyr Leu Glu Ala Val A
rg Arg Leu Lys Val Glu Gl
y His His Phe
125
130 1
35 Pro Arg Thr Ile Hi
s Met Thr Phe Val Pro Asp
Glu Glu Val Gly
140
145
150 Gly His Gln Gly
Met Glu Leu Phe Val Lys
Arg Pro Glu Phe Gln
155
160
165 Ala Leu Arg
Ala Gly Phe Ala Leu Asp G
lu Gly Leu Ala Ser Pro
170
175
180 Thr Asp A
la Phe Thr Val Phe Tyr Se
r Glu Arg Ser Pro Trp Trp
185
190
195 Leu Ar
g Val Thr Ser Thr Gly Lys
Pro Gly His Gly Ser Arg
Phe 2
00 205
210 Ile
Glu Asp Thr Ala Ala Glu
Lys Leu His Lys Val Ile A
sn Ser
215 220
225
Ile Leu Ala Phe Arg Glu L
ys Glu Lys Gln Arg Leu Gl
n Ser Asn
230
235 240
Gln Leu Lys Pro Gly Al
a Val Thr Ser Val Asn Leu
Thr Met Leu
245
250 25
5 Glu Gly Gly Val Ala
Tyr Asn Val Val Pro Ala
Thr Met Ser Ala
260
265
270 Cys Phe Asp Phe
Arg Val Ala Pro Asp Val A
sp Leu Lys Ala Phe
275
280
285 Glu Glu Gln L
eu Gln Ser Trp Cys Gln Al
a Ala Gly Glu Gly Val
290
295
300 Thr Phe Gl
u Phe Val Gln Lys Trp Met
Glu Thr Gln Val Thr Ser
305
310
315 Thr Asp
Asp Ser Asp Pro Trp Trp
Ala Ala Phe Ser Gly Val P
he 32
0 325
330 Lys
Asp Met Lys Leu Ala Leu G
lu Leu Glu Ile Cys Pro Al
a Ser
335 340
345 T
hr Asp Ala Arg Tyr Ile Ar
g Ala Ala Gly Val Pro Ala
Leu Gly
350 3
55 360
Phe Ser Pro Met Asn His
Thr Pro Val Leu Leu His
Asp His Asp
365
370 375
Glu Arg Leu His Glu
Ala Val Phe Leu Arg Gly V
al Asp Ile Tyr
380
385
390 Thr Gln Leu Leu S
Er Ala Ser Val Pr
o Ala Leu Pro Ser
395
400
405 Glu Ser SEQ ID NO: 2 Sequence length: 408 Sequence type: Number of amino acid chains: Single chain Topology: Linear sequence type: Peptide sequence characteristics: 1-408 Human aminoacylase I sequence: Met Thr Ser Lys Gly
Pro Glu Glu Glu His Pro S
er Val Thr Leu 1
5
10
15 Phe Arg Gln Tyr L
eu Arg Ile Arg Thr Val Gl
n Pro Lys Pro Asp
20
25
30 Tyr Gly Ala Al
a Val Ala Phe Phe Glu Glu
Thr Ala Arg Gln Leu
35
40
45 Gly Leu Gly
Cys Gln Lys Val Glu Val
Ala Pro Gly Tyr Val Val
50
55
60 Thr Val
Leu Thr Trp Pro Gly Thr A
sn Pro Thr Leu Ser Ser Il
e 65
70
75 Leu L
eu Asn Ser His Thr Asp Va
l Val Pro Val Phe Lys Glu
His
80 85
90Tr
p Ser His Asp Pro Phe Glu
Ala Phe Lys Asp Ser Glu
Gly Tyr
95 10
0 105
Ile Tyr Ala Arg Gly Ala
Gln Asp Met Lys Cys Val S
er Ile Gln
110
115 120
Tyr Leu Glu Ala Val A
rg Arg Leu Lys Val Glu Gl
y His Arg Phe
125
130 1
35 Pro Arg Thr Ile Hi
s Met Thr Phe Val Pro Asp
Glu Glu Val Gly
140
145
150 Gly His Gln Gly
Met Glu Leu Phe Val Gln
Arg Pro Glu Phe His
155
160
165 Ala Leu Arg
Ala Gly Phe Ala Leu Asp G
lu Gly Ile Ala Asn Pro
170
175
180 Thr Asp A
la Phe Thr Val Phe Tyr Se
r Glu Arg Ser Pro Trp Trp
185
190
195 Val Ar
g Val Thr Ser Thr Gly Arg
Pro Gly His Ala Ser Arg
Phe 2
00 205
210 Met
Glu Asp Thr Ala Ala Glu
Lys Leu His Lys Val Val A
sn Ser
215 220
225
Ile Leu Ala Phe Arg Glu L
ys Glu Trp Gln Arg Leu Gl
n Ser Asn
230
235 240
