JPH04325894A - Controller of synchronous motor - Google Patents
Controller of synchronous motorInfo
- Publication number
- JPH04325894A JPH04325894A JP3095102A JP9510291A JPH04325894A JP H04325894 A JPH04325894 A JP H04325894A JP 3095102 A JP3095102 A JP 3095102A JP 9510291 A JP9510291 A JP 9510291A JP H04325894 A JPH04325894 A JP H04325894A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- current
- armature
- synchronous motor
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 30
- 230000008859 change Effects 0.000 abstract description 5
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract 1
- 230000003028 elevating effect Effects 0.000 abstract 1
- 230000006698 induction Effects 0.000 abstract 1
- 230000004907 flux Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
[発明の目的] [Purpose of the invention]
【0001】0001
【産業上の利用分野】本発明は回転界磁として永久磁石
を用いた同期電動機を可変速駆動する同期電動機の制御
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a synchronous motor that uses a permanent magnet as a rotating field to drive a synchronous motor at variable speed.
【0002】0002
【従来の技術】回転界磁形の同期電動機の界磁には界磁
巻線を用いた電磁石方式と界磁巻線を用いない永久磁石
方式がある。電磁石方式は、界磁巻線による電力損失が
効率の低下をまねくと共に界磁巻線からジュ―ル熱が発
生して温度が上昇し回転子が熱膨脹し回転バランスが崩
れて異常振動が生ずるなどの問題がある。一方、永久磁
石方式は電力損失がないのでその分、効率が向上するの
は言うまでもないが界磁巻線による熱の発生がなく、熱
膨脹による回転バランスの崩れもなくなるという大きな
メリットがある。2. Description of the Related Art The field of a rotating field type synchronous motor includes an electromagnet system using a field winding and a permanent magnet system that does not use a field winding. With the electromagnet method, power loss due to the field winding causes a drop in efficiency, and Joule heat is generated from the field winding, increasing the temperature, causing thermal expansion of the rotor, disrupting the rotational balance, and causing abnormal vibrations. There is a problem. On the other hand, the permanent magnet system has the great advantage of not only improving efficiency as there is no power loss, but also eliminating the generation of heat by the field winding and eliminating rotational imbalance caused by thermal expansion.
【0003】従来の永久磁石は大きな減磁界を与えると
元の磁束密度に復帰しない性質があり、大容量の同期機
には適用が差し控えられていた。しかし、近年になって
、永久磁石の製造技術が進展し、サマリュ―ムやネオジ
ュ―ム、コバルトなどの希土類を主成分とした永久磁石
が実用化の段階にきている。Conventional permanent magnets have a property that they do not return to their original magnetic flux density when a large demagnetizing field is applied to them, so their application to large-capacity synchronous machines has been avoided. However, in recent years, the manufacturing technology of permanent magnets has progressed, and permanent magnets containing rare earth elements such as samarium, neodymium, and cobalt as main components have reached the stage of practical use.
【0004】希土類永久磁石の比透磁率はほぼ1で空気
の透磁率に近いため、外部磁束による影響をほとんど受
けず安定した特性を有し、大容量機に適用する気運とな
ってきた。一方、同期電動機の特性として電機子反作用
があり、電機子電流による磁束が力率によって、界磁極
の磁束を増減するように作用する。Since the relative magnetic permeability of rare earth permanent magnets is approximately 1, which is close to the permeability of air, they have stable characteristics that are almost unaffected by external magnetic flux, and there is a trend toward applying them to large-capacity machines. On the other hand, a characteristic of a synchronous motor is armature reaction, and the magnetic flux caused by the armature current acts to increase or decrease the magnetic flux of the field poles depending on the power factor.
【0005】また、大容量の同期電動機を可変速駆動す
る制御電源として一般にサイリスタを用いた電力変換器
が使用され、この場合、転流機構の条件から、通常、進
み力率で運転される。進み力率の場合、電機子反作用に
より界磁の磁束を減少させる方向に作用する。Furthermore, a power converter using a thyristor is generally used as a control power source for driving a large-capacity synchronous motor at variable speed, and in this case, it is usually operated at a leading power factor due to the conditions of the commutation mechanism. In the case of a leading power factor, the armature reaction acts in a direction that reduces the magnetic flux of the field.
