JPH04325948A - Magneto-optical recording and reproducing method - Google Patents
Magneto-optical recording and reproducing methodInfo
- Publication number
- JPH04325948A JPH04325948A JP9570291A JP9570291A JPH04325948A JP H04325948 A JPH04325948 A JP H04325948A JP 9570291 A JP9570291 A JP 9570291A JP 9570291 A JP9570291 A JP 9570291A JP H04325948 A JPH04325948 A JP H04325948A
- Authority
- JP
- Japan
- Prior art keywords
- disk
- magneto
- layer
- reproduction
- optical recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、装置の構成要素の一部
または全体の動作が単一クロックに同期している光磁気
記録装置の光磁気記録再生方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording and reproducing method for a magneto-optical recording device in which the operation of some or all of the components of the device is synchronized with a single clock.
【0002】0002
【従来の技術】光磁気記録装置は、一般にディスク上に
記録されたデータを一定光量のコヒーレントなレーザー
を連続的に照射してその反射光あるいは透過光を光ディ
テクターで受光し、前者の場合はカー回転角を、後者の
場合はファラデー回転角を検出し再生していた。2. Description of the Related Art Generally, a magneto-optical recording device continuously irradiates data recorded on a disk with a coherent laser beam of a certain amount of light and receives the reflected or transmitted light with an optical detector. The Kerr rotation angle, or in the latter case the Faraday rotation angle, was detected and reproduced.
【0003】0003
【発明が解決しようとする課題】しかしながら、前述の
従来技術では、光学ヘッド内の光学系により光学的な限
界まで集光したレーザービームを利用しているので、空
間的な分解能はその光学系のもつ光学的伝達関数の特性
からくる遮断周波数以下のものは検出できない。つまり
ビームスポットのなかに二つ以上のピットが含まれてし
まい、ピットを区別できなくなってしまう。そのため高
密度にピットが記録された情報を再生することができな
くなってしまう。現在市場に投入されている光磁気記録
装置の多くは半導体レーザで波長が770nmから84
0nmの範囲のもので、その光学的な限界から最短ピッ
ト長がISOの規格で最短ピット長が0.76μmと規
定されて容量もそれにともなったものになっている。ま
た3.5インチの光磁気記録装置の規格の候補として提
案されたディスクリートブロックフォーマット方式にお
いても同様な理由から最短ピット長が0.76μmと規
定され、全容量が120MBと非常に制限を受けていた
。[Problems to be Solved by the Invention] However, the above-mentioned conventional technology uses a laser beam that is focused to the optical limit by an optical system within an optical head, so the spatial resolution is limited by the optical system. It is impossible to detect anything below the cutoff frequency due to the characteristics of the optical transfer function. In other words, two or more pits are included in the beam spot, making it impossible to distinguish between the pits. Therefore, it becomes impossible to reproduce information in which pits are recorded at high density. Most of the magneto-optical recording devices currently on the market are semiconductor lasers with wavelengths ranging from 770 nm to 84 nm.
0 nm range, and due to its optical limit, the shortest pit length is specified by the ISO standard as 0.76 μm, and the capacitance is also set accordingly. Furthermore, in the discrete block format method proposed as a standard candidate for 3.5-inch magneto-optical recording devices, the shortest pit length was specified as 0.76 μm for the same reason, and the total capacity was extremely limited to 120 MB. Ta.
【0004】この問題を解決する手段の一つの方向とし
てレーザー光の短波長化が検討されている。具体的には
、半導体レーザー自身の発振波長を短くしたり、二次高
調波発生素子を用いてレーザー光の波長を半分にする。
しかしながら前者においては現在のレーザー構造あるい
は材料では飛躍的な短波長化は難しく、また後者では効
率の点で問題があり、高密度化が困難であるという課題
を有している。[0004] As one way to solve this problem, shortening the wavelength of laser light is being considered. Specifically, the oscillation wavelength of the semiconductor laser itself is shortened, or the wavelength of the laser light is halved by using a second harmonic generation element. However, in the former case, it is difficult to dramatically shorten the wavelength using current laser structures or materials, and in the latter case, there are problems in terms of efficiency and it is difficult to increase the density.