Pro His Leu Lys Glu Gl
y Ser Val Thr Ser Val Asn
Leu Thr Lys
245
250 25
5 Leu Glu Gly Gly Val
Ala Tyr Asn Val Ile Pro
Ala Thr Met Ser
260
265
270 Ala Ser Phe Asp
Phe Arg Val Ala Pro Asp V
al Asp Phe Lys Ala
275
280
285 Phe Glu Glu G
ln Leu Gln Ser Trp Cys Gl
n Ala Ala Gly Glu Gly
290
295
300 Val Thr Le
u Glu Phe Ala Gln Lys Trp
Met His Pro Gln Val Thr
305
310
315 Pro Thr
Asp Asp Ser Asn Pro Trp
Trp Ala Ala Phe Ser Arg V
al 32
0 325
330 Cys
Lys Asp Met Asn Leu Thr L
eu Glu Pro Glu Ile Met Pr
o Ala
335 340
345 A
la Thr Asp Asn Arg Tyr Il
e Arg Ala Val Gly Val Pro
Ala Leu
350 3
55 360
Gly Phe Ser Pro Met Asn.
Arg Thr Pro Val Leu Leu
His Asp His
365
370 375
Asp Glu Arg Leu His
Glu Ala Val Phe Leu Arg G
ly Val Asp Ile
380
385
390 Tyr Thr Arg Leu L
eu Pro Ala Leu Ala Ser Va
l Pro Ala Leu Pro
395
400
405 Ser Asp Ser Sequence number: 3 Sequence length: 10 Sequence type: Number of nucleic acid strands: Double-stranded topology: Linear sequence type: Other nucleic acids (synthetic DNA) Sequence characteristics: 1-10 linker Sequence: CCGAATTCGG 10 Sequence number: 4 Sequence length: 17 Sequence type: Number of nucleic acid strands: Single strand Topology: Linear Sequence type: Other nucleic acids (synthetic DNA) Hypothetical sequence: NO Antisense :NO Sequence characteristics: 1-17 probe sequence: TGGATGGARA CNCARGT 17 Sequence number: 5 Sequence length: 6 Sequence type: Number of amino acid chains: Single chain Topology: Linear sequence type: Peptide fragment type: Intermediate fragment (porcine aminoacylase I) Sequence number: 6 Sequence length: 1221 Sequence type: Number of nucleic acid strands: Double-stranded Topology: Linear Sequence type: cDNA to mRNA Hypothetical sequence: NO Anti Sense: NO Sequence characteristics: 1-1221 CDS (porcine aminoacylase I) Sequence: ATG GCC AGC AAG GGT CG
C GAG GGC GAG CAC CCA TCC
GTG ACG CTC 45 Me
t Ala Ser Lys Gly Arg Glu
Gly Glu His Pro Ser Val
Thr Leu 1
5
10 15
TTC CGT CAG TAC CTG CG
C ATC CGC ACC GTC CAG CCT
GAG CCC GAC 90 Ph
e Arg Gln Tyr Leu Arg Ile
Arg Thr Val Gln Pro Glu
Pro Asp
20
25 30
TAC GGG GCT GCT GTG GC
C TTC CTT GAG GAG AGA GCC
CGC CAG CTG 135 Ty
r Gly Ala Ala Val Ala Phe
Leu Glu Glu Arg Ala Arg
Gln Leu
35
40 45
GGC CTG GGC TGT CAG AA
A GTG GAG GTG GTA CCT GGC
CAT GTG GTG 180 Gl
y Leu Gly Cys Gln Lys Val
Glu Val Val Pro Gly His
Val Val
50
55 60
ACC GTG CTG ACC TGG CC
G GGC ACC AAC CCC ACA CTC
TCC TCC ATC 225 Th
r Val Leu Thr Trp Pro Gly
Thr Asn Pro Thr Leu Ser
Ser Ile
65
70 75
TTG CTC AAC TCC CAC AC
A GAT GTG GTG CCT GTC TTC
AAG GAG CAT 270 Le
u Leu Asn Ser His Thr Asp
Val Val Pro Val Phe Lys
Glu His
80
85 90
TGG AGT CAT GAC CCC TT
T GAG GGC TTC AAG GAT GCA
GAT GGC TAC 315 Tr
p Ser His Asp Pro Phe Glu
Gly Phe Lys Asp Ala Asp
Gly Tyr
95
100 105
ATC TAT GGC AGG GGC GC
