JPH0432737B2 - - Google Patents
Info
- Publication number
- JPH0432737B2 JPH0432737B2 JP1932483A JP1932483A JPH0432737B2 JP H0432737 B2 JPH0432737 B2 JP H0432737B2 JP 1932483 A JP1932483 A JP 1932483A JP 1932483 A JP1932483 A JP 1932483A JP H0432737 B2 JPH0432737 B2 JP H0432737B2
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- water
- base material
- moisture
- air permeability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Laminated Bodies (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
【発明の詳細な説明】
本発明は通気性透湿性を有するシート状防水材
料に関するものである。
従来、シート状防水材料に通気性および/又は
透湿性を付与する方法としては、基材布帛に連続
微多孔膜をコーテイング又はラミネートする方法
と、基材布帛構成糸条に吸水膨潤繊維を用いる方
法とが知られている。前者の方法においては、気
体の水分子より大きく、液体の水(水分子の凝集
物)よりも小さい孔を形成させることにより、防
水性(耐水圧600mmH2O以上)と透湿性(透湿度
5000g/m2・1日以上)を同時に満足させること
はできるが、十分な通気性(通気量0.1c.c./cm2・
秒以上)は付与できない。
一般には、通気性と透湿性とは同一の特性とし
て混同されていることが多いが、両特性に対する
要求レベルは大きく異なつており、はつきりと区
別しなければならない。透湿量を分子の流速の単
位に換算すると、5000g/m2・1日は3.215×
10-7モル/cm2・秒となる。
一方、通気量を分子の流速の単位に換算する
と、0.1c.c./cm2・秒は4.160×10-6モル/cm2・秒と
なる。これらの値と透湿量および通気量の測定条
件を透過係数を求める式に代入すると、透湿度
5000g/cm2・1日を達成するための透過係数は
1.313×10-9cm、通気量0.1c.c./cm2・秒を達成する
ための透過係数は5.766×10-8cmであることが求
められる(計算例については後述する)。これよ
り、通気性の要求レベルは、透湿性の要求レベル
よりも43.9倍高いことがわかる。また、耐水圧
600mmH2Oの綿帆布9号の湿潤時の空気の透過係
数が3.460×10-9cmであることから、耐水圧600mm
H2O以上に相当する透過係数は3.460×10-9cm以
下でなけらばならない。透過係数を表わす式は、
気体分子のポアズイユ流れの式
q=r4ε(p2/1−p2/2)/8ηlRT
r:孔径(cm)
ε:多孔度(個/cm2)
l:膜厚(cm)
を変形したもので、透過係数pは
p=εr4/l
とも表わすことができ、これはシート状材料の構
造だけの変数で表わされているから、構造に固有
の値をもつている。したがつて、構造が不変のも
のでは、通気性、透湿性、防水性の3者の要求レ
ベルを同時に満たし得る透過係数の範囲は存在し
ない。
そこで有望なのが、繊維糸条の吸水膨潤により
構造(とりわけ孔径)を変化し得る、後者の方法
である。ところが、後者の方法では、繊維の吸水
膨潤性を高めることに主として重点が置かれるた
めに、繊維糸条への親水性基の導入が過多とな
り、場合によつては、その親水性基が極端に糸条
表面に局在化している。その結果として、吸水膨
潤時、水分子の浸透作用が大きくなり、十分な防
水性を与えるためには疎水性シート状材料の場合
よりも孔径(織/編物の場合、以下、繊維空間・
糸条空間を「孔」と呼称し、「孔径」とは、その
「孔」を円とみなしたときの平均孔径を意味する)
を小さくする必要がある。ところが、従来の吸水
膨潤性繊維糸条を用いた布帛では、十分な通気性
を付与し、しかも吸水膨潤により孔径を小さくし
て十分な防水性を与え得る構造にしても、親水性
基による浸透作用のために、実際には、十分な防
水性が得られない。また、吸湿により、孔径が小
さくなり、一層水分子と繊維との相互作用が大き
くなるため、ほとんどの水分子は気体状では透過
できず、液体状で吸着、浸透、放散の過程を経て
透過する。このため、同一の孔径を有する疎水性
シート状材料に比べると、透湿量はかなり小さく
なる。さらに、保水率が非常に大きくなるため
に、湿潤時の重量増が大きくなりすぎ、作業性が
悪くなるという欠点もある。さらには、シート状
材料全体の耐久性を高くする目的で、一般に基材
布帛を樹脂被覆するが、この場合、被覆樹脂膜が
十分な通気性を有していなければ、シート状材料
全体としての通気性は当然不十分となり、シート
状通気性透湿性防水材料は得られないが、たとえ
十分な通気性を有するものであつても、基材布帛
の吸水膨潤能が著しく阻害されるため、防水性が
不十分となつてしまう。したがつて、現在このタ
イプのシート状材料は、不通気性(透湿性は有す
る)樹脂膜により防水性を、吸湿性能を有する
(吸水膨潤能は阻害されている)基材布帛により
結露防止性をもたせた結露防止防水シート状材料
と呼ぶべきものである。基材布帛に吸湿性がある
ため、JIS−Z−0208「防湿包装材料の透湿度試験
方法」などに準じた測定では高い値を示し、この
ために「透湿性防水膜材」と呼ばれるが、これは
測定法の選択が適切でないためである。
一方、綿帆布は品番によつては通気性透湿性を