【0006】したがって、負荷が増加して、電機子電流
Ia が増すと空隙磁束が減少し、図4(A)に示すよ
うに端子電圧V1 が降下する。これはあたかも電流に
よるインピ―ダンス降下に相当することから、同期リア
クタンスという定数が定義され同期電動機の特性解折に
用いられている。この電機子反作用は電磁石式の同期電
動機では、界磁巻線に流す励磁電流を増して、界磁束を
増加して補償することができる。しかし、永久磁石を用
いた電動機ではそれができないことから、電流が増すと
図4(A)に示すように端子電圧V1の低下が免れない
。従って定格出力時の端子電圧Vn は図4(A)の定
格電流In における電圧Vn となることから、この
電動機を駆動する電力変換器は、無負荷時の電圧V0
および定格電流In を出力する能力を必要とする。よ
って電動機定格から必要とする出力に対し、電力変換器
の容量はV0 /Vn 倍(これは電機子反作用により
1より大きい)必要となり大きな装置となる。Therefore, when the load increases and the armature current Ia increases, the air gap magnetic flux decreases and the terminal voltage V1 drops as shown in FIG. 4(A). Since this corresponds to an impedance drop due to current, a constant called synchronous reactance has been defined and is used to analyze the characteristics of synchronous motors. In an electromagnetic synchronous motor, this armature reaction can be compensated for by increasing the field flux by increasing the excitation current flowing through the field winding. However, since this is not possible with a motor using permanent magnets, as the current increases, the terminal voltage V1 inevitably decreases as shown in FIG. 4(A). Therefore, since the terminal voltage Vn at the rated output is the voltage Vn at the rated current In in FIG.
and the ability to output the rated current In. Therefore, the capacity of the power converter is required to be V0/Vn times the output required from the motor rating (this is greater than 1 due to armature reaction), resulting in a large device.
【0007】同期電動機の進み力率運転状態における周
知のベクトル図を図4(B)に示す。この図から同期リ
アクタンス降下電圧Vx により端子電圧V1 が低下
することが示される。なお、Ф0 は界磁極の磁束であ
り、Фa は電機子電流Ia による磁束である。空隙
磁束、すなわち有効磁束ΦはФ0 とФa のベクトル
和となり、減小していることが解る。V1 とIa の
角度φは力率角であり、内部誘起電圧E0とV1 の角
度δは内部相差角である。A well-known vector diagram of a synchronous motor in a leading power factor operating state is shown in FIG. 4(B). This figure shows that the terminal voltage V1 decreases due to the synchronous reactance drop voltage Vx. Note that Ф0 is the magnetic flux of the field pole, and Фa is the magnetic flux due to the armature current Ia. It can be seen that the air gap magnetic flux, that is, the effective magnetic flux Φ is the vector sum of Ф0 and Фa, and is decreasing. The angle φ between V1 and Ia is the power factor angle, and the angle δ between the internal induced voltage E0 and V1 is the internal phase difference angle.
【0008】また、電機子反作用により減磁された状態
で空隙磁束が、定格出力に相当する磁束とするため、永
久磁石による界磁束Ф0 は、あらかじめ大きくしてお
く必要がある。しかし、永久磁石の場合は磁石の厚さを
大きくすることになり、重量,寸法が増大し、高価なも
のとなる。Furthermore, in order to make the air gap magnetic flux correspond to the rated output in a state demagnetized by the armature reaction, it is necessary to increase the field flux Τ0 caused by the permanent magnet in advance. However, in the case of permanent magnets, the thickness of the magnet is increased, which increases the weight and dimensions, making it expensive.
【0009】[0009]
【発明が解決しようとする課題】上述した様に、永久磁
石を回転界磁とした同期電動機を駆動する電力変換器の
容量が必要以上に大きくなり、高価になる問題がある。As mentioned above, there is a problem in that the capacity of a power converter for driving a synchronous motor using a permanent magnet as a rotating field becomes larger than necessary, making it expensive.
【0010】本発明の目的は、上記問題を解決するため
に、新たな電機子反作用の補償を行い、電力変換器の容
量を必要以上に大きくすることなく、小形で経済的な同
期電動機の制御装置を提供することにある。
[発明の構成][0010] In order to solve the above-mentioned problems, an object of the present invention is to perform a new compensation for armature reaction, and to control a synchronous motor in a small and economical manner without increasing the capacity of the power converter more than necessary. The goal is to provide equipment. [Structure of the invention]
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
、本発明は、回転界磁に永久磁石を用いた同期電動機の
電機子電流を制御するインバ―タを備えた装置において
、該同期電動機の電圧を監視して、電機子反作用による
該電圧の変化を補償するように電機子電流の位相を制御
する手段を設ける。[Means for Solving the Problems] In order to achieve the above object, the present invention provides an apparatus including an inverter for controlling an armature current of a synchronous motor using a permanent magnet as a rotating field. Means is provided for monitoring the voltage at and controlling the phase of the armature current to compensate for changes in the voltage due to armature reaction.
