[go: up one dir, main page]

JPH04324208A - Radiation ray resistant coaxial cable - Google Patents

Radiation ray resistant coaxial cable

Info

Publication number
JPH04324208A
JPH04324208A JP3095530A JP9553091A JPH04324208A JP H04324208 A JPH04324208 A JP H04324208A JP 3095530 A JP3095530 A JP 3095530A JP 9553091 A JP9553091 A JP 9553091A JP H04324208 A JPH04324208 A JP H04324208A
Authority
JP
Japan
Prior art keywords
coaxial cable
radiation
silicone
polyetherimide
flexibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3095530A
Other languages
Japanese (ja)
Inventor
Toshiaki Yagi
敏明 八木
Waichiro Kawakami
川上 和市郎
Seiji Kamimura
神村 誠二
Ikuo Seki
育雄 関
Kiyoshi Watanabe
清 渡辺
Hideki Yagyu
柳生 秀樹
Takao Onishi
大西 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Cable Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Cable Ltd
Priority to JP3095530A priority Critical patent/JPH04324208A/en
Publication of JPH04324208A publication Critical patent/JPH04324208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Paints Or Removers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は耐放射線性同軸ケ−ブル
に係り、特に可とう性を向上させた耐放射線性同軸ケ−
ブルに関するものである。
[Field of Industrial Application] The present invention relates to a radiation-resistant coaxial cable, and in particular to a radiation-resistant coaxial cable with improved flexibility.
It's about bulls.

【0002】0002

【従来の技術】近年、原子力産業の発展に伴い、核燃料
サイクル施設の建設は急を要している。核燃料サイクル
施設内には、通常一般のプラントに比べて非常に高レベ
ルな放射線場となる領域が存在し、この種の施設におい
て使用される同軸ケ−ブルには10MGy級の高度な耐
放射線性が要求される。
BACKGROUND OF THE INVENTION In recent years, with the development of the nuclear power industry, construction of nuclear fuel cycle facilities has become urgent. Nuclear fuel cycle facilities usually have areas with extremely high radiation levels compared to general plants, and the coaxial cables used in these types of facilities have a high radiation resistance of 10 MGy class. is required.

【0003】0003

【発明が解決しようとする課題】そこで、上述の要求に
応えるべく、同軸ケ−ブルの絶縁体に難燃EPゴムを用
いる方法が試みられた。しかし、この方法により製造さ
れた同軸ケ−ブルは減衰量がやや大きく、また比誘電率
の周波数特性が不安定であるという欠点を有していた。
SUMMARY OF THE INVENTION In order to meet the above-mentioned requirements, attempts have been made to use flame-retardant EP rubber as an insulator for coaxial cables. However, the coaxial cable manufactured by this method has the disadvantage that the amount of attenuation is rather large and the frequency characteristics of the dielectric constant are unstable.

【0004】また最近、本質的に耐放射線性に優れ、且
つ誘電特性が比較的良好なポリエ−テルイミドを溶融押
出成形し発泡させた絶縁体を採用することにより、誘電
特性にすぐれた耐放射線性同軸ケ−ブルの実現可能性が
見出だされた。しかしながら、本来ポリエ−テルイミド
は、剛直で可とう性に劣るという欠点を有しており、発
泡化により可とう性はやや向上するもののなお不充分で
ある。従って、ケ−ブル長の長いものが製造困難である
こと、使用の際に運搬が困難であること等、多くの制約
があった。
Recently, an insulator made by melt extruding and foaming polyetherimide, which inherently has excellent radiation resistance and relatively good dielectric properties, has been adopted, thereby achieving radiation resistance with excellent dielectric properties. The feasibility of coaxial cables was discovered. However, polyetherimide originally has the disadvantage of being rigid and having poor flexibility, and although the flexibility is improved somewhat by foaming, it is still insufficient. Therefore, there are many limitations, such as the difficulty in manufacturing long cables and the difficulty in transporting them during use.

【0005】本発明は、上記課題を解消すべく創案され
たものであり、可とう性、耐放射線性、誘電特性が共に
優れている新規な耐放射線性同軸ケ−ブルを提供するこ
とを目的とする。
The present invention was devised to solve the above problems, and an object thereof is to provide a novel radiation-resistant coaxial cable that is excellent in flexibility, radiation resistance, and dielectric properties. shall be.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、本発明の耐放射線性同軸ケ−ブルは、内外導体間に絶
縁体層を形成してなる同軸ケ−ブルにおいて、内側導体
の外周にシリコ−ン変性したポリエ−テルイミドを発泡
押出被覆して上記絶縁体層を形成したものである。
[Means for Solving the Problems] In order to achieve the above object, the radiation-resistant coaxial cable of the present invention is a coaxial cable in which an insulating layer is formed between the inner and outer conductors. The above-mentioned insulating layer is formed by foaming and extruding coating of silicone-modified polyetherimide.