有しているものもあるが、強度や耐水圧が合繊帆
布に比して劣る上、湿潤性に重くなりすぎる、く
さる等の欠点をもつており、又、耐久性もよくな
い。
本発明者は上記欠点のない、優れた通気性およ
び透湿性を有するシート状防水材料について鋭意
検討し本発明を見い出した。
すなわち、本発明のシート状通気性透湿性防水
材料は、吸水膨潤性を有するシート状基材とポリ
アミノ酸を含有するポリマーからなる樹脂膜また
はフイルムとの複合シート状材料であつて、該シ
ート状材料における分子の透過しやすさを示す尺
度(以下透過係数という)Pを次式
P=8qηRT/P1 2−P2 2
「P:透過係数(cm)
q:分子の流速(モル/cm2・秒)
η:分子の粘度(poise)
R:気体定数(cm3・dyne/cm2・K・モル)
T:温度(K)
P1:高圧側の分子の分圧(dyne/cm2)
P2:低圧側の分子の分圧(dyne/cm2)」
で表わす時、該シート状材料乾燥時の空気の透過
係数PDと、該シート状材料湿潤時の空気の透過
係数PWとの比(以下バブル能という)Vが次式
V=PD/PW≧30
を満たし、しかもPDと水分子の透過係数PHとの
比(以下親水能という)Hが次式
H=PD/PH≦V
を満たすことを特徴とするものである。
本発明に係るシート状材料は、後述するように
吸水膨潤性を有するシート状基材とポリアミノ酸
を含有するポリマーからなる樹脂膜またはフイル
ムとで構成される複合シートであり、かかるシー
ト状材料はバルブ能Vが30以上、さらに望ましく
は100以上であることが必要である。バルブ能V
が30より小さい場合は、通気量が0.1c.c./cm2・秒
以上となる構造にすると、耐水圧が600mmH2O以
下となり、逆に、耐水圧が600mmH2O以上となる
構造にすると、通気量が0.1c.c./cm2・秒以下とな
り、通気性と防水性の両特性を同時に満足できな
い。バルブ能Vが30以上の場合は、シート状材料
乾燥時に十分な通気性が得られるようにシート状
材料の構造設計を行なえば、降雨などによる湿潤
時には、吸水膨潤作用で孔径が防水性を満足でき
る程度にまで小さくなり得るので、親水能Hがバ
ルブ能V以下であれば、通気性と防水性の両特性
を同時に満足できる。
本発明に係るシート状材料の親水能Hは、バル
ブ能Vであることが必要である。親水能Hがバル
ブ能Vよりも大きい場合は、親水性基による水の
浸透作用により防水性が低下する度合が大きく、
バルブ作用により孔径を小さくして防水性を高め
ても、十分な防水性を維持できない。また、吸湿
による孔径の縮小に伴つて、水分子とシート状構
成材(基材となる布帛またはベースフイルム)と
の相互作用が増大して、ほとんどの水分子は気体
状では透過できず、液体状に吸着し、浸透、放散
の過程を繰り返して透過するが、この場合、吸着
の速度は速いが、浸透・放散の速度は気体状の水
分子の透過速度に比較して極めて遅く、十分な透
湿性が得られない。さらに、吸水により重量が著
しく増加するため、シート状防水材料などに利用
する場合、作業性の点で問題があり、又、防水服
などに利用する場合には、着用感が重いといつた
欠点にもなる。親水能Hが、バルブ能V以下の場
合は、親水性基による水の浸透作用の増大が幾分
あるが、これによる防水性の低下は、孔径の縮小
による防水性の向上によつて補なうことができ、
シート状防水材料として必要な防水性を維持でき
る。また、吸湿による孔径の縮小に伴ない、水分
子の多くは、やはり液体状で吸着、浸透、放散の
過程を繰り返して透過するが、気体状での水分子
の透過も幾分残つており、水分子と基材との相互
作用もそれほど大きくないため、シート状材料全
体としての水分子の透過速度は、十分な透湿性を
維持できる程度に大きい。
本発明に使用される基材となる布帛またはベー
スフイルムは、吸水又は/及び吸湿により膨潤す
る性能を有するものであればよく、その素材は、
天然高分子およびその変性物、合成高分子のいず
れでもかまわない。
本発明に使用される基材構成布帛は、織物でも
編物でもよく、また、構成糸条はフイラメント糸
又はスパン糸の単独又は混繊・混紡糸のいずれで
もよい。
また、本発明に使用される基材構成ベースフイ
ルムは、単一フイルムでも複合フイルムでもよ
い。さらに、基材へのグラフト重合などによる変
性を行なつてもよい。特に好ましくは、該基材
が、バルブ能Vが30以上で親水能Hがバルブ能V
以下である吸水膨潤能を有し、基材としての通気
量が0.1c.c./cm2・秒以上であるものがよい。これ
は、本発明のシート状材料のもつ特性であるバル
ブ能Vおよび親水能Hが、主として該基材のバル
ブ能Vおよび親水能Hによつて決定されるためで
ある。また、シート状材料の通気量は、基材と樹
脂膜(又はフイルム)の通気量のうち、その小さ
い方の素材の通気量以下になるため、基材の通気
量は、十分な通気性を維持できる値(0.1c.c./
cm2・秒)以上であることが最小限必要である。
本発明に使用される基材被覆樹脂膜又はフイル
ム構成樹脂は、膜又はフイルム成形時に連続微多
孔を形成し得るものであればよく、特にその種類
には限定されない。
本発明に使用される基材被覆樹脂膜又はフイル
ムの通気量は、十分な通気性を維持できる値
(0.1c.c./cm2・秒)以上であることが最小限必要で
ある。従来の吸水膨潤性布帛を用いたシート状防
水材料の大きな欠点の1つは、シート状材料の耐
久性向上のために、厚い樹脂膜を布帛にコーテイ
ングしたことである。この樹脂膜により、通気性
が失なわれ、しかも布帛の吸水膨潤性が大きく損
われ、ただ吸水性・保水性だけが残る結果となつ
た。したがつて、本発明に用いられる基材被覆樹
脂膜又はフイルムは、基材のもつ吸水膨潤性を阻
害せず、基材の吸水膨潤・乾燥収縮挙動に追従し
て孔径を変化し得る連続微多孔を有することが重
要である。