【0012】0012
【作用】負荷トルクの変化に応じて電機子電流が変化す
ると電機子反作用によるリアクタンス電圧が変化して該
同期電動機の電圧が変化する。このとき、上記手段によ
り該電圧変化に応じて電機子電流の位相を制御し電機子
反作用による電圧変化を抑制する。[Operation] When the armature current changes in response to a change in load torque, the reactance voltage due to armature reaction changes, and the voltage of the synchronous motor changes. At this time, the above means controls the phase of the armature current according to the voltage change to suppress the voltage change due to armature reaction.
【0013】[0013]
【実施例】本発明による同期電動機の制御装置の要部構
成を図1に示す。図1において、インバ―タ1はコンデ
ンサ1Aで平滑された直流電圧Vd を3相の交流電圧
V1に変換して永久磁石方式の同期電動機2を駆動する
電圧形インバ―タで、IGBTやGTO等の自己消弧形
スイッチ素子で構成する。電流制御部5は電流基準Ia
* と電流検出器4で検出された電動機電流Ia を
比較し偏差値が零になるようにインバ―タ1を制御する
。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the main structure of a control device for a synchronous motor according to the present invention. In Fig. 1, an inverter 1 is a voltage source inverter that converts a DC voltage Vd smoothed by a capacitor 1A into a three-phase AC voltage V1 to drive a permanent magnet type synchronous motor 2, and is used for IGBTs, GTOs, etc. Consists of self-extinguishing switching elements. The current control unit 5 uses a current reference Ia
* and the motor current Ia detected by the current detector 4, and the inverter 1 is controlled so that the deviation value becomes zero.
【0014】位置検出器3は同期電動機2の回転軸に結
合され回転角(すなわち、界磁極の位置)θr を検出
する。微分器6は角度信号θa (t) を時間微分し
て角速度信号ωa を出力し、関数発生器7はωa に
応じてsin ωa tの単位正弦波を発生する。乗算
器8は別に与えられる電流指令Im と上記単位正弦波
sinωa tを乗算してIm sin ωa tを得
、これを前記の電流基準Ia * とする。The position detector 3 is connected to the rotating shaft of the synchronous motor 2 and detects the rotation angle (ie, the position of the field pole) θr. The differentiator 6 time-differentiates the angle signal θa (t) and outputs the angular velocity signal ωa, and the function generator 7 generates a unit sine wave of sin ωa t according to ωa. The multiplier 8 multiplies the separately given current command Im by the unit sine wave sin ωat to obtain Im sin ωat, which is used as the current reference Ia*.
【0015】なお、電流検出器4,電流制御器5,関数
発生器7,乗算器8はそれぞれ3組設け、各関数発生器
は位相差 120°の単位正弦波を発生して3相の電流
を制御する。Note that three sets each of the current detector 4, current controller 5, function generator 7, and multiplier 8 are provided, and each function generator generates a unit sine wave with a phase difference of 120° to generate three-phase currents. control.
【0016】電圧補償制御部10はPID制御器等から
成り、別に与えられる電圧指令V1 *と電圧検出器9
で検出される電動機2の端子電圧V1 が比較され偏差
値に応じて補償信号θを出力し、加算器11でθr に
加算し、補償された角度信号θa (t) を得る。The voltage compensation control section 10 is composed of a PID controller and the like, and receives a separately given voltage command V1* and a voltage detector 9.
The terminal voltage V1 of the motor 2 detected at is compared, and a compensation signal θ is outputted according to the deviation value, which is added to θr by an adder 11 to obtain a compensated angle signal θa (t).
【0017】上記構成の実施例において、電流指令Im
が与えられると、Im に応じた大きさの電機子電流
Ia が同期電動機2の回転子の回転角θr に同期し
た正弦波電流として流れ、回転子は所定のトルクを発生
して回転する。電動機トルクと負荷トルクが平衡して一
定速度で回転する状態になると電機子の内部誘起電圧E
0 が確立し、電機子電流Ia によるリアクタンス電
圧Vx に応じた端子電圧V1 が確立する。この検出
電圧V1 と電圧指令V1 * の偏差値に応じて電圧
補償部10から出力される補償信号θが回転角θr に
加算され電圧偏差値が零になるように電機子電流Ia
の位相が制御され無効電流が変化する。In the embodiment with the above configuration, the current command Im
When is given, an armature current Ia having a magnitude corresponding to Im flows as a sinusoidal current synchronized with the rotation angle θr of the rotor of the synchronous motor 2, and the rotor rotates while generating a predetermined torque. When the motor torque and load torque are balanced and the armature rotates at a constant speed, the internal induced voltage of the armature E
0 is established, and a terminal voltage V1 corresponding to the reactance voltage Vx due to the armature current Ia is established. The compensation signal θ output from the voltage compensator 10 according to the deviation value between the detected voltage V1 and the voltage command V1* is added to the rotation angle θr, and the armature current Ia is adjusted such that the voltage deviation value becomes zero.
