[go: up one dir, main page]

JPH043251Y2 - - Google Patents

Info

Publication number
JPH043251Y2
JPH043251Y2 JP18347785U JP18347785U JPH043251Y2 JP H043251 Y2 JPH043251 Y2 JP H043251Y2 JP 18347785 U JP18347785 U JP 18347785U JP 18347785 U JP18347785 U JP 18347785U JP H043251 Y2 JPH043251 Y2 JP H043251Y2
Authority
JP
Japan
Prior art keywords
liquid sample
liquid
bubbles
detection section
resin tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18347785U
Other languages
Japanese (ja)
Other versions
JPS6291235U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18347785U priority Critical patent/JPH043251Y2/ja
Publication of JPS6291235U publication Critical patent/JPS6291235U/ja
Application granted granted Critical
Publication of JPH043251Y2 publication Critical patent/JPH043251Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、液体中の微粒子の検出・測定を行う
液中微粒子測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an in-liquid particulate measurement device that detects and measures particulates in a liquid.

〔従来の技術〕[Conventional technology]

従来の液中微粒子測定装置は、微粒子検出原理
に基づき、光遮断法、光散乱方、ダイナミツク光
散乱法、電気抵抗法、音響法等に分類される。
Conventional in-liquid particle measuring devices are classified into light blocking methods, light scattering methods, dynamic light scattering methods, electrical resistance methods, acoustic methods, etc. based on the particle detection principle.

この中で音響法に基づく微粒子測定装置を除
き、他の測定原理に基づく微粒子測定装置におい
ては微粒子の検出部で、液中に存在する気泡と、
検出対象である固体粒子との識別が困難であり、
気泡を粒子として計数する所謂偽計数が生じ、測
定精度の低下は避けられない実状であつた。揮発
性の有機溶剤や過酸化水素水、アンモニア水等、
気泡を発生し易い液体試料中の微粒子測定では、
前記偽計数の発生は特に重要な問題であつた。
Except for the particle measuring device based on the acoustic method, in the particle measuring device based on other measurement principles, the particle detection section detects air bubbles present in the liquid.
Difficult to distinguish from solid particles to be detected;
So-called false counting occurs in which air bubbles are counted as particles, and a decrease in measurement accuracy is unavoidable. Volatile organic solvents, hydrogen peroxide, ammonia water, etc.
When measuring particles in liquid samples that tend to generate bubbles,
The occurrence of false counting was a particularly important problem.

尚、音響法に基づく装置については、その検出
原理上粒子の物質組成に対しある程度の知見を得
ることができるため気泡と固体粒子とを識別する
ことが可能である。
It should be noted that with regard to a device based on the acoustic method, it is possible to obtain a certain degree of knowledge about the material composition of particles due to its detection principle, and therefore it is possible to distinguish between air bubbles and solid particles.

今までのところ、このような気泡対策として、
例えば測定前に液体試料を減圧脱気する減圧脱気
法がある。
So far, as a countermeasure for such bubbles,
For example, there is a vacuum degassing method in which a liquid sample is degassed under reduced pressure before measurement.

第3図は光遮断方式または光散乱方式で、かつ
バツチサンプリング方式の液中微粒子測定装置に
減圧脱気法を適用した場合の従来例である。
FIG. 3 shows a conventional example in which a vacuum degassing method is applied to a light blocking method or light scattering method, and a batch sampling method for measuring in-liquid particles.

1は加圧タンクであり内部には液体試料2の入
つた容器3が設置されている。4は加圧空気を作
り出す加圧用ポンプ、5は液体試料2を後述する
微粒子検出部7へ圧送すべく、加圧タンク1内に
加圧空気を送り込む加圧パイプである。6は加圧
タンク1内から検出部7内に導かれる流入流路系
を構成する導入パイプである。加圧パイプ5には
三方弁30及び減圧用ポンプ31が付加されてい
る。測定を行う前に減圧ポンプ31を運転し液体
試料2を減圧処理し予め気泡の発生を促進して液
体試料2中に溶在している空気分子と気泡の除去
を行う。
Reference numeral 1 denotes a pressurized tank in which a container 3 containing a liquid sample 2 is installed. 4 is a pressurizing pump that produces pressurized air, and 5 is a pressurizing pipe that sends pressurized air into the pressurizing tank 1 in order to forcefully feed the liquid sample 2 to a particle detection section 7, which will be described later. Reference numeral 6 denotes an introduction pipe constituting an inflow channel system guided from inside the pressurized tank 1 into the detection section 7. A three-way valve 30 and a pressure reducing pump 31 are added to the pressurizing pipe 5. Before measurement, the vacuum pump 31 is operated to reduce the pressure of the liquid sample 2 to promote the generation of bubbles in advance and remove air molecules and bubbles dissolved in the liquid sample 2.