このような性能を有する樹脂膜またはフイルム
を形成し得る樹脂として、本発明では、ポリアミ
ノ酸を含有するポリマーを使用する。基材のもつ
吸水膨潤性を阻害せず、基材の吸水膨潤・乾燥収
縮挙動に追従して孔径を変化し得る連続微多孔を
形成する性能の面では、ポリアミノ酸単独の樹脂
が最も好ましいが、基材との接着性や風合いを改
良するために、ポリウレタン等の樹脂をブレンド
したり、ポリウレタン等との共重合物としてもよ
い。
本発明においてポリアミノ酸とは、アミノ基と
カルボキシル基をそれぞれ1個以上有するモノマ
ーからなりポリマーの総称であつて、単一モノマ
ー組成のホモポリマーでも、各種モノマーのラン
ダム又はブロツク共重合体でもよい。特に、酸性
アミノ酸もしくは酸性アミノ酸のω−アルキルエ
ステルからなるポリアミノ酸が好ましい。酸性ア
ミノ酸としては、例えば、アミノマロン酸、アス
パラギン酸、グルタミン酸、2−アミノ−アジピ
ン酸、α−アミノ−ピメリン酸、β−メチル−ア
スパラギン酸、β−メチレン−アスパラギン酸、
β、β−ジメチル−アスパラギン酸、β−フエニ
ル−グルタミン酸、γ−メチル−グルタミン酸、
γ−メチレン−グルタミン酸などのα−アミノ−
ジガルボン酸、およびβ−アミノ−グルタミン
酸、β−アミノ−アジピン酸などのβ−アミノ−
ジカルボン酸が挙げられる。ω−アルキルエステ
ルのアルキル基としては、メチル、エチル、2−
アミノエチル、2−ヒドロキシエチル、2−クロ
ロエチル、2−ブロモエチルなどが挙げられる。
なお、本発明はシート材料乾燥時に通気性を、
吸水又は吸湿膨潤により孔径縮小時に防水性を実
現する構造であるため、吸水又は吸湿膨潤の応答
速度が遅い基材又は樹脂膜を用いた場合には、初
期防水性が実現できない。この場合、基材の片面
又は両面にフツ素系又はシリコーン系など通常の
撥水剤を塗布することにより透水速度をおくら
せ、吸水膨潤のための時間をかせぐことができる
ため、初期防水性も実現できる。
次に本発明に係る実施例および比較例を示すが
これらは特許請求の範囲を何ら制限するものでは
ない。
実施例 1
5.0g/の炭酸ナトリウム水溶液で80℃、1
時間処理し、水洗、風乾を行なつたアクリル酸8
モル%共重合ポリアクリロニトリル繊維(繊度
1・5d)に70重量%のポリエチレンテレフタレ
ート繊維(繊度2.5d)を混紡した糸条(20番三
子)を用い、織密度54×42本/インチの布帛を製
織した。この布帛の通気量は0.850c.c./cm2・秒で
あつた。この布帛に、γ−メチル−L−グルタメ
ート−Nカルボン酸無水物とウレタンプレポリマ
ーの当モルブロツク共重合体を20重量%含有する
ジメチルホルムアミド溶液をコーテイングした。
10分間風乾後、水中に一昼夜浸した後、水洗、風
乾し連続気孔を有する微多孔を形成させた。樹脂
付着量は基材に対して20重量%であつた。このシ
ート状防水材料の性能は表1の通りであり、通気
性、透湿性及び防水性を同時に満足するシートを
得ることができた。
実施例 2
実施例1と同じ布帛の片面に常温硬化型のシリ
コーン撥水剤(トーレ・シリコーン社SD−8000)
を0.5重量%塗布した後、実施例1と同一条件で
樹脂コーテイング、連続気孔形成処理を行なつ
た。このシート状防水材料の性能は表1の通りで
あつた。
実施例 3
35モル%のα−ヘキサデセンで変性したケン化
ポリビニルアルコール繊維(繊度1.5d)に70重量
%のポリエチレンテレフタレート繊維(繊度
2.5d)を混紡した糸条(20番三子)を用い、織密
度54×42本/インチの布帛を製織した。通気量は
0.575c.c./cm2・秒であつた。この布帛に、実施例
2と同様の撥水処理を行なつた後、実施例1と同
様の樹脂コーテイング、連続気孔形成処理を行な
つた。このシート状防水材料の性能は表1の通り
であつた。
実施例 4
実施例1と同じ布帛に、ポリ−γ−メチル−L
−グルタメートを10重量%含有するエチレンジク
ロリド溶液をコーテイングした。5分間風乾後、
メタノール中に一昼夜浸した後、水洗、風乾し連
続気孔を有する微多孔を形成させた。樹脂付着量
は基材に対して15重量%であつた。このシート状
防水材料の性能は表1の通りであつた。
比較例 1
撥水処理を行なわなかつた以外は、実施例3と
同様の布帛を作り、同様の処理を行なつた。この
シート状材料の性能は表1の通りであつた。
比較例 2
綿帆布9号生機を用いて、実施例1と同様の樹
脂コーテイング、連続気孔形成処理を行なつた。
このシート状材料の性能は表1の通りであつた。
比較例 3
実施例1と同じ布帛に、ポリウレタン単独の樹
脂コーテイングを行ない、実施例1と同様の連続
気孔形成処理を行なつた。このシート状材料の性
能は表1の通りであつた。
なお、上記説明において透過係数、通気量、透
湿度、耐水圧、引張強度及び引裂強力はそれぞれ
次の方法で計算または測定したものである。
透過係数の計算
PD,PWの計算:通気量0.1c.c./cm2・秒のシー
ト状材料の透過係数を求める場合を考える。測
定条件での各値は、分子の粘度η=1800×10-4
ポイズ、温度T=293k、高圧側分子分圧p1=
1.0133×106dyne/cm2、低圧側分子分圧p2=
1.0121×106dyneである。通気量の単位c.c./
cm2・秒を分子の流速モル/cm2・秒に換算する
と、0.1c.c./cm2・秒は、
0.1×273/22.4×103×293=4.160×10-6
より、q=4.160×10-6モル/cm2・秒となる。
これを、p=8qηRT/(P2 1−P2 2)の式に代
入すれば、p=5.766×10-8(cm)となる。ここ
で、気体定数Rには8.314×10-7cm3・dyne/
cm2・k・モルを用いた。
PHの計算:透湿度5000g/m2・1日のシー
ト状材料の透過係数を求める場合を考える。測