【0005】また別の手段として、特開平01ー143
041に見られるように、比較的高パワーの連続光を再
生時に照射し、記録層にある再生したいピットを再生層
に転写し、再生に無関係なピットを再生層でマスクして
微小ピットを再生する方法があるが、ビームスポット内
の微妙な温度分布を利用しているためディスク回転線速
変動、再生光パワー変動の影響を受けて転写が不十分で
搬送波対雑音比(C/Nと称する)十分にとれずにエラ
ーレートが高かったり、ジッタが発生したりして、良質
な再生信号が得られないという課題を有していた。[0005] As another means, Japanese Patent Application Laid-Open No. 01-143
As seen in 041, relatively high power continuous light is irradiated during reproduction, the pits to be reproduced in the recording layer are transferred to the reproduction layer, and pits unrelated to reproduction are masked by the reproduction layer to reproduce minute pits. There is a method to do this, but since it uses the delicate temperature distribution within the beam spot, it is affected by fluctuations in the linear speed of the disk rotation and fluctuations in the power of the reproduction light, resulting in insufficient transfer and the carrier-to-noise ratio (C/N). ) The problem is that the error rate is high and jitter occurs due to insufficient reproduction, making it impossible to obtain a high-quality reproduced signal.
【0006】そこで本発明はこのような課題を解決する
もので、その目的とするところは、情報再生の際の再生
光をパルス状に照射することによって、再生したいピッ
トを確実に再生層に転写し、エラーの少ない良好な再生
信号が得られる高密度に記録されたデータを再生できる
光磁気記録再生方法を提供するところにある。[0006]The present invention is intended to solve these problems, and its purpose is to reliably transfer the pits to be reproduced to the reproduction layer by irradiating the reproduction light in a pulsed manner during information reproduction. However, it is an object of the present invention to provide a magneto-optical recording and reproducing method capable of reproducing data recorded at high density and obtaining a good reproduced signal with few errors.
【0007】[0007]
【課題を解決するための手段】装置構成要素の一部また
は全体の動作がディスクから抽出された単一クロックに
同期している光磁気記録装置の光磁気記録再生方法にお
いて、情報の再生時にチャンネルクロックに同期して再
生用ビームをパルス状に照射することを特徴とする。[Means for Solving the Problem] In a magneto-optical recording and reproducing method for a magneto-optical recording device in which the operation of some or all of the device components is synchronized with a single clock extracted from a disk, a channel is provided when reproducing information. It is characterized by irradiating the reproduction beam in a pulsed manner in synchronization with the clock.
【0008】[0008]
(実施例1)以下本発明を実施例に基づいて詳細に説明
する。(Example 1) The present invention will be explained in detail below based on an example.
【0009】本発明の再生方法を実現するために、依然
3.5インチのISO規格として提案されたディスクリ
ートブロックフォーマット(以下DBFと称する)の記
録再生が可能な光磁気記録再生装置を一部改造して用い
た。オリジナルな装置では、ディスクのクロックピット
を検出し、その信号にたいしてPLL制御を行い、5.
5176MHzのチャンネルクロックを生成し、そのチ
ャンネルクロックを基準にデーターの管理(記録、再生
、変調、復調)や、光学ヘッドの制御をおこなっていた
。本実施例ではこの信号を2倍に分周してチャンネルク
ロック(11.0352MHz)としてもちいた。さら
に信号処理系を変更してプリフォーマットは同じで1ブ
ロック当り16バイトのデータフォーマットに対応でき
るようにした。In order to realize the reproducing method of the present invention, a magneto-optical recording and reproducing device capable of recording and reproducing the 3.5-inch discrete block format (hereinafter referred to as DBF) proposed as an ISO standard was partially modified. It was used as The original device detects the clock pits on the disk, performs PLL control on the signals, and 5.
A 5176 MHz channel clock was generated, and data management (recording, playback, modulation, demodulation) and optical head control were performed based on the channel clock. In this embodiment, this signal is frequency-divided twice and used as a channel clock (11.0352 MHz). Furthermore, the signal processing system was changed to support a data format of 16 bytes per block with the same preformat.