C CAG GAC ATG AAG TGC GTC
AGC ATC CAG 360 Il
e Tyr Gly Arg Gly Ala Gln
Asp Met Lys Cys Val Ser
Ile Gln
110
115 120
TAC CTG GAG GCT GTG AGG
AGG CTG AAG GTT GAG GGC
CAC CAT TTC 405 Tyr
Leu Glu Ala Val Arg Arg
Leu Lys Val Glu Gly His H
is Phe
125
130 135
CCC AGA ACC ATC CAC ATG
ACC TTT GTG CCA GAT GAG G
AG GTT GGA 450 Pro
Arg Thr Ile His Met Thr P
he Val Pro Asp Glu Glu Va
l Gly
140 1
45 150
GGT CAC CAA GGC ATG GAG C
TC TTT GTG AAG CGG CCC GA
G TTC CAG 495 Gly H
is Gln Gly Met Glu Leu Ph
e Val Lys Arg Pro Glu Phe
Gln
155 16
0 165 G
CC CTG AGG GCT GGC TTT GC
C CTG GAT GAA GGC CTA GCC
AGC CCC 540 Ala Le
u Arg Ala Gly Phe Ala Leu
Asp Glu Gly Leu Ala Ser
Pro
170 175
180AC
T GAC GCC TTC ACT GTC TTT
TAC AGT GAG CGG AGC CCC
TGG TGG 585 Thr Asp
Ala Phe Thr Val Phe Tyr
Ser Glu Arg Ser Pro Trp T
rp
185 190
195 CTAs
AGG GTC ACG AGC ACT GGG
AAG CCA GGG CAT GGC TCG C
GC TTC 630 Leu Arg
Val Thr Ser Thr Gly Lys P
ro Gly His Gly Ser Arg Ph
e
200 205
210 ATT
GAG GAC ACA GCA GCA GAG A
AG CTG CAC AAG GTC ATC AA
C TCT 675 Ile Glu A
sp Thr Ala Ala Glu Lys Le
u His Lys Val Ile Asn Ser
2
15 220
225 ATC C
TG GCT TTT CGG GAG AAG GA
G AAG CAG AGG CTG CAG TCA
AAC 720 Ile Leu Al
a Phe Arg Glu Lys Glu Lys
Gln Arg Leu Gln Ser Asn
23
0 235
240 CAG CT
G AAG CCG GGG GCT GTG ACC
TCC GTG AAC CTG ACT ATG
CTA 765 Gln Leu Lys
Pro Gly Ala Val Thr Ser
Val Asn Leu Thr Met Leu
245
250
255 GAG GGT
GGC GTG GCC TAT AAC GTC
GTT CCT GCC ACC ATG AGT G
CC 810 Glu Gly Gly
Val Ala Tyr Asn Val Val P
ro Ala Thr Met Ser Ala
260
265
270 TGC TTT
GAC TTC CGC GTA GCA CCG G
AT GTG GAC CTG AAG GCT TT
C 855 Cys Phe Asp P
he Arg Val Ala Pro Asp Va
l Asp Leu Lys Ala Phe
275
280
285 GAG GAG C
AG CTG CAG AGT TGG TGC CA
G GCA GCT GGC GAG GGG GTC
900 Glu Glu Gln Le
u Gln Ser Trp Cys Gln Ala
Ala Gly Glu Gly Val
290
295
300 ACC TTT G
AG TTT GTT CAG AAG TGG AT
G GAG ACG CAA GTG ACA TCT
945 Thr Phe Glu Ph
e Val Gln Lys Trp Met Glu
Thr Gln Val Thr Ser
305
310
315 ACT GAT GA
C TCA GAC CCC TGG TGG GCA
GCA TTT AGT GGG GTC TTC
990 Thr Asp Asp Ser
Asp Pro Trp Trp Ala Ala
Phe Ser Gly Val Phe
320
325
330 AAG GAT ATG
AAG CTT GCC CTA GAG CTA
GAG ATC TGC CCT GCT TCC
1035 Lys Asp Met Lys
Leu Ala Leu Glu Leu Glu I
le Cys Pro Ala Ser
335
340
345 ACT GAC GCC
CGC TAT ATT CGT GCG GCG G
GG GTT CCG GCT CTG GGC
1080 Thr Asp Ala Arg T
yr Ile Arg Ala Ala Gly Va
l Pro Ala Leu Gly
350
355
360 TTC TCA CCC A
TG AAC CAC ACA CCG GTG CT
G CTC CAT GAC CAT GAT
1125 Phe Ser Pro Met As
n His Thr Pro Val Leu Leu
His Asp His Asp
365
370
375 GAG CGG CTG CA
T GAG GCC GTG TTT CTC CGT
GGG GTT GAC ATA TAC 1
170 Glu Arg Leu His Glu
Ala Val Phe Leu Arg Gly
Val Asp Ile Tyr
380
385
390 ACT CAG CTG CTG
TCT GCC TTG GCC AGC GTG
CCC GCA CTG CCC AGT 12
15 Thr Gln Leu Leu Ser
Ala Leu Ala Ser Val Pro A
la Leu Pro Ser
395
400
405 GAA AGC