定条件での各値は、分子の粘度η=1.068×
10-4ポイズ、温度T=313k、高圧側分子分圧p1
=7.377×104dyne/cm2、低圧側分子分圧p2=
0dyne/cm2である。透湿度の単位g/m2・1日
を分子の流速モル/cm2・秒に換算すると、5000
g/m2・1日は、
5000/18×104×24×602=3.215×10-7
より、q=3.215×10-7モル/cm2・秒となる。
これらの値を透過係数Pを求める式に代入すれ
ば、p=1.313×10-9(cm)となる。
〈通気量の測定〉
JIS L 1096−1979 A法により、フラジール
型試験機を用いて測定した。
〈透湿度の測定〉
ASTM E96−66BW法により測定した。
〈耐水圧の測定〉
JIS L 1092−1972 A法により測定した。
〈引張強度・引裂強力の測定〉
JIS L 1096−1979 A 法(ストリツプ法)
およびA−1法(シングルタング法)によりそれ
ぞれ測定した。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sheet-like waterproof material having air permeability and moisture permeability. Conventionally, methods for imparting air permeability and/or moisture permeability to sheet-like waterproof materials include a method of coating or laminating a continuous microporous membrane on a base fabric, and a method of using water-absorbing and swelling fibers in the threads constituting the base fabric. is known. In the former method, by forming pores that are larger than gaseous water molecules and smaller than liquid water (aggregation of water molecules), waterproofness (water pressure resistance of 600 mm H 2 O or more) and moisture permeability (moisture permeability) are achieved.
5000g/ m2・1 day or more), but sufficient ventilation (airflow rate 0.1cc/ cm2・1 day or more) can be satisfied at the same time.
seconds) cannot be granted. In general, air permeability and moisture permeability are often confused as the same property, but the required levels for both properties are vastly different and must be clearly distinguished. Converting the amount of moisture permeation into the unit of molecular flow rate, 5000g/ m2・1 day is 3.215×
10 -7 mol/cm 2・sec. On the other hand, when converting the amount of ventilation into the unit of molecular flow rate, 0.1 cc/cm 2 ·sec becomes 4.160×10 -6 mol/cm 2 ·sec. By substituting these values and the measurement conditions for moisture permeation and air permeability into the formula for calculating the permeability coefficient, the moisture permeability
The permeability coefficient to achieve 5000g/ cm2・1 day is
In order to achieve 1.313×10 -9 cm and an air flow rate of 0.1 cc/cm 2 ·sec, the permeability coefficient is required to be 5.766×10 -8 cm (a calculation example will be described later). This shows that the required level of breathability is 43.9 times higher than the required level of moisture permeability. Also, water pressure resistant
Since the wet air permeability coefficient of 600mmH 2 O cotton canvas No. 9 is 3.460 x 10 -9 cm, it has a water pressure resistance of 600mm.