The phase of is controlled and the reactive current changes.
【0018】この場合、電圧指令V1 * の値が無負
荷時における端子電圧(すなわち内部誘起電圧E0 )
と等しい値に設定すると、補償信号θは、電機子電流I
a のV1 に対する遅れ位相φが内部相差角δの1/
2の値を維持するように補償制御される。この状態を図
3(B)のベクトル図に示す。負荷が変化して電流Ia
の大きさが変化するとリアクタンス電圧Vx の大き
さが変化し端子電圧V1 の大きさが変化する。この変
化によりV1 とV1 * との間に偏差が生じると該
偏差が減少する方向に補償信号θが制御され電流Ia
の位相が制御される。これにより、電流Ia の位相は
端子電圧V1 に対して内部相差角δの1/2の遅れ位
相となる。In this case, the value of the voltage command V1* is the terminal voltage at no load (that is, the internal induced voltage E0)
, the compensation signal θ is set equal to the armature current I
The delay phase φ of a with respect to V1 is 1/ of the internal phase difference angle δ.
Compensation control is performed to maintain the value of 2. This state is shown in the vector diagram of FIG. 3(B). The load changes and the current Ia
When the magnitude of Vx changes, the magnitude of reactance voltage Vx changes, and the magnitude of terminal voltage V1 changes. When a deviation occurs between V1 and V1* due to this change, the compensation signal θ is controlled in a direction that reduces the deviation, and the current Ia
The phase of is controlled. As a result, the phase of the current Ia lags the terminal voltage V1 by 1/2 of the internal phase difference angle δ.
【0019】このように補償制御を行った場合のIa
−V1 特性を図3(A)の特性c1 に示す。この場
合、電圧指令V1 * はVn に設定れる。なお、同
図中に示した特性c2 は電圧補償制御を行なわず、電
機子電流Ia の位相を、単に一定の遅れ位相に固定し
た場合の同期電動機の特性を示したものである。本発明
による第2実施例を図2に示す。Ia when compensation control is performed in this way
-V1 characteristics are shown as characteristics c1 in FIG. 3(A). In this case, voltage command V1* is set to Vn. Note that the characteristic c2 shown in the figure shows the characteristic of the synchronous motor when voltage compensation control is not performed and the phase of the armature current Ia is simply fixed to a constant delayed phase. A second embodiment according to the invention is shown in FIG.
【0020】この実施例は、インバ―タ1はリアクトル
1Bで平滑された直流電流Id を3相の交流電流に変
換する電流形インバ―タである。また、位置検出器3の
代りに端子電圧V1 の位相θ1 を検出する位相検出
器12を設けている。この場合、V1の位相θ1 はリ
アクタンス電圧Vx の影響を受け変動するが補償信号
θがその変動分を含めて補償するので同様の効果が得ら
れる。なお、位相検出器12は、リアクタンス電圧によ
る位相変動を補償するように構成することもできる。In this embodiment, the inverter 1 is a current source inverter that converts a DC current Id smoothed by a reactor 1B into a three-phase AC current. Further, in place of the position detector 3, a phase detector 12 is provided to detect the phase θ1 of the terminal voltage V1. In this case, the phase θ1 of V1 fluctuates due to the influence of the reactance voltage Vx, but the compensation signal θ compensates for the fluctuation, so the same effect can be obtained. Note that the phase detector 12 can also be configured to compensate for phase fluctuations due to reactance voltage.
【0021】[0021]
【発明の効果】本発明によれば、回転界磁に永久磁石を
用いた同期電動機を電力変換器で可変速駆動する場合、
電機子反作用(減磁作用)による端子電圧の低下を防止
し、電力変換器の電圧を必要以上に高くすることなく、
電動機定格に見合った容量とすることができ、経済性の
向上した同期電動機の制御装置を提供することができる
。[Effects of the Invention] According to the present invention, when a synchronous motor using a permanent magnet as a rotating field is driven at variable speed by a power converter,
This prevents a drop in terminal voltage due to armature reaction (demagnetization effect) and prevents the voltage of the power converter from becoming higher than necessary.
It is possible to provide a control device for a synchronous motor that can have a capacity commensurate with the motor rating and has improved economic efficiency.
【図1】本発明による一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment according to the present invention.