【0007】[0007]

【作用】上述した如く、ポリエ−テルイミドの可とう性
は発泡化によりやや向上させることができる。しかしな
がら、発泡化処理だけでは実用上十分な可とう性は得ら
れない。そこで、シリコ−ン変性したポリエ−テルイミ
ドを内側導体の外周に発泡押出被覆して絶縁体層を形成
する。ポリエ−テルイミドは、シリコ−ン変性すること
によって著しく可とう性が向上するので、これを発泡化
させたものを絶縁体に使用することにより耐放射線性同
軸ケ−ブルの可とう性を著しく向上させることができる
[Function] As mentioned above, the flexibility of polyetherimide can be slightly improved by foaming. However, foaming treatment alone does not provide sufficient flexibility for practical use. Therefore, an insulating layer is formed by foaming and extruding coating the outer periphery of the inner conductor with silicone-modified polyetherimide. The flexibility of polyetherimide is significantly improved by silicone modification, so by foaming it and using it as an insulator, the flexibility of radiation-resistant coaxial cables can be significantly improved. can be done.

【0008】[0008]

【実施例】次に、本発明の一実施例について説明する。[Embodiment] Next, an embodiment of the present invention will be described.

【0009】本発明に係る耐放射線性同軸ケ−ブルの絶
縁体に使用されるシリコ−ン変性ポリエ−テルイミドは
、10〜70mol%のジシロキサン単位と、これと9
0〜30%のエ−テルイミド単位とを相互縮合したもの
であり、市販品としてはGE社製「ウルテムD−900
0」,「ウルテムD−9001」(ともに商品名)を挙
げることができる。尚、このシリコ−ン変性ポリエ−テ
ルイミドとポリエ−テルイミドとをブレンドし、シリコ
−ン総量が1〜40重量部になるものも有効である。 発泡剤としては、窒素,ヘリウム,ネオン,アルゴン等
の不活性ガス、プロパン,ブタン,ヘキサン,ペンタン
等の炭化水素が代表的であるが、フレオン−11,フレ
オン−12,フレオン−13,フレオン−14,フレオ
ン−フレオン−22,フレオン−23,フレオン−11
3,フレオン−114等のふっ素化炭素でもよい。発泡
剤の添加方法としては、予め樹脂に発泡剤を含浸、溶解
させてもよく、また、押出機中に発泡剤を注入する方法
でもよい。気泡径の調整及び均一な気泡の形成を容易と
するために発泡核剤を使用してもよく、発泡核剤として
は、窒化硼素、酸化ケイ素、酸化アルミナ、酸化ジルコ
ニウム等が挙げられる。
The silicone-modified polyetherimide used for the insulator of the radiation-resistant coaxial cable according to the present invention contains 10 to 70 mol% of disiloxane units and 9
It is a product obtained by mutually condensing 0 to 30% of etherimide units, and the commercially available product is "Ultem D-900" manufactured by GE.
0'' and ``Ultem D-9001'' (both trade names). It is also effective to blend this silicone-modified polyetherimide and polyetherimide so that the total amount of silicone is 1 to 40 parts by weight. Typical blowing agents include inert gases such as nitrogen, helium, neon, and argon, and hydrocarbons such as propane, butane, hexane, and pentane; 14, Freon-Freon-22, Freon-23, Freon-11
3. Fluorinated carbon such as Freon-114 may also be used. The foaming agent may be added by impregnating and dissolving the foaming agent in the resin in advance, or by injecting the foaming agent into an extruder. A foam nucleating agent may be used to facilitate adjustment of the cell diameter and formation of uniform cells, and examples of the foam nucleating agent include boron nitride, silicon oxide, alumina oxide, zirconium oxide, and the like.

【0010】次に、製造方法の具体例を示す。Next, a specific example of the manufacturing method will be shown.

【0011】ポリエ−テルイミド80重量部と、シリコ
−ン20重量部からなるシリコ−ン変性ポリエ−テルイ
ミドに窒化硼素を0.5重量部添加したものを押出機の
ホッパから供給し、押出機の中間部で窒素ガスを30k
g/cm2 Gの圧力で注入して溶融樹脂中に均一に分
散させ、外径1.2mmφの導体外周に厚さ2.0mm
に押出被覆した。尚、押出し条件は、40mm押出機を
使用し、L/D=29,圧縮比=2.5,供給部の溝深
さ=2.0mm,クロスヘッドに近い計量部の溝深さ=
3.0mm,スクリュウ回転数=10rpm,シリンダ
各部の設定温度=370℃,クロスヘッド設定温度=3
50℃,ダイス設定温度=290℃,ダイス内径=3.
0mmとした。
A silicone-modified polyetherimide consisting of 80 parts by weight of polyetherimide and 20 parts by weight of silicone to which 0.5 parts by weight of boron nitride was added was supplied from the hopper of the extruder. 30k nitrogen gas in the middle part
Inject it at a pressure of g/cm2 G to uniformly disperse it in the molten resin, and apply it to the outer periphery of a conductor with an outer diameter of 1.2 mmφ to a thickness of 2.0 mm.
extrusion coated. The extrusion conditions were as follows: A 40 mm extruder was used, L/D = 29, compression ratio = 2.5, groove depth of the feeding section = 2.0 mm, groove depth of the measuring section near the crosshead =
3.0mm, screw rotation speed = 10rpm, set temperature of each part of cylinder = 370℃, crosshead set temperature = 3
50℃, die setting temperature = 290℃, die inner diameter = 3.
It was set to 0 mm.

【0012】上述の方法で製造した同軸ケ−ブルの電気
特性による耐放射線性評価、可とう性評価の結果を表1
に示す。
Table 1 shows the results of radiation resistance evaluation and flexibility evaluation based on the electrical properties of the coaxial cable manufactured by the above method.
Shown below.

【0013】[0013]

【表1】[Table 1]

【0014】*1耐放射線性 10MGy照射後の100KHzにおける静電容量を測
定した。なお、比較のため未照射のものの100KHz
における静電容量も併記した。
*1 Radiation resistance The capacitance at 100 KHz after 10 MGy irradiation was measured. For comparison, the 100KHz of the unirradiated
The capacitance at is also shown.

【0015】*2可とう性 長さ30cmの未照射の試料を水平に片端支持し、先端
に100gの荷重をかけたときのたわみ量を測定した。
*2 Flexibility An unirradiated sample with a length of 30 cm was supported horizontally at one end, and the amount of deflection was measured when a load of 100 g was applied to the tip.

【0016】この評価結果からもわかるように、ポリエ
−テルイミド80重量部と、シリコ−ン20重量部から
なるシリコ−ン変性ポリエ−テルイミドを使用した耐放
射線性同軸ケ−ブルは、耐放射線性が優れていると共に
可とう性が良好である。また、ポリエ−テルイミドとシ
リコ−ンの割合が90:10,50:50,40:60
のものも、耐放射線性、可とう性が共に良好である。こ
れに対し、比較例として示したポリエ−テルイミドとシ
リコ−ンの割合が100:0,95:5,20:80の
シリコ−ン変性ポリエ−テルイミドを使用したものは、
耐放射線性、可とう性の少なくとも一方が不良という結
果が得られた。
As can be seen from this evaluation result, the radiation-resistant coaxial cable using silicone-modified polyetherimide consisting of 80 parts by weight of polyetherimide and 20 parts by weight of silicone has excellent radiation resistance. It has excellent properties and flexibility. Also, the ratio of polyetherimide and silicone is 90:10, 50:50, 40:60.
The material also has good radiation resistance and flexibility. On the other hand, the comparative examples using silicone-modified polyetherimide with a ratio of polyetherimide and silicone of 100:0, 95:5, and 20:80,
The result was that at least one of radiation resistance and flexibility was poor.

【0017】このように、ポリエ−テルイミドとシリコ
−ンとを適切な割合で含むシリコ−ン変性ポリエ−テル
イミドを胴体外周に発泡押出被覆して絶縁体層を形成す
ることにより、耐放射線性を損なうことなく耐放射線性
同軸ケ−ブルの可とう性を向上させることができる。
As described above, by forming an insulating layer by foaming and extruding coating the outer periphery of the body with silicone-modified polyetherimide containing polyetherimide and silicone in an appropriate ratio, radiation resistance can be improved. The flexibility of radiation-resistant coaxial cables can be improved without damage.