検出部7は、微粒子検出原理に基づき各種の構
成が知られている。例えば光散乱方式であれば、
大略、試料に光を照射する照射系、試料の通過す
る流路系及び微粒子に依り発生する散乱光を受光
素子に導く受光系で構成されてなる。
Various configurations of the detection unit 7 are known based on the particle detection principle. For example, if it is a light scattering method,
Roughly, it consists of an irradiation system that irradiates the sample with light, a channel system through which the sample passes, and a light receiving system that guides scattered light generated by fine particles to a light receiving element.

検出部7からの微粒子に対応するパルス信号は
増幅器8、多チヤンネル分級器9で処理し、粒径
区分ごとの粒子計数値を表示器10に表示させ
る。11は検出部7から導出される排出流路系を
構成する排出パイプである。13,14はバルブ
であり、このバルブ13,14を操作することに
より液体試料2を検出部7に導入したり、メスシ
リンダ15に溜めて測定容量を求めたり、或いは
液体試料2を排出したりする。
Pulse signals corresponding to fine particles from the detection section 7 are processed by an amplifier 8 and a multi-channel classifier 9, and a particle count value for each particle size classification is displayed on a display 10. Reference numeral 11 denotes a discharge pipe that constitutes a discharge flow path system led out from the detection section 7. Reference numerals 13 and 14 indicate valves, and by operating these valves 13 and 14, the liquid sample 2 can be introduced into the detection section 7, the liquid sample 2 can be stored in the measuring cylinder 15 to obtain the measurement volume, or the liquid sample 2 can be discharged. do.

尚16は加圧タンク1内の圧力を指示する圧力
計、17はレギユレータである。
Note that 16 is a pressure gauge that indicates the pressure inside the pressurized tank 1, and 17 is a regulator.

減圧脱気法の他にも気泡発生防止の為に、液体
試料を加温脱気する方法、液体試料を超音波にか
ける方法が行われている。
In addition to the reduced pressure degassing method, methods of heating and degassing a liquid sample and subjecting the liquid sample to ultrasonic waves have been used to prevent the generation of bubbles.

しかしながら以上述べた三方法はいずれも液体
試料中に溶けている空気分子を除去するのに有効
であり、従つて空気分子を組成とする気泡対策に
はなるが、気化し易く蒸気により気泡を形成する
揮発性の液体試料に対する気泡対策にはならな
い。加えて前述の三方法はいずれも装置が大型で
複雑であつた。さらに測定前に液体試料に対し、
何等かの処理もしくは操作を加えることになる
為、液体試料中の被測定粒子数が変化する虞があ
つた。
However, all of the three methods described above are effective in removing air molecules dissolved in a liquid sample, and therefore can be used as a countermeasure against bubbles composed of air molecules, but they tend to vaporize and form bubbles with vapor. It is not a measure against bubbles for volatile liquid samples. In addition, all of the three methods described above require large and complicated equipment. Furthermore, before measurement, for the liquid sample,
Since some kind of processing or manipulation was required, there was a risk that the number of particles to be measured in the liquid sample would change.

〔考案の目的〕[Purpose of invention]

本考案は、微粒子の検出部における液体試料中
の既存気泡の消失を推進し、さらに新たなる気泡
の発生を防止すること、ひいては偽計数の発生を
防止することを目的とする。
The purpose of the present invention is to promote the disappearance of existing bubbles in a liquid sample in a particulate detection unit, and to further prevent the generation of new bubbles, thereby preventing the occurrence of false counting.

本発明の他の目的は、低粘度の液体試料に対し
ても流量調節を容易にすることにある。
Another object of the present invention is to facilitate flow rate adjustment even for low viscosity liquid samples.

〔問題点を解決するための手段〕[Means for solving problems]

以上の目的を達成する為に本考案では、液体試
料が通過する排出流路系に内径の細い樹脂チユー
ブ12を介在するようにする。
In order to achieve the above object, in the present invention, a resin tube 12 with a small inner diameter is interposed in the discharge channel system through which the liquid sample passes.

〔実施例〕〔Example〕

以下、添付図面に従つて本考案の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本考案を光遮断方式または光散乱方式
で、かつバツチサンプリング方式の液中微粒子測
定装置に適用した場合の実施例である。
FIG. 1 shows an embodiment in which the present invention is applied to a light blocking type or light scattering type and batch sampling type in-liquid particle measuring device.