The permeability coefficient corresponding to H 2 O or more must be less than or equal to 3.460×10 -9 cm. The formula representing the transmission coefficient is:
Equation of Poiseuille flow of gas molecules q=r 4 ε(p 2 / 1 − p 2 / 2 )/8ηlRT r: pore diameter (cm) ε: porosity (pieces/cm 2 ) l: film thickness (cm) Therefore, the transmission coefficient p can also be expressed as p=εr 4 /l, and since this is expressed as a variable only for the structure of the sheet material, it has a value specific to the structure. Therefore, if the structure remains unchanged, there is no range of permeability coefficients that can simultaneously satisfy the three required levels of air permeability, moisture permeability, and waterproofness. Therefore, the latter method is promising, in which the structure (particularly the pore size) can be changed by water absorption and swelling of the fiber threads. However, in the latter method, the main emphasis is placed on increasing the water absorption and swelling properties of the fibers, so that too many hydrophilic groups are introduced into the fiber yarns, and in some cases, the hydrophilic groups become extremely localized on the filament surface. As a result, when water absorbs and swells, the penetrating action of water molecules increases, and in order to provide sufficient waterproofness, the pore size (in the case of woven/knitted materials, hereinafter referred to as fiber space and
The thread space is called a "hole", and "pore diameter" means the average pore diameter when the "hole" is considered as a circle)
needs to be made smaller. However, with conventional fabrics using water-absorbing and swelling fiber threads, even if they have a structure that provides sufficient air permeability and can reduce the pore size through water absorption and swelling to provide sufficient waterproof properties, the penetration by hydrophilic groups is limited. Due to this effect, sufficient waterproofing is not achieved in practice. In addition, due to moisture absorption, the pore size becomes smaller and the interaction between water molecules and fibers becomes even stronger, so most water molecules cannot pass through in the gaseous state, but pass through the process of adsorption, penetration, and dissipation in the liquid state. . Therefore, the amount of moisture permeable is considerably smaller than that of a hydrophobic sheet material having the same pore size. Furthermore, since the water retention rate becomes very high, the weight increase when wet becomes too large, resulting in poor workability. Furthermore, in order to increase the durability of the sheet-like material as a whole, the base fabric is generally coated with a resin, but in this case, if the coating resin film does not have sufficient air permeability, the sheet-like material as a whole will deteriorate. Naturally, the breathability will be insufficient, making it impossible to obtain a sheet-like breathable, moisture-permeable, and waterproof material. However, even if the material has sufficient breathability, the water absorption and swelling ability of the base fabric will be significantly inhibited, making it impossible to obtain waterproofing. Sexuality becomes insufficient. Therefore, currently, this type of sheet-like material has waterproof properties due to the impermeable (but still moisture permeable) resin membrane, and anti-condensation properties due to the base fabric that has moisture absorption properties (water absorption and swelling ability is inhibited). It can be called a waterproof sheet-like material that prevents condensation. Because the base fabric is hygroscopic, it shows high values when measured in accordance with JIS-Z-0208 "Moisture permeability test method for moisture-proof packaging materials," and for this reason it is called a "moisture-permeable waterproof membrane material." This is due to inappropriate selection of the measurement method. On the other hand, cotton canvas has breathability and moisture permeability depending on the product number, but its strength and water pressure resistance are inferior to synthetic fiber canvas, and it also has drawbacks such as being too heavy and sagging when wet. It also has poor durability. The inventors of the present invention have conducted intensive studies on a sheet-like waterproof material that does not have the above-mentioned drawbacks and has excellent air permeability and moisture permeability, and have discovered the present invention. That is, the sheet-like breathable and moisture-permeable waterproof material of the present invention is a composite sheet-like material of a sheet-like base material having water-absorbing and swelling properties and a resin membrane or film made of a polymer containing a polyamino acid. P is a measure of the ease with which molecules permeate through a material (hereinafter referred to as permeability coefficient) using the following formula: P=8qηRT/P 1 2 −P 2 2 P: Permeability coefficient (cm) q: Molecular flow rate (mol/cm 2・sec) η: Molecular viscosity (poise) R: Gas constant (cm 3 dyne/cm 2・K mol) T: Temperature (K) P 1 : Partial pressure of molecules on the high pressure side (dyne/cm 2 ) P 2 : Partial pressure of molecules on the low pressure side (dyne/cm 2 )", the air permeability coefficient P D when the sheet-like material is dry, the air permeability coefficient P W when the sheet-like material is wet, and The ratio (hereinafter referred to as bubble capacity) V satisfies the following formula: V=P D /P W ≧30, and the ratio H between P D and the permeability coefficient of water molecules (hereinafter referred to as hydrophilicity) H satisfies the following formula: H= It is characterized by satisfying P D /P H ≦V. The sheet-like material according to the present invention is a composite sheet composed of a water-absorbing and swelling sheet-like base material and a resin membrane or film made of a polymer containing polyamino acids, as described below. It is necessary that the valve capacity V is 30 or more, more preferably 100 or more. Valve capacity V
is less than 30, if the structure has a ventilation rate of 0.1cc/cm 2 · seconds or more, the water pressure resistance will be 600mmH 2 O or less, and conversely, if the structure has a water pressure resistance of 600mmH 2 O or more, the ventilation The amount is less than 0.1cc/cm 2 ·sec, making it impossible to satisfy both breathability and waterproof properties at the same time. If the valve capacity V is 30 or more, if the structure of the sheet material is designed to provide sufficient air permeability when it dries, the pore size will satisfy the waterproof property when wet due to rain etc. due to water absorption and swelling. Therefore, as long as the hydrophilic capacity H is equal to or less than the valve capacity V, both breathability and waterproof properties can be satisfied at the same time. The hydrophilic capacity H of the sheet material according to the present invention needs to be the bulb capacity V. When the hydrophilic capacity H is larger than the valve capacity V, the degree of decrease in waterproofness due to the water penetration effect of the hydrophilic group is large;
Even if the pore diameter is reduced by the valve action to improve waterproofness, sufficient waterproofness cannot be maintained. In addition, as the pore size decreases due to moisture absorption, the interaction between water molecules and the sheet-like constituent material (fabric or base film) increases, and most water molecules cannot pass through in the gaseous state, but in the liquid state. In this case, the rate of adsorption is fast, but the rate of permeation and dissipation is extremely slow compared to the rate of permeation of gaseous water molecules, and the process of permeation and dissipation is repeated. Moisture permeability cannot be achieved. Furthermore, since the weight increases significantly due to water absorption, there are problems in terms of workability when used in sheet-like waterproof materials, etc., and when used in waterproof clothing, etc., the disadvantage is that it feels heavy to wear. It also becomes. When the hydrophilic capacity H is less than or equal to the valve capacity V, there is some increase in water permeability due to the hydrophilic group, but the decrease in waterproofness due to this is compensated for by the improvement in waterproofness due to the reduction of the pore diameter. can,
It can maintain the waterproofness required as a sheet-like waterproof material. In addition, as the pore size decreases due to moisture absorption, most of the water molecules pass through the pores in a liquid state by repeating the process of adsorption, permeation, and dissipation, but some water molecules still pass through in the gaseous state. Since the interaction between water molecules and the base material is not so large, the permeation rate of water molecules through the sheet-like material as a whole is high enough to maintain sufficient moisture permeability. The fabric or base film used as the base material used in the present invention may be any material as long as it has the ability to swell by water absorption and/or moisture absorption.