【0010】本実施例で用いた光磁気ディスクは、DB
Fの基準に則りプリフォーマットされたポリカーボネー
トディスク上に保護膜としてSiN80nm、再生層と
してNdDyFeCo100nm、記録層としてTbF
eCo100nm、再度保護層として80nmを順にス
パッタ法で積層したディスクを用いた。なお記録層の磁
気特性は室温での保磁力大(補償組成)、キュリー温度
約195℃、再生層の磁気特性は室温保磁力1.2kO
e、キュリー温度約190℃であった。まずこのディス
クの全領域に渡る各ブロックのデータ記録バイト部に1
バイトデータ(00100100110)を16バイト
分を記録した。記録パワーは5mWで、印加磁界は30
0Oeとした。その後、チャンネルビットの中心にパル
ス幅40nsec、パワー3mWでクロックチャンネル
毎にパルス状に照射し、4−11変調の差分検出を行い
、1バイト毎のエラー率を測定した。初期化磁界は記録
層の記録方向に1.5kOeとした。各半径位置での測
定データを図1に示す。その結果エラー率は半径によら
ずほぼ1*10−4であった。The magneto-optical disk used in this example is a DB
On a polycarbonate disk preformatted according to the F standards, SiN 80 nm was used as a protective film, NdDyFeCo 100 nm was used as a reproduction layer, and TbF was used as a recording layer.
A disk was used in which 100 nm of eCo and 80 nm of eCo were sequentially laminated as a protective layer by sputtering. The magnetic properties of the recording layer are a large coercive force at room temperature (compensation composition) and a Curie temperature of approximately 195°C, and the magnetic properties of the reproducing layer are a room temperature coercive force of 1.2 kO.
e, Curie temperature was approximately 190°C. First, 1
16 bytes of byte data (00100100110) were recorded. The recording power was 5 mW, and the applied magnetic field was 30 mW.
It was set to 0 Oe. Thereafter, the center of the channel bit was irradiated in a pulsed manner with a pulse width of 40 nsec and a power of 3 mW for each clock channel, and the difference in 4-11 modulation was detected, and the error rate for each byte was measured. The initialization magnetic field was set to 1.5 kOe in the recording direction of the recording layer. Figure 1 shows the measurement data at each radial position. As a result, the error rate was approximately 1*10-4 regardless of the radius.
【0011】一方比較例として、前と同様に信号を記録
した後、初期化磁界を用いず(この積層膜は高温で一体
反転型のループを示す)、0.8mW、連続光で通常の
再生を行ったが、差分検出法ではどの半径においてもデ
ータを検出できなかった。On the other hand, as a comparative example, after recording a signal in the same manner as before, normal reproduction was performed using continuous light at 0.8 mW without using an initializing magnetic field (this laminated film exhibits an integral inversion type loop at high temperatures). However, the differential detection method could not detect data at any radius.
【0012】さらに比較例として再生を4mWの連続光
として同様な実験を行った。そのデータを図2に示す。
半径方向にエラーレートの変動がみられる。この実験で
再生光のパワーを半径に応じて変化させたところほぼ一
定のエラーレートが得られたが、半径方向のパワーの制
御が必要である。Furthermore, as a comparative example, a similar experiment was conducted using continuous light of 4 mW for reproduction. The data is shown in Figure 2. The error rate fluctuates in the radial direction. In this experiment, when the power of the reproduction light was varied according to the radius, a nearly constant error rate was obtained, but it is necessary to control the power in the radial direction.
【0013】以上、本発明の再生方法により、高密度記
録されたデータがディスク位置に対してパワーの制御な
しで再生することができるようになり、光磁気記録再生
装置の大容量、高データ転送レート化可能となる。As described above, according to the reproducing method of the present invention, data recorded at high density can be reproduced without controlling the power to the disk position, and the large capacity and high data transfer rate of the magneto-optical recording/reproducing device can be achieved. It becomes possible to rate.
【0014】[0014]
【発明の効果】以上述べてきたように本発明によれば、
チャンネルクロック毎にパルス状に再生光を照射するこ
とによって高密度記録したデータを再生することが可能
になり、大容量、高データ転送レート光磁気記録再生装
置が提供できる。本発明の光磁気記録再生装置は、コン
ピュータメモリ、光ディスクファイル等の光情報記録再
生装置に応用が可能で、装置の高性能化などの多大な効
果を有するものである。[Effects of the Invention] As described above, according to the present invention,
By irradiating reproduction light in a pulsed manner for each channel clock, data recorded at high density can be reproduced, and a magneto-optical recording/reproducing device with a large capacity and a high data transfer rate can be provided. The magneto-optical recording and reproducing device of the present invention can be applied to optical information recording and reproducing devices such as computer memories and optical disk files, and has great effects such as improving the performance of the device.