1は加圧タンクであり内部には液体試料2の入
つた容器3が設置されている。4は加圧空気を作
り出す加圧用ポンプ、5は液体試料2を後述する
微粒子検出部7へ圧送すべく、加圧タンク1内に
加圧空気を送り込む加圧パイプである。6は加圧
タンク1内から検出部7内に導かれる流入流路系
を構成する導入パイプである。
Reference numeral 1 denotes a pressurized tank in which a container 3 containing a liquid sample 2 is installed. 4 is a pressurizing pump that produces pressurized air, and 5 is a pressurizing pipe that sends pressurized air into the pressurizing tank 1 in order to forcefully send the liquid sample 2 to a particle detection section 7, which will be described later. Reference numeral 6 denotes an introduction pipe constituting an inflow channel system guided from inside the pressurized tank 1 into the detection section 7.

検出部7からの微粒子に対応するパルス信号は
増幅器8、多チヤンネル分級器9で処理し、粒径
区分ごとの粒子計数値を表示器10に表示させ
る。11は検出部7から導出される排出流路系を
構成する排出パイプである。12は排出パイプ1
1中に介在接続されてなる、内径の細い樹脂チユ
ーブである。13,14はバルブであり、このバ
ルブ13,14を操作することにより液体試料を
検出部6に導入したり、メスシリンダ15に溜め
て測定容量を求めたり、或いは液体試料を排出し
たりする。
Pulse signals corresponding to fine particles from the detection section 7 are processed by an amplifier 8 and a multi-channel classifier 9, and a particle count value for each particle size classification is displayed on a display 10. Reference numeral 11 denotes a discharge pipe that constitutes a discharge flow path system led out from the detection section 7. 12 is the discharge pipe 1
It is a resin tube with a narrow inner diameter that is connected to the inside of the tube. Reference numerals 13 and 14 indicate valves, and by operating the valves 13 and 14, a liquid sample is introduced into the detection section 6, the measured volume is determined by storing it in the measuring cylinder 15, or the liquid sample is discharged.

次に作用について述べる。 Next, we will discuss the effect.

液体試料2は加圧タンク1から導入パイプ6を
介して検出部7に導かれ、この検出部7に於いて
微粒子が検出され、その測定結果が表示器10で
判明する。その後、液体試料2は排出パイプ11
によつて検出部7から導出されるが、内径の細い
樹脂チューブ12の存在により液体試料の流れに
対する管路の抵抗は大となる。従つて液体試料2
が内径の細い樹脂チューブ12を通る際、圧力損
失が生じる。この圧力損失により検出部7内の液
体試料2の圧力を高く保つことができる。
The liquid sample 2 is led from the pressurized tank 1 through the introduction pipe 6 to the detection section 7, where fine particles are detected, and the measurement results are displayed on the display 10. After that, the liquid sample 2 is transferred to the discharge pipe 11
However, due to the presence of the resin tube 12 with a small inner diameter, the resistance of the pipe line to the flow of the liquid sample becomes large. Therefore, liquid sample 2
When the liquid passes through the resin tube 12 having a small inner diameter, a pressure loss occurs. Due to this pressure loss, the pressure of the liquid sample 2 in the detection section 7 can be kept high.

第2図は他の実施例であり本考案をオンライン
サンプリング方式の液中微粒子測定装置に適用し
た場合をしめす。上記実施例では液体容量の測定
にメスシリンダを使用している場合について説明
したが、本実施例では流量計18を用いている。
また上記実施例では液体試料2の送出手段として
用いられていた加圧タンク1の代わりに本実施例
では高圧のシステム配管19内の圧力を利用して
システム配管19内を流れる液体試料2を検出部
7へ送出している。
FIG. 2 shows another embodiment in which the present invention is applied to an on-line sampling system for measuring particles in liquid. In the above embodiment, a case was explained in which a graduated cylinder was used to measure the liquid volume, but in this embodiment, a flow meter 18 is used.
Furthermore, instead of the pressurized tank 1 used as a means for sending out the liquid sample 2 in the above embodiment, in this embodiment, the pressure in the high pressure system piping 19 is used to detect the liquid sample 2 flowing inside the system piping 19. It is sent to Department 7.