Any of natural polymers, modified products thereof, and synthetic polymers may be used. The fabric constituting the base material used in the present invention may be a woven or knitted fabric, and the constituting yarn may be a filament yarn or a spun yarn, either alone, or a mixed or blended yarn. Further, the base film used in the present invention may be a single film or a composite film. Furthermore, the base material may be modified by graft polymerization or the like. Particularly preferably, the base material has a valve capacity V of 30 or more and a hydrophilic capacity H of the valve capacity V
It is preferable that the material has a water absorption and swelling ability of 0.1 cc/cm 2 ·sec or more as a base material. This is because the valve capacity V and hydrophilic capacity H, which are the properties of the sheet material of the present invention, are mainly determined by the valve capacity V and hydrophilic capacity H of the base material. In addition, the air permeability of the sheet material is less than the air permeability of the smaller of the air permeability of the base material and the resin membrane (or film), so the air permeability of the base material must be adjusted to ensure sufficient air permeability. Value that can be maintained (0.1cc/
cm2・sec) or higher is the minimum requirement. The substrate-coating resin membrane or film-constituting resin used in the present invention is not particularly limited to its type, as long as it can form continuous micropores during membrane or film molding. The minimum air permeability of the base coating resin membrane or film used in the present invention is required to be at least a value (0.1 cc/cm 2 ·sec) that can maintain sufficient air permeability. One of the major drawbacks of conventional sheet-like waterproof materials using water-absorbing and swelling fabrics is that the fabric is coated with a thick resin film in order to improve the durability of the sheet-like material. Due to this resin film, air permeability was lost, and the water absorbing and swelling properties of the fabric were greatly impaired, leaving only water absorbing and water retaining properties. Therefore, the substrate-coating resin membrane or film used in the present invention has a continuous fine pore size that does not inhibit the water absorption swelling property of the substrate and can change the pore size in accordance with the water absorption swelling and drying shrinkage behavior of the substrate. It is important to have porosity. In the present invention, a polymer containing a polyamino acid is used as a resin capable of forming a resin membrane or film having such performance. In terms of the ability to form continuous micropores whose pore diameter can change according to the water absorption swelling and drying shrinkage behavior of the base material without inhibiting the water absorption swelling properties of the base material, a resin containing polyamino acid alone is most preferable. In order to improve the adhesion to the base material and the texture, it may be blended with a resin such as polyurethane, or may be a copolymer with polyurethane or the like. In the present invention, the polyamino acid is a general term for polymers composed of monomers each having one or more amino groups and one or more carboxyl groups, and may be a homopolymer of a single monomer composition or a random or block copolymer of various monomers. In particular, polyamino acids consisting of acidic amino acids or ω-alkyl esters of acidic amino acids are preferred. Examples of acidic amino acids include aminomalonic acid, aspartic acid, glutamic acid, 2-amino-adipic acid, α-amino-pimelic acid, β-methyl-aspartic acid, β-methylene-aspartic acid,
β, β-dimethyl-aspartic acid, β-phenyl-glutamic acid, γ-methyl-glutamic acid,
α-amino- such as γ-methylene-glutamic acid
digalboxic acid, and β-amino-glutamic acid, β-amino-adipic acid, etc.
Examples include dicarboxylic acids. The alkyl group of the ω-alkyl ester includes methyl, ethyl, 2-
Examples include aminoethyl, 2-hydroxyethyl, 2-chloroethyl, 2-bromoethyl and the like. In addition, the present invention improves air permeability when drying the sheet material.
Since the structure achieves waterproofness when the pore diameter is reduced by water absorption or swelling, initial waterproofness cannot be achieved if a base material or resin film with a slow response speed to water absorption or swelling is used. In this case, by applying a regular water repellent such as fluorine-based or silicone-based to one or both sides of the base material, the water permeation rate can be slowed down and time for water absorption and swelling can be increased, so that the initial waterproofness can be improved. realizable. Next, Examples and Comparative Examples according to the present invention will be shown, but these are not intended to limit the scope of the claims in any way. Example 1 80℃ with 5.0g/aqueous sodium carbonate solution, 1
Acrylic acid 8 treated with water, washed with water, and air-dried
Fabric with a weave density of 54 x 42 threads/inch using yarn (No. 20 Sanko) that is a blend of mol% copolymerized polyacrylonitrile fiber (fineness 1.5d) and 70% by weight polyethylene terephthalate fiber (fineness 2.5d). was woven. The air permeability of this fabric was 0.850 cc/cm 2 ·sec. This fabric was coated with a dimethylformamide solution containing 20% by weight of the mole block copolymer of γ-methyl-L-glutamate-N carboxylic anhydride and urethane prepolymer.
After air-drying for 10 minutes, it was immersed in water for a day and night, then washed with water and air-dried to form micropores with continuous pores. The amount of resin deposited was 20% by weight based on the base material. The performance of this sheet-like waterproof material is shown in Table 1, and it was possible to obtain a sheet that satisfies air permeability, moisture permeability, and waterproof properties at the same time. Example 2 Room-temperature curing silicone water repellent (Torre Silicone SD-8000) was applied to one side of the same fabric as in Example 1.
