JPH04325658A - Heat resistant cast steel - Google Patents
Heat resistant cast steelInfo
- Publication number
- JPH04325658A JPH04325658A JP12253891A JP12253891A JPH04325658A JP H04325658 A JPH04325658 A JP H04325658A JP 12253891 A JP12253891 A JP 12253891A JP 12253891 A JP12253891 A JP 12253891A JP H04325658 A JPH04325658 A JP H04325658A
- Authority
- JP
- Japan
- Prior art keywords
- cast steel
- resistant cast
- less
- heat
- heat resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、耐熱鋳鋼に関し、詳し
くは、高温強度ならびに常温の延性に優れた耐熱鋳鋼に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat-resistant cast steel, and more particularly to heat-resistant cast steel having excellent high-temperature strength and room-temperature ductility.
【0002】0002
【従来の技術】自動車用エンジンの排気マニホールド、
ターボチャージャー用ハウジング、ディーゼル機関用予
熱室、排気ガス浄化装置用部品等の排気系部品において
は、高温下の過酷な条件で使用されることから、これら
の排気系部品の材質としては、一般に、高Si球状黒鉛
鋳鉄、ニレジスト鋳鉄、Al鋳鉄等の耐熱鋳鉄が用いら
れている。[Prior art] Automotive engine exhaust manifold,
Exhaust system parts such as turbocharger housings, diesel engine preheating chambers, and exhaust gas purification system parts are used under harsh conditions at high temperatures, so the materials for these exhaust system parts are generally: Heat-resistant cast irons such as high-Si spheroidal graphite cast iron, Niresist cast iron, and Al cast iron are used.
【0003】0003
【発明が解決しようとする課題】しかしながら、最近の
エンジンの高性能化および燃焼効率の上昇に伴い排気ガ
ス温度が上昇してきていることから、従来の耐熱鋳鉄で
は、耐熱性、耐酸化性が不十分であるという問題がある
。この問題を解決するために耐熱鋳鉄に代わってステン
レス鋳鋼が使用される場合があり、このステンレス鋳鋼
の中でも、熱疲労特性の点から、熱膨張係数の小さいフ
ェライト系ステンレス鋳鋼が用いられるのが一般的であ
る。しかし、フェライト系ステンレス鋳鋼は、高温強度
が相対的に小さく、熱疲労により強度不足が原因で変形
が生じやすく、熱疲労特性が十分とはいえない。また、
フェライト系ステンレス鋳鋼は、オーステナイト系ステ
ンレス鋳鋼に比べて鋳造性が悪く、特に自動車用排気系
部品のような複雑形状部品の鋳造を行うことは困難であ
るという問題がある。本発明はこのような問題点を解決
するためになされたもので、高温強度に優れ、常温の延
性が高く、複雑形状部品の鋳造を可能にするフェライト
系ステンレス耐熱鋳鋼を提供することを目的とする。[Problem to be Solved by the Invention] However, as the exhaust gas temperature has been rising due to the recent improvements in engine performance and combustion efficiency, conventional heat-resistant cast iron has poor heat resistance and oxidation resistance. There is a question of sufficiency. To solve this problem, stainless steel cast steel is sometimes used instead of heat-resistant cast iron, and among these stainless steel cast steels, ferritic stainless cast steel, which has a small coefficient of thermal expansion, is generally used from the viewpoint of thermal fatigue properties. It is true. However, ferritic stainless cast steel has relatively low high-temperature strength and tends to be deformed due to lack of strength due to thermal fatigue, so it cannot be said that its thermal fatigue properties are sufficient. Also,
Ferritic stainless steel cast steel has poor castability compared to austenitic stainless steel cast steel, and there is a problem in that it is particularly difficult to cast complex-shaped parts such as automobile exhaust system parts. The present invention was made in order to solve these problems, and its purpose is to provide a heat-resistant ferritic stainless cast steel that has excellent high-temperature strength, high ductility at room temperature, and enables the casting of complex-shaped parts. do.