また第2図で内径の細い樹脂チューブ12は流
量計の後に置かれているが、このために流量計内
部の液体圧力も高まり、流量測定も気泡に依る誤
差を受け難くなる。
In addition, in FIG. 2, the resin tube 12 with a narrow inner diameter is placed after the flowmeter, which increases the liquid pressure inside the flowmeter and makes the flow rate measurement less susceptible to errors caused by air bubbles.

〔考案の効果〕[Effect of idea]

以上説明した如く本考案によれば、排出流路系
の一部に内径の細い樹脂チユーブを介在せしめて
いるため、検出部内部の液体の圧力が高まり、液
体試料の沸点が上昇すると共に気体の液体中への
溶解度が増大するので既に液体試料中に存在する
気泡が消失し、或いは新たな発生が妨げられるこ
とになる。この効果は空気分子からなる気泡、及
び液体試料の蒸気からなる気泡いずれにも有効で
ある。従つて非常に容易な構成で気泡による偽計
数の問題を改善する効果が得られ測定精度を向上
することが可能になる。
As explained above, according to the present invention, since a resin tube with a narrow inner diameter is interposed in a part of the discharge channel system, the pressure of the liquid inside the detection section increases, the boiling point of the liquid sample increases, and the gas Due to the increased solubility in the liquid, gas bubbles already present in the liquid sample disappear or new generation is prevented. This effect is effective for both bubbles made of air molecules and bubbles made of vapor of a liquid sample. Therefore, the effect of improving the problem of false counting due to air bubbles can be obtained with a very simple configuration, and it becomes possible to improve measurement accuracy.

その上本考案は測定以前に液体試料に対し何等
操作を加えることなく上記効果を得ることが可能
な為、本考案の実施に依り液体試料中の被測定粒
子数が変化する虞が皆無である。
Furthermore, since the present invention can obtain the above effects without performing any operations on the liquid sample before measurement, there is no possibility that the number of particles to be measured in the liquid sample will change due to the implementation of the present invention. .

また管路の抵抗増大手段として内径の細い樹脂
チューブを用いるためこの樹脂チユーブの長さを
変えることにより圧力損失の大きさを調節して、
沸点の異なる種々の液体試料に対しても容易に最
適な条件で本考案を適用することが可能である。
In addition, since a resin tube with a narrow inner diameter is used as a means for increasing the resistance of the conduit, the magnitude of pressure loss can be adjusted by changing the length of this resin tube.
The present invention can be easily applied to various liquid samples with different boiling points under optimal conditions.

更に内径の細い樹脂チューブを用いており柔軟
性に富むため、樹脂チューブが相当長くなる場合
でも折り曲げることによつて、装置内部に容易に
組み込むことが可能である。
Furthermore, since a resin tube with a small inner diameter is used and is highly flexible, even if the resin tube is quite long, it can be easily incorporated into the device by bending it.

また樹脂材質をポリテトラフロロエチレンにす
れば耐薬品性が非常に向上する。
Furthermore, if polytetrafluoroethylene is used as the resin material, chemical resistance will be greatly improved.

更に従来の液中微粒子測定装置に於いては送出
圧力の調整による液体試料の流速調節が低粘度の
液体試料に対しては、容易ではなかつたが本考案
を適用した液中微粒子測定装置に於いては低粘度
の液体試料に対しても送出圧力の調整による液体
試料の流速調節が容易になる効果が得られる。
Furthermore, in conventional liquid particle measuring devices, it was not easy to adjust the flow rate of liquid samples by adjusting the delivery pressure for low-viscosity liquid samples, but in the liquid particle measuring device to which the present invention is applied, Therefore, even for a low-viscosity liquid sample, the flow rate of the liquid sample can be easily adjusted by adjusting the delivery pressure.

また第2図に示す実施例では、内径の細い樹脂
チューブは流量計の後に置かれているため流量計
内部の液体圧力も高まり、流量測定も気泡に依る
誤差を受け難くなる効果が得られる。
Further, in the embodiment shown in FIG. 2, since the resin tube with a small inner diameter is placed after the flowmeter, the liquid pressure inside the flowmeter increases, and the flow measurement is less susceptible to errors caused by air bubbles.