【図2】本発明による第2実施例の構成図。FIG. 2 is a configuration diagram of a second embodiment according to the present invention.
【図3】上記実施例の作用を説明するための特性図とベ
クトル図。FIG. 3 is a characteristic diagram and a vector diagram for explaining the operation of the above embodiment.
【図4】従来装置の問題点を説明するための特性図とベ
クトル図。FIG. 4 is a characteristic diagram and a vector diagram for explaining problems with a conventional device.
Claims (1)
機の電機子電流を制御するインバ―タを備えた装置にお
いて、該同期電動機の電圧を監視して、電機子反作用に
よる該電圧の変化を補償するように電機子電流の位相を
制御する手段を設けたことを特徴とする同期電動機の制
御装置。Claim 1: In a device equipped with an inverter that controls the armature current of a synchronous motor using a permanent magnet in a rotating field, the voltage of the synchronous motor is monitored and changes in the voltage due to armature reaction are provided. 1. A control device for a synchronous motor, comprising means for controlling the phase of an armature current so as to compensate for.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03095102A JP3125889B2 (en) | 1991-04-25 | 1991-04-25 | Control device for synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03095102A JP3125889B2 (en) | 1991-04-25 | 1991-04-25 | Control device for synchronous motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04325894A true JPH04325894A (en) | 1992-11-16 |
JP3125889B2 JP3125889B2 (en) | 2001-01-22 |
Family
ID=14128513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03095102A Expired - Lifetime JP3125889B2 (en) | 1991-04-25 | 1991-04-25 | Control device for synchronous motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3125889B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069747A1 (en) * | 2011-11-10 | 2013-05-16 | 三菱重工オートモーティブサーマルシステムズ株式会社 | Motor drive device |
-
1991
- 1991-04-25 JP JP03095102A patent/JP3125889B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069747A1 (en) * | 2011-11-10 | 2013-05-16 | 三菱重工オートモーティブサーマルシステムズ株式会社 | Motor drive device |
JP2013106375A (en) * | 2011-11-10 | 2013-05-30 | Mitsubishi Heavy Ind Ltd | Motor drive device |
CN103843246A (en) * | 2011-11-10 | 2014-06-04 | 三菱重工汽车空调系统株式会社 | Motor drive device |
US9450523B2 (en) | 2011-11-10 | 2016-09-20 | Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. | Motor drive apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3125889B2 (en) | 2001-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region | |
Ho et al. | Decoupling control of induction motor drives | |
Kim et al. | A sinusoidal current control strategy based on harmonic voltage injection for harmonic loss reduction of PMSMs with non-sinusoidal back-EMF | |
Leonhard | Control of AC-Machines with the help of Microelectronics | |
Chiba et al. | A closed-loop operation of super high-speed reluctance motor for quick torque response | |
Liu et al. | A seamless transition scheme of position sensorless control in industrial permanent magnet motor drives with output filter and transformer for oil pump applications | |
Yu et al. | Optimal three-dimensional current computation flux weakening control strategy for DC-biased vernier reluctance machines considering inductance nonlinearity | |
JP3278556B2 (en) | AC motor control device | |
US5359272A (en) | Sensorless drive control and method for doubly-fed reluctance motor | |
Stojic et al. | A new induction motor drive based on the flux vector acceleration method | |
JP6113651B2 (en) | Multi-phase motor drive | |
JP2023549847A (en) | Method and device for synchronous motor control | |
JPH04325894A (en) | Controller of synchronous motor | |
Morimoto et al. | Variable speed drive system of interior permanent magnet synchronous motors for constant power operation | |
Green et al. | Inverter AC-drive efficiency | |
Kioskeridis et al. | Energy efficiency optimisation in synchronous reluctance motor drives | |
JP2720540B2 (en) | Voltage regulator for permanent magnet synchronous generator | |
Liaw et al. | Robust current control and commutation tuning for an IPMSM drive | |
Nguyen et al. | Sensorless direct torque control of a fractional-slot concentrated winding interior permanent magnet synchronous machine using extended rotor flux model | |
CN118040930B (en) | A composite winding high-speed permanent magnet induction DC power generation system | |
Mishra | Modified Scalar Controlled PWM Inverter Fed Induction Motor Drive with Output Filter | |
Lee | Flying capacitor-assisted two-leg inverter for permanent magnet synchronous motor drive | |
Popa et al. | Induction machine V/f control with stator flux and slip frequency compensation for maximum power factor, with experiments | |
JPH04185296A (en) | Dc brushless motor controller | |
JPH0584000A (en) | Motor driver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071102 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081102 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 11 |