【0004】0004
【課題を解決するための手段】前記目的を達成するため
の本発明の第1発明による耐熱鋳鋼は、重量%で、C:
0.06〜0.2%、 Si:0.4%
未満、Mn:1.0%以下、
P:0.04%以下、S:0.04%以下、
Cr:15〜22%、Nb:0.01〜
2.0%、 N:0.01〜0.1%、残部
Feおよび不可避不純物からなるフェライト系ステンレ
ス鋳鋼であって、鋳造後に焼きならし処理したことを特
徴とする。本発明の第2発明による耐熱鋳鋼は、前記第
1発明に記載の耐熱鋳鋼の合金組成に加えて、Ni、M
o、Wの少なくとも一種の元素が、重量%で、
Ni:0.1〜1.0%、
Mo:0.1〜1.0%、
W:0.1〜2.0%、
の範囲で添加されることを特徴とする。[Means for Solving the Problems] A heat-resistant cast steel according to the first aspect of the present invention for achieving the above object has C:
0.06-0.2%, Si: 0.4%
less than, Mn: 1.0% or less,
P: 0.04% or less, S: 0.04% or less,
Cr: 15~22%, Nb: 0.01~
2.0%, N: 0.01 to 0.1%, the balance being Fe and unavoidable impurities, and is characterized by being normalized after casting. The heat-resistant cast steel according to the second invention of the present invention includes, in addition to the alloy composition of the heat-resistant cast steel according to the first invention, Ni, M
At least one element of o and W is in the range of Ni: 0.1 to 1.0%, Mo: 0.1 to 1.0%, W: 0.1 to 2.0% in weight%. It is characterized by being added.
【0005】前記第1発明における耐熱鋳鋼の合金組成
を前記のとおり限定したのは次の理由による。Cは、常
温および高温の強度を上昇させるのに最も効果的な元素
であり、また常温での延性を向上させる。そのため強度
を確保し延性を向上させるために少なくともCは0.0
6%以上必要である。Cの増加に伴いα−γ相変態によ
る局部熱応力が原因となる変形量が増大するため、Cは
Crとの関係から0.20%以下とする。Siは、鋳造
時の湯流れを良くし鋳造性を改善する効果が大きいが、
Siの増加によって常温の延性が著しく低下するため、
常温の延性を確保するためSiを0.4%未満とした。
特に、減圧反重力鋳造法等による減圧鋳造法を用いると
、低Si量であっても複雑形状品である排気系部品等の
鋳造が可能となる。The reason why the alloy composition of the heat-resistant cast steel in the first invention is limited as described above is as follows. C is the most effective element for increasing strength at room temperature and high temperature, and also improves ductility at room temperature. Therefore, in order to ensure strength and improve ductility, C is at least 0.0
6% or more is required. Since the amount of deformation caused by local thermal stress due to α-γ phase transformation increases as C increases, C is set to 0.20% or less in view of the relationship with Cr. Si has a great effect of improving the flow of the metal during casting and improving the castability, but
As the ductility at room temperature decreases significantly due to the increase in Si,
In order to ensure ductility at room temperature, the Si content was set to less than 0.4%. In particular, when a vacuum casting method such as a vacuum anti-gravity casting method is used, it is possible to cast exhaust system parts and the like that have complex shapes even with a low Si content.
【0006】Mnは、耐酸化性を向上させる。しかしM
nの過剰添加は、MnSを生成しやすく、これによって
延性が低下する原因となるので、Mnは1%以下とした
。Pは、不純物として不可避元素であるが、耐酸化性、
耐熱疲労特性を劣化させるので、0.04%以下とした
。Sは、Mnとの結合によりMnSを生成しやすく、こ
れによって延性低下の原因となるので0.04%以下と
した。Crは、耐酸化性を確保し、α−γ相変態による
局部熱応力が原因となる変形を抑制する元素であり、少
なくともその効果を発揮するために15%以上が必要で
ある。またCrを多量に添加すると、高温でのσ相形成
を助長し脆化を引き起こすので、Crは22%以下とし
た。[0006] Mn improves oxidation resistance. But M
Excessive addition of n tends to generate MnS, which causes a decrease in ductility, so Mn was set to 1% or less. P is an inevitable element as an impurity, but it has oxidation resistance,
Since it deteriorates thermal fatigue resistance, it is set at 0.04% or less. S easily forms MnS by combining with Mn, which causes a decrease in ductility, so it was set to 0.04% or less. Cr is an element that ensures oxidation resistance and suppresses deformation caused by local thermal stress due to α-γ phase transformation, and at least 15% or more is required to exhibit this effect. Further, if a large amount of Cr is added, it promotes the formation of σ phase at high temperatures and causes embrittlement, so the Cr content is set to 22% or less.