【図1】本発明の光磁気記録再生方法によるエラーレー
トの半径依存性を示す図である。FIG. 1 is a diagram showing the radius dependence of the error rate according to the magneto-optical recording and reproducing method of the present invention.
【図2】従来の光磁気記録再生方法の一つによるエラー
レートの半径依存性を示す図である。FIG. 2 is a diagram showing the radius dependence of the error rate according to one of the conventional magneto-optical recording and reproducing methods.
Claims (1)
がディスクから抽出された単一クロックに同期している
光磁気記録装置の光磁気記録再生方法において、情報の
再生時にチャンネルクロックに同期して再生用ビームを
パルス状に照射することを特徴とする光磁気記録再生方
法。Claim 1: In a magneto-optical recording and reproducing method for a magneto-optical recording device in which the operation of some or all of the device components is synchronized with a single clock extracted from a disk, the operation is synchronized with a channel clock when information is reproduced. A magneto-optical recording and reproducing method characterized by irradiating a reproducing beam in a pulsed manner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9570291A JPH04325948A (en) | 1991-04-25 | 1991-04-25 | Magneto-optical recording and reproducing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9570291A JPH04325948A (en) | 1991-04-25 | 1991-04-25 | Magneto-optical recording and reproducing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04325948A true JPH04325948A (en) | 1992-11-16 |
Family
ID=14144838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9570291A Pending JPH04325948A (en) | 1991-04-25 | 1991-04-25 | Magneto-optical recording and reproducing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04325948A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997032303A1 (en) * | 1996-03-01 | 1997-09-04 | Hitachi, Ltd. | Optical reproduction method and optical information apparatus |
WO1998002878A1 (en) * | 1996-07-12 | 1998-01-22 | Hitachi Maxell, Ltd. | Magneto-optical recording medium, its reproducing method and reproducer |
WO1998002877A1 (en) * | 1996-07-12 | 1998-01-22 | Hitachi Maxell, Ltd. | Magneto-optical recording medium, its reproducing method and reproducer |
US6014348A (en) * | 1997-11-14 | 2000-01-11 | Lg Electronic Inc. | Method and apparatus of reading written information from magneto-optical writing media |
US6028833A (en) * | 1995-09-06 | 2000-02-22 | Hitachi, Ltd. | Optical disk signal processing apparatus using modulated light source in a playback operation |
US6038201A (en) * | 1997-11-10 | 2000-03-14 | Lg Electronics Inc. | Method and apparatus for retrieving information recorded on rewritable magneto-optical media |
US6192008B1 (en) | 1997-10-31 | 2001-02-20 | Lg Electronics, Inc. | Device and method for reproducing record information from magneto-optical recording medium |
US6226234B1 (en) | 1995-12-20 | 2001-05-01 | Hitachi Maxell, Ltd. | Magneto-optic recording medium and reproducing method for reproducing magnetic domain in enlarged form on a reproducing layer |
US6442120B2 (en) | 1998-08-31 | 2002-08-27 | Hitachi, Ltd. | Optical reproduction method and optical information device |
WO2005031731A1 (en) * | 2003-09-25 | 2005-04-07 | Fujitsu Limited | Method for recording on optical recording medium |
US8072855B2 (en) | 2008-03-26 | 2011-12-06 | Sony Corporation | Optical recording/reproducing apparatus and optical recording/reproducing method |
-
1991
- 1991-04-25 JP JP9570291A patent/JPH04325948A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6570830B1 (en) | 1995-09-06 | 2003-05-27 | Hitachi, Ltd. | Optical disk signal processing apparatus using modulated light source in a playback operation |
US6028833A (en) * | 1995-09-06 | 2000-02-22 | Hitachi, Ltd. | Optical disk signal processing apparatus using modulated light source in a playback operation |
US6134203A (en) * | 1995-09-06 | 2000-10-17 | Hitachi, Ltd. | Optical disk signal processing apparatus |
US6226234B1 (en) | 1995-12-20 | 2001-05-01 | Hitachi Maxell, Ltd. | Magneto-optic recording medium and reproducing method for reproducing magnetic domain in enlarged form on a reproducing layer |