【0018】[0018]

【発明の効果】以上要するに本発明によれば、可とう性
、耐放射線性、誘電特性が共に良好な耐放射線性同軸ケ
−ブルを提供することができる。
In summary, according to the present invention, a radiation-resistant coaxial cable having good flexibility, radiation resistance, and dielectric properties can be provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  内外導体間に絶縁体層を形成してなる
同軸ケ−ブルにおいて、内側導体の外周にシリコ−ン変
性したポリエ−テルイミドを発泡押出被覆して上記絶縁
体層を形成したことを特徴とする耐放射線性同軸ケ−ブ
ル。
[Claim 1] A coaxial cable in which an insulating layer is formed between the inner and outer conductors, and the insulating layer is formed by foaming and extruding covering the outer periphery of the inner conductor with silicone-modified polyetherimide. A radiation-resistant coaxial cable featuring:
JP3095530A 1991-04-25 1991-04-25 Radiation ray resistant coaxial cable Pending JPH04324208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095530A JPH04324208A (en) 1991-04-25 1991-04-25 Radiation ray resistant coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095530A JPH04324208A (en) 1991-04-25 1991-04-25 Radiation ray resistant coaxial cable

Publications (1)

Publication Number Publication Date
JPH04324208A true JPH04324208A (en) 1992-11-13

Family

ID=14140113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095530A Pending JPH04324208A (en) 1991-04-25 1991-04-25 Radiation ray resistant coaxial cable

Country Status (1)

Country Link
JP (1) JPH04324208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140299354A1 (en) * 2013-03-14 2014-10-09 Howard Lind Custom cable technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222833A (en) * 1985-07-22 1987-01-31 Asahi Chem Ind Co Ltd High-strength polyether imide foam board
JPS63304516A (en) * 1987-06-03 1988-12-12 Hitachi Cable Ltd Insulated electric wire
JPS63315229A (en) * 1987-12-28 1988-12-22 シュレイナー ルシュトバート グロエプ ビー ブイ Thermoplastic sandwich structure and manufacture of sandwich structure
JPS6452307A (en) * 1987-05-01 1989-02-28 Furukawa Electric Co Ltd Coaxial core
JPH0355713A (en) * 1989-07-04 1991-03-11 Vactite Ltd Wire insulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222833A (en) * 1985-07-22 1987-01-31 Asahi Chem Ind Co Ltd High-strength polyether imide foam board
JPS6452307A (en) * 1987-05-01 1989-02-28 Furukawa Electric Co Ltd Coaxial core
JPS63304516A (en) * 1987-06-03 1988-12-12 Hitachi Cable Ltd Insulated electric wire
JPS63315229A (en) * 1987-12-28 1988-12-22 シュレイナー ルシュトバート グロエプ ビー ブイ Thermoplastic sandwich structure and manufacture of sandwich structure
JPH0355713A (en) * 1989-07-04 1991-03-11 Vactite Ltd Wire insulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140299354A1 (en) * 2013-03-14 2014-10-09 Howard Lind Custom cable technology

Similar Documents

Publication Publication Date Title
JP2001031792A (en) Foaming composition and foamed coaxial insulating cable
CA1124950A (en) Foamed plastic insulated wire and method for producing the same
JPH04324208A (en) Radiation ray resistant coaxial cable
US5837173A (en) Process for preparing expanded articles based on chlorotrifluoroethylene copolymers
JP3860243B2 (en) Foamable resin composition for highly foamed insulated polyethylene and highly foamed insulated polyethylene coated wire made by coating this
JP3227091B2 (en) Insulating material for coaxial cable, coaxial cable, and method of manufacturing coaxial cable
JP2596114B2 (en) Method of forming highly foamed propylene-based resin insulation coating
JPS59196512A (en) Method of producing high foamable plastic cable
JPH03146532A (en) Expandable polyolefin resin composition for covering electric wires
JPH0143966B2 (en)
JPH01154410A (en) Manufacturing method of foamed fluororesin insulated wire
JPS598216A (en) Polyolefin insulated power cable with semiconducting layer
JP3514835B2 (en) High foam covered wire and method of manufacturing the same
JPH02276109A (en) Insulated wire and its manufacturing method
JPH04348141A (en) Polymer composition for foam molding
JPH08306250A (en) Foam insulated wire and method for manufacturing the same
JPH04356539A (en) Polymer composition for expansion molding
JPH0574227A (en) High-foam plastic insulated wire
JPS6298507A (en) Method for forming foamed fluorine resin insulation coating
JPH052938A (en) Electric wire with foamed insulator and its manufacture
JPH0290418A (en) Foamed insulating wire
JPS63170817A (en) Manufacturing method of highly foamed insulated wire
JP2938474B2 (en) Method for manufacturing foamed insulated core of communication cable
KR820002000B1 (en) Manufacturing method of high foamable polyolefin insulating-wire
JPH01117210A (en) Method for manufacturing foam insulated wire