【0007】Nbは、NbCの生成により高温強度を増
大させ、またα−γ相変態による局部熱応力が原因とな
る変形を抑制する。またNbは、Cr炭化物の生成を抑
制し、耐酸化性を向上させる。これらの効果を得るため
には、Nbは0.1%以上の添加が必要である。逆にN
bの大量の添加は、NbCの粗大化によって延性を低下
させるので、Nbは2.0%以下とした。Nは、高温強
度を向上させる効果があり、その効果を得るためには0
.01%以上必要である。Nの大量の添加は、Cr2
Nの過剰析出により延性の低下を引き起こすのでNは0
.1%以下とする。[0007] Nb increases high-temperature strength through the formation of NbC, and also suppresses deformation caused by local thermal stress due to α-γ phase transformation. Furthermore, Nb suppresses the formation of Cr carbides and improves oxidation resistance. In order to obtain these effects, it is necessary to add Nb in an amount of 0.1% or more. On the contrary, N
Addition of a large amount of b reduces ductility due to coarsening of NbC, so Nb was set at 2.0% or less. N has the effect of improving high-temperature strength, and in order to obtain this effect, 0
.. 0.1% or more is required. Addition of a large amount of N causes Cr2
Since excessive precipitation of N causes a decrease in ductility, N is 0.
.. 1% or less.
【0008】第2発明による耐熱鋳鋼の化学成分につい
ての組成限定については次のとおりである。Niは、靱
性向上のために少なくとも0.1%以上は必要である。
しかし、Ni量の増加によりオーステナイト相が生成さ
れやすくなるので、フィライト相を安定させ、α−γ相
変態による局部熱応力が原因となる変形を抑制するため
に1.0%以下にした。Moは、フェライト相を安定さ
せ、α−γ相変態による局部熱応力が原因となる変形を
抑制する効果があり、その効果を得るためには0.1%
以上の添加が必要である。Moの過剰な添加は粗大炭化
物を生成しやすいため、延性低下を防止するためMoを
1.0%以下とする。Wは、固溶強化により高温強度を
向上させる。そのためにWは0.1%以上必要であり、
Wの過剰の添加は延性低下の原因となるので2.0%以
下とする。The chemical composition limitations of the heat-resistant cast steel according to the second invention are as follows. At least 0.1% or more of Ni is required to improve toughness. However, an increase in the amount of Ni makes it easier to generate an austenite phase, so the Ni content was set to 1.0% or less in order to stabilize the phyllite phase and suppress deformation caused by local thermal stress due to α-γ phase transformation. Mo has the effect of stabilizing the ferrite phase and suppressing deformation caused by local thermal stress due to α-γ phase transformation, and in order to obtain this effect, 0.1%
The above additions are necessary. Excessive addition of Mo tends to generate coarse carbides, so in order to prevent a decrease in ductility, the Mo content is set to 1.0% or less. W improves high temperature strength through solid solution strengthening. For this purpose, W is required to be 0.1% or more,
Since excessive addition of W causes a decrease in ductility, it is limited to 2.0% or less.
【0009】[0009]
【実施例】以下、本発明の実施例を説明する。本発明で
用いたフェライト系耐熱鋳鋼の化学成分は表1のとおり
である。[Examples] Examples of the present invention will be described below. The chemical composition of the ferritic heat-resistant cast steel used in the present invention is shown in Table 1.
【0010】0010
【表1】[Table 1]
【0011】前記表1に示す組成をもつフェライト系耐
熱鋳鋼の試験片は次のようにして作製した。まず高周波
誘導炉で合金を溶解し、JISA号試験片に鋳込んだ。
その後温度780℃に保持し、空冷し各試験片を採取し
た。各試験片について■室温引張試験および■高温引張
試験、■熱疲労試験を行った。■室温引張試験について
は、引張強さ、0.2%耐力および伸びを測定した。■
高温引張試験については、温度900℃で実施し、引張
強さ、0.2%耐力および伸びを測定した。■熱疲労試
験については、外径45mmの円盤型試験片を150℃
の流動床炉中に3分間暴露した後、温度900℃の流動
床炉中に3分間暴露するサイクルを1000回繰り返し
た後、試験片円周上に発生する割れの総長さを測定した
。その結果は表2に示すとおりである。Test pieces of ferritic heat-resistant cast steel having the composition shown in Table 1 were prepared as follows. First, the alloy was melted in a high-frequency induction furnace and cast into a JISA No. test piece. Thereafter, the temperature was maintained at 780° C., cooled in air, and each test piece was collected. Each test piece was subjected to (1) a room temperature tensile test, (2) a high temperature tensile test, and (2) a thermal fatigue test. (2) Regarding the room temperature tensile test, tensile strength, 0.2% proof stress and elongation were measured. ■
The high-temperature tensile test was conducted at a temperature of 900°C, and the tensile strength, 0.2% proof stress, and elongation were measured. ■For the thermal fatigue test, a disk-shaped test piece with an outer diameter of 45 mm was heated to 150°C.
After repeating the cycle of exposing the specimen for 3 minutes in a fluidized bed furnace at a temperature of 900° C. for 3 minutes, the total length of the cracks generated on the circumference of the specimen was measured. The results are shown in Table 2.
【0012】0012
【表2】[Table 2]
【0013】表2に示されるように、比較例1は高C、
高Siのもので、熱疲労試験でα−γ相変態による局部
熱応力が原因とみられる変形が発生した。比較例2は、
高Siのもので、常温での伸びが著しく小さかった。比
較例3は、低Cのもので、高温強度が小さく、熱疲労試
験での変形が発生した。実施例1〜7については、室温
における引張強さ、0.2%耐力並びに伸びが良好であ
った。また熱疲労試験についても熱疲労強度が高いこと
が解った。前述した本発明の組成範囲の耐熱鋳鋼を用い
てガソリン機関用排気マニホールドを特殊な減圧鋳造法
を用いて鋳造したところ、湯回りが良く、引け巣などの
鋳造欠陥を発生することなく、鋳造歩留まりが70%以
上を確保することができた。これによって生産性が優れ
ていることが確認された。As shown in Table 2, Comparative Example 1 has high C,
In a thermal fatigue test of a high-Si material, deformation occurred, which appeared to be caused by local thermal stress due to α-γ phase transformation. Comparative example 2 is
It had a high Si content, and its elongation at room temperature was extremely small. Comparative Example 3 had a low C content, had low high-temperature strength, and suffered from deformation in the thermal fatigue test. Examples 1 to 7 had good tensile strength, 0.2% yield strength, and elongation at room temperature. It was also found that thermal fatigue strength was high in thermal fatigue tests. When an exhaust manifold for a gasoline engine was cast using a special vacuum casting method using the heat-resistant cast steel having the composition range of the present invention described above, the casting yield was high with good flowability and no casting defects such as shrinkage cavities. was able to secure over 70%. This confirmed that productivity was excellent.
【0014】[0014]
【発明の効果】以上説明したように、本発明の耐熱鋳鋼
によれば、耐熱鋳鋼が本来もつ高温強度が優れているこ
とはもちろん、常温の延性が良好であることから、冷間
加工、機械加工等がしやすいという利点があり、特に複
雑形状部品の鋳造が可能であるという効果がある。また
、耐熱鋳鋼の特性を生かして高温強度並びに熱疲労強度
が極めて良好であるという効果がある。[Effects of the Invention] As explained above, the heat-resistant cast steel of the present invention not only has excellent high-temperature strength, which is inherent to heat-resistant cast steel, but also has good ductility at room temperature. It has the advantage of being easy to process, and in particular, it is possible to cast parts with complex shapes. Further, by taking advantage of the characteristics of heat-resistant cast steel, it has the advantage of having extremely good high-temperature strength and thermal fatigue strength.
Claims (2)
Si:0.4%未満、Mn:1.0%以下
、 P:0.04%以下、S:
0.04%以下、 Cr:15
〜22%、Nb:0.01〜2.0%、 N
:0.01〜0.1%、残部Feおよび不可避不純物か
らなるフェライト系ステンレス鋳鋼であって、鋳造後に
焼きならし処理したことを特徴とする耐熱鋳鋼。Claim 1: C: 0.06 to 0.2% in weight%;
Si: less than 0.4%, Mn: 1.0% or less, P: 0.04% or less, S:
0.04% or less, Cr:15
~22%, Nb: 0.01~2.0%, N
: 0.01 to 0.1%, the balance being Fe and unavoidable impurities, which is a ferritic stainless steel cast steel, characterized in that it has been subjected to a normalizing treatment after casting.
えて、Ni、Mo、Wの少なくとも一種の元素が、重量
%で、 Ni:0.1〜1.0%、 Mo:0.1〜1.0%、 W:0.1〜2.0%、 の範囲で添加されることを特徴とする請求項1に記載の
耐熱鋳鋼。2. In addition to the alloy composition of the heat-resistant cast steel according to claim 1, at least one element of Ni, Mo, and W is contained in weight percent, Ni: 0.1 to 1.0%, Mo: 0. 2. The heat-resistant cast steel according to claim 1, wherein W: 0.1-2.0%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12253891A JPH04325658A (en) | 1991-04-24 | 1991-04-24 | Heat resistant cast steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12253891A JPH04325658A (en) | 1991-04-24 | 1991-04-24 | Heat resistant cast steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04325658A true JPH04325658A (en) | 1992-11-16 |
Family
ID=14838345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12253891A Pending JPH04325658A (en) | 1991-04-24 | 1991-04-24 | Heat resistant cast steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04325658A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT407647B (en) * | 1999-05-10 | 2001-05-25 | Boehler Edelstahl | MARTENSITIC CORROSION RESISTANT CHROME STEEL |
JP2012158834A (en) * | 2011-01-31 | 2012-08-23 | J Eberspecher Gmbh & Co Kg | Cast steel alloy and cast component |
CN111809122A (en) * | 2020-05-29 | 2020-10-23 | 嘉兴吉森科技有限公司 | Die pressing stainless steel plate and heat treatment method thereof |
-
1991
- 1991-04-24 JP JP12253891A patent/JPH04325658A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT407647B (en) * | 1999-05-10 | 2001-05-25 | Boehler Edelstahl | MARTENSITIC CORROSION RESISTANT CHROME STEEL |
JP2012158834A (en) * | 2011-01-31 | 2012-08-23 | J Eberspecher Gmbh & Co Kg | Cast steel alloy and cast component |
CN111809122A (en) * | 2020-05-29 | 2020-10-23 | 嘉兴吉森科技有限公司 | Die pressing stainless steel plate and heat treatment method thereof |
CN111809122B (en) * | 2020-05-29 | 2021-07-27 | 浙江吉森金属科技有限公司 | Die pressing stainless steel plate and heat treatment method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3936849B2 (en) | Ferrite-based spheroidal graphite cast iron and exhaust system parts using the same | |
US5152850A (en) | Heat-resistant, ferritic cast steel and exhaust equipment member made thereof | |
JP2542753B2 (en) | Austenitic heat-resistant cast steel exhaust system parts with excellent high-temperature strength | |
JP3821310B2 (en) | Heat resistant spheroidal graphite cast iron | |
JP3332189B2 (en) | Ferritic heat-resistant cast steel with excellent castability | |
CN106939392A (en) | A kind of material for being used to cast automobile gas exhausting manifold branch | |
JPH04325658A (en) | Heat resistant cast steel | |
US5259887A (en) | Heat-resistant, ferritic cast steel, exhaust equipment member made thereof | |
JP3700977B2 (en) | Austenitic heat-resistant cast steel with low cost, good castability, high-temperature strength and oxidation resistance, and exhaust system parts made of it | |
JPH01159354A (en) | Heat resistant cast steel | |
JPH06256908A (en) | Heat resistant cast steel and exhaust system parts using the same | |
JP3054102B2 (en) | Ferritic heat-resistant cast steel | |
JPH0359967B2 (en) | ||
JP2542778B2 (en) | Exhaust system parts | |
JPS6233744A (en) | Heat-resistant cast steel | |
JPH0533105A (en) | Cast ferritic heat resisting steel | |
JPH0524977B2 (en) | ||
JPH0524225B2 (en) | ||
JPH05171365A (en) | Ferritic heat resistant cast steel and exhaust system parts made of it | |
JPS6210242A (en) | Heat-resistant cast steel | |
JPH0548290B2 (en) | ||
JPH05125494A (en) | Ferritic heat resistant cast steel and exhaust system parts made of the same | |
JPH0762500A (en) | Heat resistant cast steel | |
JPH03271345A (en) | Ferritic heat-resistant cast steel excellent in ductility at room temperature | |
JPH04247854A (en) | Martensitic heat-resistant cast steel |