122
1 Glu Ser

Sequence number: 7 Sequence length: 1224 Sequence type: Number of nucleic acid strands: Double-stranded Topology: Linear Sequence type: cDNA to mRNA Hypothetical sequence: NO Antisense: NO Sequence characteristics: 1- 1224 CDS (human aminoacylase I) sequence: ATG ACC AGC AAG GGT CC
C GAG GAG GAG CAC CCA TCG
GTG ACG CTC 45 Me
t Thr Ser Lys Gly Pro Glu
Glu Glu His Pro Ser Val
Thr Leu 1
5 10
15 TTC
CGC CAG TAC CTG CGT ATC
CGC ACT GTC CAG CCC AAG C
CT GAC 90 Phe Arg
Gln Tyr Leu Arg Ile Arg T
hr Val Gln Pro Lys Pro As
p 20
25
30 TAT GGA G
CT GCT GTG GCT TTC TTT GA
G GAG ACA GCC CGC CAG CTG
135 Tyr Gly Ala Al
a Val Ala Phe Phe Glu Glu
Thr Ala Arg Gln Leu
35
40
45 GGC CTG GGC TGT
CAG AAA GTA GAG GTG GCA
CCT GGC TAT GTG GTG 1
80 Gly Leu Gly Cys Gln
Lys Val Glu Val Ala Pro G
ly Tyr Val Val
50
55 6
0 ACC GTG TTG ACC TGG C
CA GGC ACC AAC CCT ACA CT
C TCC TCC ATC 225 T
hr Val Leu Thr Trp Pro Gl
y Thr Asn Pro Thr Leu Ser
Ser Ile
65 70
75 TT
G CTC AAC TCC CAC ACG GAT
GTG GTG CCT GTC TTC AAG
GAA CAT 270 Leu Leu
Asn Ser His Thr Asp Val
Val Pro Val Phe Lys Glu H
is 80
85
90 TGG AGT
CAC GAC CCC TTT GAG GCC T
TC AAG GAT TCT GAG GGC TA
C 315 Trp Ser His A
sp Pro Phe Glu Ala Phe Ly
s Asp Ser Glu Gly Tyr
95
100
105 ATC TAT GCC AG
G GGT GCC CAG GAC ATG AAG
TGC GTC AGC ATC CAG
360 Ile Tyr Ala Arg Gly
Ala Gln Asp Met Lys Cys
Val Ser Ile Gln
110
115 1
20 TAC CTG GAA GCT GTG
AGG AGG CTG AAG GTG GAG G
GC CAC CGG TTC 405
Tyr Leu Glu Ala Val Arg A
rg Leu Lys Val Glu Gly Hi
s Arg Phe
125 13
0 135 C
CC AGA ACC ATC CAC ATG AC
C TTT GTG CCT GAT GAG GAG
GTT GGG 450 Pro Ar
g Thr Ile His Met Thr Phe
Val Pro Asp Glu Glu Val
Gly 140
145
150 GGT CAC
CAA GGC ATG GAG CTG TTC
GTG CAG CGG CCT GAG TTC C
AC 495 Gly His Gln
Gly Met Glu Leu Phe Val G
ln Arg Pro Glu Phe His
155
160
165 GCC CTG AGG G
CA GGC TTT GCC CTG GAT GA
G GGC ATA GCC AAT CCC
540 Ala Leu Arg Ala Gl
y Phe Ala Leu Asp Glu Gly
Ile Ala Asn Pro
170
175
180 ACT GAT GCC TTC ACT
GTC TTT TAT AGT GAG CGG
AGT CCC TGG TGG 585
Thr Asp Ala Phe Thr Val
Phe Tyr Ser Glu Arg Ser P
ro Trp Trp
185 1
90 195
GTG CGG GTT ACC AGC ACT G
GG AGG CCA GGC CAT GCC TC
A CGC TTC 630 Val A
rg Val Thr Ser Thr Gly Ar