After coating 0.5% by weight, resin coating and continuous pore formation treatment were performed under the same conditions as in Example 1. The performance of this sheet-like waterproof material was as shown in Table 1. Example 3 Saponified polyvinyl alcohol fiber (fineness 1.5d) modified with 35 mol% α-hexadecene was mixed with 70% by weight polyethylene terephthalate fiber (fineness
A fabric with a weave density of 54 x 42 threads/inch was woven using yarn (No. 20 Sanko) blended with 2.5d). The amount of ventilation is
It was 0.575cc/ cm2・sec. This fabric was subjected to the same water repellent treatment as in Example 2, and then subjected to the same resin coating and continuous pore forming treatments as in Example 1. The performance of this sheet-like waterproof material was as shown in Table 1. Example 4 Poly-γ-methyl-L was added to the same fabric as in Example 1.
- coated with an ethylene dichloride solution containing 10% by weight of glutamate. After air drying for 5 minutes,
After soaking in methanol for a day and night, it was washed with water and air-dried to form micropores having continuous pores. The amount of resin deposited was 15% by weight based on the base material. The performance of this sheet-like waterproof material was as shown in Table 1. Comparative Example 1 A fabric similar to that of Example 3 was made and subjected to the same treatment, except that no water repellent treatment was performed. The performance of this sheet material was as shown in Table 1. Comparative Example 2 Using a cotton canvas No. 9 greige machine, the same resin coating and continuous pore formation treatments as in Example 1 were performed.
The performance of this sheet material was as shown in Table 1. Comparative Example 3 The same fabric as in Example 1 was coated with polyurethane alone and subjected to the same continuous pore forming treatment as in Example 1. The performance of this sheet material was as shown in Table 1. In the above description, the permeability coefficient, air permeability, moisture permeability, water pressure resistance, tensile strength, and tear strength were calculated or measured using the following methods. Calculation of permeability coefficient Calculation of P D and P W : Consider the case of calculating the permeability coefficient of a sheet-like material with an air flow rate of 0.1 cc/cm 2・sec. Each value under the measurement conditions is the viscosity of the molecule η=1800×10 -4
Poise, temperature T = 293k, high pressure side molecular partial pressure p 1 =
1.0133×10 6 dyne/cm 2 , low pressure side molecular partial pressure p 2 =
It is 1.0121×10 6 dyne. Airflow unit cc/
Converting cm 2・sec to molecular flow rate mol/cm 2・sec, 0.1 cc/cm 2・sec is 0.1×273/22.4×10 3 ×293=4.160×10 -6 , so q=4.160×10 -6 mol/ cm2・sec. If this is substituted into the equation p=8qηRT/(P 2 1 −P 2 2 ), p=5.766×10 −8 (cm). Here, the gas constant R is 8.314×10 -7 cm 3・dyne/
cm 2 ·k·mol was used. Calculation of P H : Consider the case of calculating the permeability coefficient of a sheet-like material with a moisture permeability of 5000 g/m 2 per day. Each value under the measurement conditions is the viscosity of the molecule η=1.068×
10 -4 poise, temperature T = 313k, high pressure side molecular partial pressure p 1
=7.377×10 4 dyne/cm 2 , low pressure side molecular partial pressure p 2 =
0dyne/ cm2 . The unit of moisture permeability, g/m 2・1 day, is converted to the molecular flow rate mol/cm 2・second, which is 5000.
g/m 2 ·1 day is 5000/18×10 4 ×24×60 2 =3.215×10 -7 , so q=3.215×10 -7 mol/cm 2 ·sec.
If these values are substituted into the formula for calculating the transmission coefficient P, then p=1.313×10 −9 (cm). <Measurement of air permeability> Measurement was performed using a Frazier type tester according to JIS L 1096-1979 A method. <Measurement of moisture permeability> Measured by ASTM E96-66BW method. <Measurement of water pressure resistance> Measured according to JIS L 1092-1972 A method. <Measurement of tensile strength/tear strength> JIS L 1096-1979 A method (strip method)
and A-1 method (single tongue method). 【table】
Claims (1)
ノ酸を含有するポリマーからなる樹脂膜またはフ
イルムとの複合シート状材料であつて、該シート
状材料における分子の透過しやすさを示す尺度
(以下透過係数という)Pを次式 P=8qηRT/P1 2−P2 2 「P:透過係数(cm) q:分子の流速(モル/cm2・秒) η:分子の粘度(poise) R:気体定数(cm3・dyne/cm2・K・モル) T:温度(K) P1:高圧側の分子の分圧(dyne/cm2) P2:低圧側の分子の分圧(dyne/cm2)」 で表わす時、該シート状材料乾燥時の空気の透過
係数PDと、該シート状材料湿潤時の空気の透過
係数PWとの比(以下バブル能という)Vが次式 V=PD/PW≧30 を満たし、しかもPDと水分子の透過係数PHとの
比(以下親水能という)Hが次式 H=PD/PH≦V を満たすことを特徴とするシート状通気性透湿性
防水材料。 2 複合シート状材料が、吸水膨潤性を有するシ
ート状基材の少なくとも片面にポリアミノ酸を含
有するポリマーからなる樹脂膜またはフイルムを
コーテイングまたはラミネートした樹脂膜被覆布
帛または複合フイルムである特許請求の範囲第1
項記載のシート状通気性透湿性防水材料。 3 複合シート状材料の基材となる布帛またはベ
ースフイルムが、バブル能Vが30以上、親水能H
がV以下である吸水膨潤性を有し、基材としての
通気量が0.1c.c./cm2・秒以上である特許請求の範
囲第1項記載のシート状通気性透湿性防水材料。 4 複合シート状材料の基材を被覆するポリアミ
ノ酸を含有するポリマーからなる樹脂膜またはフ
イルムが、通気量1c.c./cm2・秒以上の通気性をも
つ連続微多孔を有し、しかも該基材の膨潤・収縮
挙動に追従して孔径を変化し得るものである特許
請求の範囲第1項記載のシート状通気性透湿性防
水材料。 5 基材の片面又は両面に撥水処理を施してなる
特許請求の範囲第1項記載のシート状通気性透湿
性防水材料。[Scope of Claims] 1. A composite sheet-like material of a sheet-like base material having water-absorbing and swelling properties and a resin membrane or film made of a polymer containing polyamino acids, the sheet-like material having easy permeability of molecules. The scale (hereinafter referred to as permeability coefficient ) P that indicates the (poise) R: Gas constant ( cm3・dyne/ cm2・K・mol) T: Temperature (K) P1 : Partial pressure of molecules on the high pressure side (dyne/ cm2 ) P2 : Partial pressure of molecules on the low pressure side The ratio of the air permeability coefficient P D when the sheet material is dry to the air permeability coefficient P W when the sheet material is wet (hereinafter referred to as bubble capacity), expressed as partial pressure (dyne/cm 2 ). V satisfies the following formula V=P D /P W ≧30, and the ratio H between P D and the permeability coefficient P H of water molecules (hereinafter referred to as hydrophilicity) satisfies the following formula H=P D /P H ≦V A sheet-like breathable, moisture-permeable waterproof material that satisfies the following requirements. 2. Claims in which the composite sheet-like material is a resin film-coated fabric or a composite film obtained by coating or laminating a resin film or film made of a polyamino acid-containing polymer on at least one side of a sheet-like base material having water-absorbing and swelling properties. 1st
The sheet-like breathable, moisture-permeable, waterproof material described in Section 1. 3 The fabric or base film serving as the base material of the composite sheet material has a bubble capacity V of 30 or more and a hydrophilic capacity H
2. The sheet-like breathable and moisture permeable waterproof material according to claim 1, which has a water absorption swelling property of V or less, and has an air permeability as a base material of 0.1 cc/cm 2 ·sec or more. 4. The resin membrane or film made of a polymer containing polyamino acids that covers the base material of the composite sheet-like material has continuous micropores with an air permeability of 1 c.c./cm 2 · seconds or more, and The sheet-like breathable and moisture-permeable waterproof material according to claim 1, wherein the pore diameter can be changed in accordance with the swelling and shrinking behavior of the base material. 5. The sheet-like breathable and moisture permeable waterproof material according to claim 1, wherein one or both sides of the base material are subjected to water repellent treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1932483A JPS59145139A (en) | 1983-02-08 | 1983-02-08 | Sheet-shaped air-permeable moisture-permeable waterproof material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1932483A JPS59145139A (en) | 1983-02-08 | 1983-02-08 | Sheet-shaped air-permeable moisture-permeable waterproof material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59145139A JPS59145139A (en) | 1984-08-20 |
JPH0432737B2 true JPH0432737B2 (en) | 1992-06-01 |
Family
ID=11996220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1932483A Granted JPS59145139A (en) | 1983-02-08 | 1983-02-08 | Sheet-shaped air-permeable moisture-permeable waterproof material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59145139A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6163778A (en) * | 1984-08-31 | 1986-04-01 | ユニチカ株式会社 | Production of hygroscopic water-proof cloth |
JPS6170082A (en) * | 1984-09-07 | 1986-04-10 | ユニチカ株式会社 | Production of hygroscopic water-proof cloth |
JPS61138778A (en) * | 1984-12-07 | 1986-06-26 | Unitika Ltd | Breathable waterproofing cloth and its production |
JPS63170129U (en) * | 1987-04-24 | 1988-11-07 |
-
1983
- 1983-02-08 JP JP1932483A patent/JPS59145139A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59145139A (en) | 1984-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5753568A (en) | Moisture-permeable, waterproof fabric and its production process | |
US4429000A (en) | Moisture-permeable waterproof coated fabric and method of making the same | |
US4560611A (en) | Moisture-permeable waterproof coated fabric | |
US5626950A (en) | Moisture permeable, waterproof fabric and its production process | |
GB1002225A (en) | Cellular polymeric sheet material and method of making same | |
WO2010140201A1 (en) | Moisture-permeable and water-proof fabric and method for producing the same | |
US20100272941A1 (en) | Durable water- and oil- resistant, breathable microporous membrane | |
US4803116A (en) | Waterproof fabric having high moisture permeability and method of making same | |
GB2039790A (en) | A moisture-permeable waterproof coated fabric and method of making the same | |
JPS59222204A (en) | Compound membrane for separating gas | |
US4535008A (en) | Moisture-permeable waterproof coated fabric having a microporous polyurethane layer | |
JPH0432737B2 (en) | ||
JP2592465B2 (en) | Breathable waterproof sheet | |
KR100795386B1 (en) | Hydrophilic air-permeable waterproof gun | |
JP2016044261A (en) | Moisture permeable waterproof membrane and moisture permeable waterproof fabric | |
US4072773A (en) | Porous sheet material and its production | |
JP3294898B2 (en) | Moisture-permeable waterproof fabric and method for producing the same | |
JP3656837B2 (en) | House wrap material and manufacturing method thereof | |
JP2003020574A (en) | Method for producing moisture-permeating and waterproofing laminated fabric | |
KR20200004663A (en) | Manufacturing method of waterproof and breathable membrane film and fabric | |
JPS6045679A (en) | Waterproof processing of fiber product | |
JP2004195968A (en) | Moisture-permeable waterproof cloth excellent in tear strength and its manufacturing method | |
KR0173353B1 (en) | Moisture-proof waterproof fabric and its manufacturing method | |
JPH091703A (en) | Manufacture of composite of fiber and film | |
JPH09228252A (en) | Composite fabric |