以上の如く本考案によれば、非常に容易な構成
にも拘らず気泡発生による偽計数の問題を解決す
ることができ、合わせて上述の如く多数の効果が
得られる。
As described above, according to the present invention, the problem of false counting due to the generation of bubbles can be solved despite the extremely simple configuration, and in addition, many effects can be obtained as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す構成図を、又
第2図は同じく他の実施例を示す構成図を示す。
第3図は従来の微粒子測定装置の一例をしめす。 2……液体試料、7……検出部、11……排出
パイプ(排出流路系)、12……内径の細い樹脂
チユーブ。
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a block diagram showing another embodiment.
FIG. 3 shows an example of a conventional particle measuring device. 2...Liquid sample, 7...Detection section, 11...Discharge pipe (discharge channel system), 12...Resin tube with narrow inner diameter.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 液体試料2中の微粒子を検出する検出部7から
導出される液体試料2の流れる排出流路系11
に、内径の細い樹脂チユーブ12を介在せしめ、
この樹脂チユーブ12の存在により、前記検出部
7内の液体圧力を高めることを特徴とする微粒子
測定装置。
A discharge channel system 11 through which the liquid sample 2 is drawn out from the detection unit 7 that detects particulates in the liquid sample 2.
A resin tube 12 with a narrow inner diameter is interposed in the tube,
A particulate measuring device characterized in that the presence of this resin tube 12 increases the liquid pressure within the detection section 7.
JP18347785U 1985-11-28 1985-11-28 Expired JPH043251Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18347785U JPH043251Y2 (en) 1985-11-28 1985-11-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18347785U JPH043251Y2 (en) 1985-11-28 1985-11-28

Publications (2)

Publication Number Publication Date
JPS6291235U JPS6291235U (en) 1987-06-11
JPH043251Y2 true JPH043251Y2 (en) 1992-02-03

Family

ID=31130249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18347785U Expired JPH043251Y2 (en) 1985-11-28 1985-11-28

Country Status (1)

Country Link
JP (1) JPH043251Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511770A (en) * 2003-11-14 2007-05-10 インバーネス・メデイカル・スウイツツアーランド・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sample collection cup with integrated sample analysis system
JP2008014788A (en) * 2006-07-05 2008-01-24 Shimadzu Corp Liquid chromatograph mass spectrometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253547B2 (en) * 2014-08-25 2017-12-27 株式会社日立製作所 Liquid feeding device and chemical analyzer using the liquid feeding device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511770A (en) * 2003-11-14 2007-05-10 インバーネス・メデイカル・スウイツツアーランド・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sample collection cup with integrated sample analysis system
JP2008014788A (en) * 2006-07-05 2008-01-24 Shimadzu Corp Liquid chromatograph mass spectrometer
JP4577280B2 (en) * 2006-07-05 2010-11-10 株式会社島津製作所 Liquid chromatograph mass spectrometer

Also Published As

Publication number Publication date
JPS6291235U (en) 1987-06-11

Similar Documents

Publication Publication Date Title
Kocamustafaogullari et al. An experimental study on local interfacial parameters in a horizontal bubbly two-phase flow
US2322018A (en) Sampling and metering device
KR870008184A (en) Measurement system of foreign matters in liquid
CN101377469B (en) Method and apparatus for real-time detecting mixing gas component content by thermal conductivity detector
CN100472184C (en) Monitoring Two-Phase Fluid Flow Using a Vortex Current Meter
TWI772557B (en) Measurement system and measurement method for hydrogen peroxide concentration
CN209821028U (en) A rock core permeability testing device
CN108458763B (en) Novel multiphase flowmeter based on horizontal pipeline and detection method
JPH043251Y2 (en)
US4077261A (en) Instrument protective apparatus
US4573346A (en) Method of measuring the composition of an oil and water mixture
CN209378832U (en) A kind of device prepared for laboratory standard mixed gas
CN103033225A (en) Device for measuring split-phase flow of two-phase flow under steady state condition
JPH044203Y2 (en)
US5747667A (en) Particle counter verification method
US4386518A (en) Apparatus and method for measuring low concentrations of high molecular weight polymers in solution
Peng et al. Hilbert–Huang transform (HHT) based analysis of signal characteristics of vortex flowmeter in oscillatory flow
CN109030093B (en) Bubble monitoring method, bubble monitoring device and sample analyzer
Lubetkin Measurement of bubble nucleation rates by an acoustic method
DE102015008995B4 (en) Method and device for the non-invasive determination of the flow velocity, the volume flow or the electrical conductivity of a flowing fluid
RU2215277C1 (en) Procedure of taking samples of liquid from pipe-line and device for its realization
US4450712A (en) Pulp consistancy measurement
US4224567A (en) Apparatus for measuring resistance change only in a cell analyzer and method for calibrating it
WO1992017758A1 (en) Device for protecting pressure detectors from aggressive measuring media
DK202200828A1 (en) Device for monitoring quality of drinking water