g Pro Gly His Ala Ser Arg
Phe 20
0 205
210 ATG GA
G GAC ACA GCA GCA GAG AAG
CTG CAC AAG GTT GTA AAC
TCC 675 Met Glu Asp
Thr Ala Ala Glu Lys Leu
His Lys Val Val Asn Ser
215
220
225 ATC CTG GCA
TTC CGG GAG AAG GAA TGG C
AG AGG CTG CAG TCA AAC
720 Ile Leu Ala Phe A
rg Glu Lys Glu Trp Gln Ar
g Leu Gln Ser Asn
230
235
240 CCC CAC CTG AAA GA
G GGG TCC GTG ACC TCC GTG
AAC CTG ACT AAG 765
Pro His Leu Lys Glu Gly
Ser Val Thr Ser Val Asn
Leu Thr Lys
245
250 255
CTA GAG GGT GGC GTG GCC
TAT AAC GTG ATA CCT GCC A
CC ATG AGC 810 Leu
Glu Gly Gly Val Ala Tyr A
sn Val Ile Pro Ala Thr Me
t Ser 2
60 265
270 GCC A
GC TTT GAC TTC CGT GTG GC
A CCG GAT GTG GAC TTC AAG
GCT 855 Ala Ser Ph
e Asp Phe Arg Val Ala Pro
Asp Val Asp Phe Lys Ala
275
280
285 TTT GAG GAG
CAG CTG CAG AGC TGG TGC
CAG GCA GCT GGC GAG GGG
900 Phe Glu Glu Gln
Leu Gln Ser Trp Cys Gln A
la Ala Gly Glu Gly
290
295
300 GTC ACC CTA GAG T
TT GCT CAG AAG TGG ATG CA
C CCC CAA GTG ACA 945
Val Thr Leu Glu Phe Al
a Gln Lys Trp Met His Pro
Gln Val Thr
305
310 315
CCT ACT GAT GAC TCA AAC
CCT TGG TGG GCA GCT TTT
AGC CGG GTC 990 Pro
Thr Asp Asp Ser Asn Pro
Trp Trp Ala Ala Phe Ser A
rg Val
320 325
330 TGC
AAG GAT ATG AAC CTC ACT C
TG GAG CCT GAG ATC ATG CC
T GCT 1035 Cys Lys A
sp Met Asn Leu Thr Leu Gl
u Pro Glu Ile Met Pro Ala
335
340
345 GCC ACT GA
C AAC CGC TAT ATC CGC GCG
GTG GGG GTC CCA GCT CTA
1080 Ala Thr Asp Asn
Arg Tyr Ile Arg Ala Val
Gly Val Pro Ala Leu
350
355
360 GGC TTC TCA CCC
ATG AAC CGC ACA CCT GTG C
TG CTG CAC GAC CAC 112
5 Gly Phe Ser Pro Met A
sn Arg Thr Pro Val Leu Le
u His Asp His
365
370 375
GAT GAA CGG CTG CAT GA
G GCT GTG TTC CTC CGT GGG
GTG GAC ATA 1170 As
p Glu Arg Leu His Glu Ala
Val Phe Leu Arg Gly Val
Asp Ile
380 385
390 TAT
ACA CGC CTG CTG CCT GCC
CTT GCC AGT GTG CCT GCC C
TG CCC 1215 Tyr Thr
Arg Leu Leu Pro Ala Leu A
la Ser Val Pro Ala Leu Pr
o 395
400
405 AGT GAC A
G.C.

1224 Ser Asp Ser

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】ブタアミノアシラーゼIのcDNAの制限酵素
地図、及びDNAシークエンシングを行った部分と向き
を示した図である。
FIG. 1 is a diagram showing a restriction enzyme map of the cDNA of porcine aminoacylase I, and the portion and orientation where DNA sequencing was performed.

