JPH04327313A - How to descale stainless steel - Google Patents
How to descale stainless steelInfo
- Publication number
- JPH04327313A JPH04327313A JP9929791A JP9929791A JPH04327313A JP H04327313 A JPH04327313 A JP H04327313A JP 9929791 A JP9929791 A JP 9929791A JP 9929791 A JP9929791 A JP 9929791A JP H04327313 A JPH04327313 A JP H04327313A
- Authority
- JP
- Japan
- Prior art keywords
- treated
- electrolyte
- treatment
- stock
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は焼鈍炉等の炉内において
処理されるステンレス鋼表面に発生するスケールを除去
する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing scale generated on the surface of stainless steel treated in an annealing furnace or the like.
【0002】0002
【従来の技術】一般に、ステンレス鋼を冷間圧延して板
材を製造する場合、該冷間圧延により加工硬化した被処
理材を軟化するため軟化焼鈍が実施される。この軟化焼
鈍は通常、被処理材を800℃以上1200℃程度以下
の高温に保持することにより実現されるため、その処理
中に被処理材表面にスケールが発生する。従って軟化焼
鈍後に、発生したスケールを除去する必要がある。2. Description of the Related Art Generally, when stainless steel is cold-rolled to produce a plate material, softening annealing is performed to soften the work-hardened material due to the cold rolling. This softening annealing is usually achieved by holding the material to be treated at a high temperature of about 800° C. or more and about 1200° C. or less, so that scale is generated on the surface of the material during the treatment. Therefore, it is necessary to remove the generated scale after softening annealing.
【0003】従来、このスケールの除去方法としては、
まずスケールを硝酸ナトリウムを含む水酸化ナトリウム
の溶融塩中にて溶解性のよい低級酸化物とした後、硝酸
と弗酸の混酸中での浸漬処理あるいは硝酸中での電解処
理により、残ったスケールを除去すると共に脱スケール
後の表面を不働態化する方法が知られている。Conventionally, methods for removing this scale include:
First, the scale is converted into a lower oxide with good solubility in a molten salt of sodium hydroxide containing sodium nitrate, and then the remaining scale is removed by immersion treatment in a mixed acid of nitric acid and hydrofluoric acid or electrolytic treatment in nitric acid. There is a known method for removing scale and passivating the surface after descaling.
【0004】しかしこの場合、水酸化ナトリウム溶融塩
中での処理が450℃程度の高温中で行われるため、作
業に危険が伴うと共に加熱費が高いという問題がある。
またデスケールのための浸漬処理に関しても、酸の取扱
いに危険が伴う、処理槽が多数となり設備費が多大であ
る。廃酸処理等環境対策も大掛かりになる等の問題が存
在する。However, in this case, the treatment in the molten sodium hydroxide salt is carried out at a high temperature of about 450° C., so there are problems in that the work is dangerous and heating costs are high. Also, regarding the immersion treatment for descaling, handling of acid is dangerous, and a large number of treatment tanks are required, resulting in a large equipment cost. There are problems such as the need for large-scale environmental measures such as waste acid treatment.
【0005】また、他の方法として、特公昭38−12
162号公報に開示されているように、中性塩溶液での
電解処理により、スケールを溶解性のよい低級酸化物と
した後、前記方法と同様硝酸と弗酸の混酸中での浸漬処
理あるいは硝酸中での電解処理により脱スケールする方
法が知られている。しかしこの場合においても、前記方
法と同様の欠点が存在するという問題がある。[0005] In addition, as another method,
As disclosed in Japanese Patent No. 162, scale is converted into a highly soluble lower oxide by electrolytic treatment with a neutral salt solution, and then subjected to immersion treatment in a mixed acid of nitric acid and hydrofluoric acid as in the above method, or A method of descaling by electrolytic treatment in nitric acid is known. However, even in this case, there is a problem that the same drawbacks as the above method exist.
【0006】一方、酸を使用しない方法として、特公昭
57−10200号公報に開示されているように、硝酸
塩を主成分とする中性塩溶液での電解処理のみで、脱ス
ケールを行うと同時に脱スケール後の表面を不働態化す
る方法が知られている。しかしこの場合、該中性塩溶液
中での電解処理のみでは、処理に要する電流密度が高く
、また処理時間も長いため、設備費、処理費が共に高い
という問題がある。On the other hand, as a method that does not use acids, as disclosed in Japanese Patent Publication No. 57-10200, descaling can be carried out at the same time by electrolytic treatment with a neutral salt solution containing nitrate as the main component. A method of passivating the surface after descaling is known. However, in this case, only electrolytic treatment in the neutral salt solution requires a high current density and a long treatment time, so there is a problem that both equipment costs and treatment costs are high.
【0007】[0007]
【発明が解決しようとする課題】本発明は従来の脱スケ
ール方法が持つ前記問題を克服し、安全な作業、コンパ
クトな設備、安価な処理費にてステンレス鋼の脱スケー
ルを可能とすることを目的としている。[Problems to be Solved by the Invention] The present invention overcomes the above-mentioned problems of conventional descaling methods and makes it possible to descale stainless steel with safe work, compact equipment, and low processing costs. The purpose is
【0008】[0008]
【課題を解決するための手段】本発明による方法では、
まず既に知られている硝酸塩を主成分とする電解溶液中
で、被処理材を陽極として直流電源にて電解処理する。
もちろんこの際の電解方法としては、一般に帯材の連続
処理の場合に採用される間接電解方式でもよく、被処理
材が処理時間内で交互に陽極および陰極となってもよい
が、必ず1度は陽極となることが必要であり、また最後
に陽極処理で電解処理が終了することが望ましい。[Means for solving the problems] In the method according to the present invention,
First, the material to be treated is electrolytically treated in a known electrolyte solution containing nitrate as a main component using a DC power source with the material to be treated as an anode. Of course, the electrolysis method at this time may be the indirect electrolysis method that is generally adopted in the case of continuous treatment of strip materials, and the material to be treated may serve as an anode and a cathode alternately within the treatment time, but it must be done only once. must serve as an anode, and it is desirable that the electrolytic treatment be completed with anodic treatment at the end.
【0009】次いで、被処理材表面を該被処理材表面に
付着した電解液および電解液中の沈澱物が水分を含んだ
末乾燥の状態で、布やナイロン製のブラシロール等、該
被処理材表面に有害な疵を生じさせない洗浄ロールにて
擦りながら洗浄水で洗浄する。[0009] Next, the surface of the material to be treated is coated with cloth, a nylon brush roll, etc. in a dry state in which the electrolyte and the precipitates in the electrolyte that have adhered to the surface of the material are moist. Clean with cleaning water while rubbing with a cleaning roll that does not cause harmful scratches on the surface of the material.
【0010】0010
【作用】本発明の作用を、1つの実施例として硝酸ナト
リウム水溶液中を電解液として用いる場合の作用につい
て説明する。まず、実施例の電解処理においては、次の
反応が進行する。即ち、電解液中では、硝酸ナトリウム
NaNO3 は、後に示す(1)式に従い、ナトリウム
イオンNa+ と硝酸イオンNO3 − に解離してい
る。同時に、電解処理の陽極である被処理材表面におい
ては、(2)式に従い、スケール中の難溶解性成分であ
る酸化クロムCr2 O3 が、クロム酸イオンCr2
O7 2−として電解液中へ溶出する。[Function] As an example, the function of the present invention will be explained in the case where an aqueous sodium nitrate solution is used as the electrolyte. First, in the electrolytic treatment of the example, the following reaction proceeds. That is, in the electrolytic solution, sodium nitrate NaNO3 is dissociated into sodium ions Na+ and nitrate ions NO3- according to equation (1) shown later. At the same time, on the surface of the material to be treated, which is the anode of the electrolytic treatment, according to equation (2), chromium oxide Cr2O3, which is a hardly soluble component in the scale, is converted to chromate ions Cr2
It is eluted into the electrolyte as O7 2-.
【0011】更に陽極である被処理材表面においては、
(3)式に従い、解離した硝酸イオンNO3 − から
硝酸HNO3 が生成され、該硝酸HNO3 が(4)
式に従い、被処理材表面に残存する鉄酸化物FeOを除
去する。一方、電解処理の陰極においては、(5)式に
従い、解離したナトリウムイオンNa+ から水酸化ナ
トリウムNaOHが生成されるが、該水酸化ナトリウム
NaOHが被処理材表面から溶出した硝酸第一鉄Fe(
NO3 )2 と反応し、水酸化第一鉄Fe(OH)2
を生成すると共に硝酸ナトリウムNaNO3 を再生
する。Furthermore, on the surface of the material to be treated which is the anode,
According to the equation (3), nitric acid HNO3 is generated from the dissociated nitrate ion NO3 -, and the nitric acid HNO3 is converted into (4)
According to the formula, iron oxide FeO remaining on the surface of the material to be treated is removed. On the other hand, at the cathode of electrolytic treatment, sodium hydroxide NaOH is generated from the dissociated sodium ions Na+ according to equation (5), but the sodium hydroxide NaOH is eluted from the surface of the treated material (ferrous nitrate Fe) (
NO3)2 reacts with ferrous hydroxide Fe(OH)2
and regenerates sodium nitrate, NaNO3.
【0012】また一部の硝酸ナトリウムNaNO3 は
、(7)式で表される酸化反応によりペルオキソ硝酸ナ
トリウムNaNO4 となる。このペルオキソ硝酸ナト
リウムNaNO4 は強力な酸化能力を有するため、被
処理材表面に健全な不働態皮膜を形成する。Further, a part of sodium nitrate, NaNO3, becomes sodium peroxonitrate, NaNO4, through the oxidation reaction represented by equation (7). Since this sodium peroxonitrate NaNO4 has strong oxidizing ability, it forms a healthy passive film on the surface of the treated material.
【0013】しかし一方で、このペルオキソ硝酸ナトリ
ウムNaNO4 は硝酸第一鉄Fe(NO3 )2 を
酸化して硝酸第二鉄Fe(NO3 )3 とする。従っ
て発生する鉄水酸化物はFe(OH)2 に代わりFe
(OH)3 となる。On the other hand, however, this sodium peroxonitrate, NaNO4, oxidizes ferrous nitrate Fe(NO3)2 to form ferric nitrate Fe(NO3)3. Therefore, the iron hydroxide generated is Fe(OH)2 instead of Fe(OH)2.
(OH)3.
【0014】この水酸化第二鉄Fe(HO)3 は電解
液中への溶解性に乏しいため、固体となり沈澱するが、
一部は被処理材表面に付着する。被処理材表面に付着し
た水酸化第二鉄Fe(OH)3 は、電解を継続するこ
とにより発生するガスにより徐々に除去されるが、電解
処理のみによる場合には該水酸化第二鉄の除去には高い
電流密度と長い処理時間を要する。Since this ferric hydroxide Fe(HO)3 has poor solubility in the electrolyte, it becomes solid and precipitates.
A part of it adheres to the surface of the treated material. The ferric hydroxide Fe(OH)3 adhering to the surface of the treated material is gradually removed by the gas generated by continuing electrolysis, but when only electrolytic treatment is used, the ferric hydroxide is removed. Removal requires high current densities and long processing times.
【0015】結果として電解処理のみにより脱スケール
を行おうとすると電流密度が高く処理時間は長時間とな
る。また被処理材表面に付着した水酸化第二鉄Fe(O
H)3 は、一旦乾燥するとFe2 O3 となり、被
処理材表面に強固に残存する。As a result, if descaling is attempted only by electrolytic treatment, the current density will be high and the treatment time will be long. In addition, ferric hydroxide Fe(O
Once H)3 dries, it becomes Fe2O3 and remains strongly on the surface of the treated material.
【0016】そこで本発明では、被処理材表面よりのス
ケール溶出及び被処理材表面への不働態皮膜形成が完了
した時点で、硝酸ナトリウム水溶液中での電解処理を完
了する。そして被処理材表面に付着した水酸化第二鉄F
e(OH)3がまだ水分を含んでいる末乾燥の状態で、
布やナイロンのブラシロール等の被処理材表面に有害な
疵を生じさせない洗浄ロールにて、該被処理材表面を擦
りながら該被処理材表面を洗浄水で洗浄することにより
、該被処理材表面に付着した水酸化第二鉄Fe(OH)
3 を除去する。以上の処理により、被処理材の脱スケ
ール処理が低電流密度かつ短時間の電解処理のみで可能
となる。Therefore, in the present invention, the electrolytic treatment in an aqueous sodium nitrate solution is completed when scale elution from the surface of the material to be treated and formation of a passive film on the surface of the material to be treated are completed. And ferric hydroxide F attached to the surface of the treated material
In the dry state where e(OH)3 still contains water,
The surface of the material to be treated is washed with washing water while being rubbed with a cleaning roll that does not cause harmful scratches on the surface of the material to be treated, such as a cloth or nylon brush roll. Ferric hydroxide Fe(OH) attached to the surface
Remove 3. With the above-described treatment, descaling of the material to be treated can be performed only by electrolytic treatment at low current density and in a short time.
【0017】
NaNO3 →Na+ +NO3 −
(1) Cr2 O3 +4H2 O→Cr
2 O7 2−+8H+ +6e−
(2) 4NO3 − +2H2 O→4HNO
3 +O2 ↑+4e− (3)
FeO+2HNO3 →Fe(NO3 )2
+H2 O (4)
2Na+ +2H2 O+2e− →2NaOH+H
2 ↑ (5) Fe(
NO3 )2 +2NaOH→Fe(OH)2 +2N
aNO3 (6) 2NaNO3 +O2 →2
NaNO4
(7)[0017] NaNO3 →Na+ +NO3 −
(1) Cr2 O3 +4H2 O→Cr
2 O7 2-+8H+ +6e-
(2) 4NO3 − +2H2 O→4HNO
3 +O2 ↑+4e- (3)
FeO+2HNO3 →Fe(NO3)2
+H2O (4)
2Na+ +2H2 O+2e- →2NaOH+H
2 ↑ (5) Fe(
NO3 )2 +2NaOH→Fe(OH)2 +2N
aNO3 (6) 2NaNO3 +O2 →2
NaNO4
(7)
【0018】[0018]
【実施例】板厚1.0mmのSUS430の冷延板を8
50℃にて焼鈍した後、種々の条件にて電解処理及びブ
ラシロール利用の水洗洗浄処理をした結果を表1に示す
。
電解液は、液温80℃、濃度200g/lの硝酸ナトリ
ウムNaNO3 水溶液を用いた。[Example] 8 cold-rolled SUS430 plates with a thickness of 1.0 mm
Table 1 shows the results of annealing at 50° C. and then electrolytic treatment and washing with water using a brush roll under various conditions. As the electrolytic solution, a sodium nitrate NaNO3 aqueous solution with a liquid temperature of 80° C. and a concentration of 200 g/l was used.
【0019】[0019]
【表1】[Table 1]
【0020】表1からわかる通り、ブラシロール利用の
水洗洗浄処理を行わない場合、脱スケール性良好な表面
を得るためには、電流密度0.6A/cm2 にて処理
時間40秒以上あるいは電流密度0.2A/cm2 に
て処理時間60秒以上を必要とする。それに対して、電
解処理後、被処理材表面に付着した電解液およびその中
に含まれる沈澱物が水分を含んでいる未乾燥の状態でブ
ラシロールで水洗洗浄処理する場合には、電流密度0.
2A/cm2 にて処理時間10秒以上あるいは電流密
度0.1A/cm2にて処理時間10秒以上にて脱スケ
ールされ付着物のない良好な表面を得ることができ、処
理に要する電力を大きく低減するとともに、処理時間を
大きく短縮することができた。As can be seen from Table 1, if water washing using a brush roll is not performed, in order to obtain a surface with good descaling properties, the treatment time must be at least 40 seconds at a current density of 0.6 A/cm2 or the current density must be Processing time of 60 seconds or more is required at 0.2 A/cm2. On the other hand, when the electrolytic solution adhering to the surface of the treated material and the precipitates contained therein are undried and washed with water using a brush roll after electrolytic treatment, the current density is 0. ..
Descaling can be achieved with a treatment time of 10 seconds or more at 2A/cm2 or a treatment time of 10 seconds or more at a current density of 0.1A/cm2, and a good surface with no deposits can be obtained, greatly reducing the power required for treatment. At the same time, we were able to significantly shorten the processing time.
【0021】[0021]
【発明の効果】本発明により、硝酸あるいは弗酸等の危
険な酸を必要としない安全な作業、コンパクトな設備、
安価な処理費かつ短時間の処理にてステンレス鋼の脱ス
ケール処理が可能となる。[Effects of the Invention] The present invention provides safe work that does not require dangerous acids such as nitric acid or hydrofluoric acid, compact equipment,
Stainless steel can be descaled at low cost and in a short time.
Claims (1)
で、被処理材を陽極として電解処理し、続いて該被処理
材表面に付着した電解液および該電解液中の沈澱物が水
分を含んだ未乾燥の状態で該被処理材表面を洗浄ロール
で擦りながら洗浄水で洗浄することを特徴とするステン
レス鋼の脱スケール方法。Claim 1: A material to be treated is electrolytically treated in a neutral salt electrolytic solution containing nitrate as a main component, using the material as an anode, and then the electrolytic solution adhering to the surface of the material to be treated and the precipitate in the electrolytic solution are removed. A method for descaling stainless steel, characterized in that the surface of the material to be treated in a wet and undried state is washed with washing water while being rubbed with a washing roll.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9929791A JPH04327313A (en) | 1991-04-30 | 1991-04-30 | How to descale stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9929791A JPH04327313A (en) | 1991-04-30 | 1991-04-30 | How to descale stainless steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04327313A true JPH04327313A (en) | 1992-11-16 |
Family
ID=14243700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9929791A Withdrawn JPH04327313A (en) | 1991-04-30 | 1991-04-30 | How to descale stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04327313A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017170504A (en) * | 2016-03-25 | 2017-09-28 | 日新製鋼株式会社 | Method for manufacturing ferritic stainless steel sheet |
-
1991
- 1991-04-30 JP JP9929791A patent/JPH04327313A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017170504A (en) * | 2016-03-25 | 2017-09-28 | 日新製鋼株式会社 | Method for manufacturing ferritic stainless steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3043758A (en) | Process of electrolytically pickling alloy steels | |
KR0173975B1 (en) | Descale method of stainless steel and its device | |
US5490908A (en) | Annealing and descaling method for stainless steel | |
KR20010089247A (en) | Process for electrolytic pickling using nitric acid-free solutions | |
US3304246A (en) | Method of electrolytically descaling steel including selective recovery of dissolved scale products | |
US3429792A (en) | Method of electrolytically descaling and pickling steel | |
US4012299A (en) | Metallic descaling system | |
CN114829682A (en) | Ionic liquid for pickling stainless steel and method for pickling stainless steel by using same | |
US4026777A (en) | Metallic descaling system | |
JPH04327313A (en) | How to descale stainless steel | |
JPS63216986A (en) | High-speed pickling method for low Cr steel | |
JP2649625B2 (en) | Electrolyte for electrolytic polishing of chromium-containing alloy steel | |
US5022971A (en) | Process for the electrolytic pickling of high-grade steel strip | |
JP2966188B2 (en) | Descaling method for ferritic stainless steel annealed steel strip | |
JP2585444B2 (en) | Method and apparatus for descaling stainless steel strip | |
US3756931A (en) | Electrolytic cleaning and corrosi on removal process | |
US1978151A (en) | Method of pickling metal | |
KR100211311B1 (en) | Sulfur-Nitrate Sole Pickling Method of CR Stainless Steel Sheets | |
JPH02173300A (en) | Method for electrolytically descaling cold rolled stainless steel strip with neutral salt | |
JP2680785B2 (en) | Method and apparatus for descaling annealed stainless steel strip | |
JP2001234372A (en) | Scale removing method for stainless steel surface | |
JPS63130800A (en) | Method for descaling austenitic cold-rolled band stainless steel | |
JPH0534439B2 (en) | ||
JPH04333584A (en) | Continuous annealing and pickling equipment row for stainless steel strips | |
JPH08319600A (en) | Method and apparatus for descaling stainless steel strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980711 |