US6385140B2 (en) | 1995-12-20 | 2002-05-07 | Hitachi Maxell, Ltd. | Magneto-optical recording medium and reproducing method for reproducing magnetic domain in enlarged form on a reproducing layer |
WO1997032303A1 (en) * | 1996-03-01 | 1997-09-04 | Hitachi, Ltd. | Optical reproduction method and optical information apparatus |
WO1998002877A1 (en) * | 1996-07-12 | 1998-01-22 | Hitachi Maxell, Ltd. | Magneto-optical recording medium, its reproducing method and reproducer |
US6424601B1 (en) | 1996-07-12 | 2002-07-23 | Hitachi Maxell, Ltd. | Magneto-optical recording media having an auxiliary magnetic layer |
WO1998002878A1 (en) * | 1996-07-12 | 1998-01-22 | Hitachi Maxell, Ltd. | Magneto-optical recording medium, its reproducing method and reproducer |
US6192008B1 (en) | 1997-10-31 | 2001-02-20 | Lg Electronics, Inc. | Device and method for reproducing record information from magneto-optical recording medium |
US6038201A (en) * | 1997-11-10 | 2000-03-14 | Lg Electronics Inc. | Method and apparatus for retrieving information recorded on rewritable magneto-optical media |
US6014348A (en) * | 1997-11-14 | 2000-01-11 | Lg Electronic Inc. | Method and apparatus of reading written information from magneto-optical writing media |
US6442120B2 (en) | 1998-08-31 | 2002-08-27 | Hitachi, Ltd. | Optical reproduction method and optical information device |
US6614737B2 (en) | 1998-08-31 | 2003-09-02 | Hitachi, Ltd. | Optical reproduction method and optical information device |
WO2005031731A1 (en) * | 2003-09-25 | 2005-04-07 | Fujitsu Limited | Method for recording on optical recording medium |
US7522499B2 (en) | 2003-09-25 | 2009-04-21 | Fujitsu Limited | Recording method and apparatus for optical recording medium with a laminated structure having ROM and RAM layers |
US8072855B2 (en) | 2008-03-26 | 2011-12-06 | Sony Corporation | Optical recording/reproducing apparatus and optical recording/reproducing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5062091A (en) | Magneto-optical recording method and apparatus capable of overwriting data using a radiation beam | |
US5886969A (en) | High-density information recording/reproducing method | |
US5463600A (en) | Magneto-optical recording system using recording waveform having a plurality of power levels providing high recording density | |
JP3568476B2 (en) | Magneto-optical recording medium reproducing method and magneto-optical disk drive | |
JPH04325948A (en) | Magneto-optical recording and reproducing method | |
KR100570928B1 (en) | Optical information recording media | |
US7154824B2 (en) | Storage apparatus | |
US20050058028A1 (en) | Optical information recording medium | |
JPH0427610B2 (en) | ||
JPH11345439A (en) | Magneto-optical recording medium, and method and apparatus for recording and reproducing | |
JPH01263964A (en) | Optical disk recording and reproducing system | |
US6072754A (en) | Magneto-optical medium and reproducing device for the same | |
US6115330A (en) | Optical information storage unit for recording and/or reproducing information on both the lands and the grooves of an optical medium | |
JP3572686B2 (en) | Information recording medium and reproducing method thereof | |
US6501707B1 (en) | Method and apparatus for recording with a magneto-optical recording medium applying one period of an alternating magnetic field to a unit domain length | |
JPH01211247A (en) | Optical disk device | |
JPH06176368A (en) | Optical disc and its recording method and device | |
JP2899477B2 (en) | Optical disk drive | |
US5802030A (en) | Information reproducing apparatus and method for reproducing information by using a multibeam spot | |
JP3306885B2 (en) | Magneto-optical recording / reproducing method | |
WO1995026548A1 (en) | High density information recording and reproducing method | |
JPH05282674A (en) | Optical recording medium | |
JP3264868B2 (en) | Magneto-optical recording medium, reproducing method and reproducing apparatus | |
JP3231812B2 (en) | Optical disk drive | |
JPH1021596A (en) | Magneto-optical recording medium and optical reproducing device |