【図2】ヒトアミノアシラーゼIのcDNAの制限酵素
地図、及びDNAシークエンシングを行った部分と向き
を示した図である。
FIG. 2 is a diagram showing a restriction enzyme map of the cDNA of human aminoacylase I, and the portion and orientation where DNA sequencing was performed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  配列表の配列番号1あるいは配列番号
2で表されるアミノ酸配列を有していることを特徴とす
るアミノアシラーゼI活性を有するポリペプチド。
1. A polypeptide having aminoacylase I activity, characterized by having the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing.
【請求項2】  請求項1に記載のポリペプチドをコー
ドする塩基配列。
2. A base sequence encoding the polypeptide according to claim 1.
JP3081136A 1991-03-22 1991-03-22 Polypeptide Expired - Fee Related JP2892171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3081136A JP2892171B2 (en) 1991-03-22 1991-03-22 Polypeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081136A JP2892171B2 (en) 1991-03-22 1991-03-22 Polypeptide

Publications (2)

Publication Number Publication Date
JPH04330279A true JPH04330279A (en) 1992-11-18
JP2892171B2 JP2892171B2 (en) 1999-05-17

Family

ID=13737988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081136A Expired - Fee Related JP2892171B2 (en) 1991-03-22 1991-03-22 Polypeptide

Country Status (1)

Country Link
JP (1) JP2892171B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307006A (en) * 2007-06-15 2008-12-25 Toyobo Co Ltd Method for producing l-amino acid
JP2010533850A (en) * 2007-07-19 2010-10-28 ビオメリュー Aminoacylase 1 assay method for in vitro diagnosis of colorectal cancer
JP2016512325A (en) * 2013-03-13 2016-04-25 ユニバーシティ オブ リーズ Use of ACY-1 as a marker for ischemia / reperfusion, delayed graft function and graft viability and methods thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307006A (en) * 2007-06-15 2008-12-25 Toyobo Co Ltd Method for producing l-amino acid
JP2010533850A (en) * 2007-07-19 2010-10-28 ビオメリュー Aminoacylase 1 assay method for in vitro diagnosis of colorectal cancer
JP2016512325A (en) * 2013-03-13 2016-04-25 ユニバーシティ オブ リーズ Use of ACY-1 as a marker for ischemia / reperfusion, delayed graft function and graft viability and methods thereof

Also Published As

Publication number Publication date
JP2892171B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
RU2103364C1 (en) Dna sequence, protein, method of protein producing
Shigenaga et al. Antimicrobial tachyplesin peptide precursor. cDNA cloning and cellular localization in the horseshoe crab (Tachypleus tridentatus).
CA2189774A1 (en) Recombinant hk2 polypeptide
US6406899B1 (en) Highly active alkaline phosphatase
US5861297A (en) Detergent-free hepatitis C protease
EP0751222B1 (en) Gene encoding endoglycoceramidase
JPH11332568A (en) Endo-beta-n-acetylglucosaminidase gene
Kneusel et al. Molecular characterization and cloning of an esterase which inactivates the macrolide toxin brefeldin A.
US5880273A (en) Platelet activating factor acetylhydrolase, and gene thereof
KR100782607B1 (en) Beta,beta-carotene 15,15&#39;-dioxygenases
JPH04330279A (en) Polypeptide
JP3399549B2 (en) Microbial peroxidase gene
JP3087575B2 (en) Heptaprenyl diphosphate synthase and DNA encoding the same
JP5230234B2 (en) Reductase and its use
JP3107847B2 (en) Polypeptide
McKay et al. A Drosophila gene that encodes a member of the protein disulfide isomerase/phospholipase C-α family
US5637490A (en) α-1,3/4-fucosidase gene
JP3197355B2 (en) Asparaginyl endopeptidase gene
JP3024684B2 (en) Human acylamino acid releasing enzyme-like polypeptide
CA2211788A1 (en) Multiple drug resistance gene of aspergillus flavus
JPH07231788A (en) DNA fragment having lipase genetic information and method for producing lipase
JP3616203B2 (en) Endoglycoceramidase activator gene
US5747329A (en) Glutamylcysteine synthetase light subunit
JPH0731480A (en) DNA fragment encoding L-glutamyl tRNA reductase
JPH08238087A (en) Sarcosine oxidase and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees