[go: up one dir, main page]

JPH0432374A - Electronic image pickup device - Google Patents

Electronic image pickup device

Info

Publication number
JPH0432374A
JPH0432374A JP2139468A JP13946890A JPH0432374A JP H0432374 A JPH0432374 A JP H0432374A JP 2139468 A JP2139468 A JP 2139468A JP 13946890 A JP13946890 A JP 13946890A JP H0432374 A JPH0432374 A JP H0432374A
Authority
JP
Japan
Prior art keywords
image pickup
image
photoelectric conversion
lens system
video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2139468A
Other languages
Japanese (ja)
Inventor
Shinichi Mihara
伸一 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2139468A priority Critical patent/JPH0432374A/en
Priority to US07/692,254 priority patent/US5184223A/en
Publication of JPH0432374A publication Critical patent/JPH0432374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the resolution by providing an image pickup optical system and a video signal process circuit forming a video signal for displaying a video image similar to an object based on an output signal from the image pickup element to the image pickup device. CONSTITUTION:The image pickup lens system 1 is a so-called anamorphic optical system and forms an image of a character A being an object in a way that its longitudinal direction is more expanded than the lateral direction. The image is received by an image pickup element 2 having a square photoelectric conversion plane, in which photoelectric conversion is processed. A prescribed processing is applied to an output signal obtained from the image pickup element 2 by a video process circuit 3 and displayed on a monitor 4 with a correct aspect ratio. Thus, the light utilizing efficiency of the light made incident through the image pickup lens system 1 for the image pickup element 2 having a square photoelectric conversion plane is highest and when the area for one picture element is kept same, the number of picture elements is maximized. Thus, the image pickup area is increased and high resolution processing of the electronic image pickup device is attained.

Description

【発明の詳細な説明】 こ産業上の利用分野〕 本発明は電子スチルカメラ、ビデオカメラなどの電子撮
像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to electronic imaging devices such as electronic still cameras and video cameras.

〔従来の技術〕[Conventional technology]

現在の高度情報化社会における視覚情報は、主として印
刷物(プリント類)や電子映像(テレビジョンヨンなど
)などの形態をとっており、膨大な量のこれらの視覚情
報が様々な場面で利用され、今後ますますその量が増大
していく傾同にある。これらの膨大な視覚情報を取捨選
択、整理整頓したり、保存したり、高速で伝送したりす
るには印刷物という形態では限界があるので、電子映像
という形を取らざるを得な(なってくる。ところが電子
映像は印刷物に比較すると、画質、特に解像力が低いこ
とは否めない。
Visual information in today's highly information-oriented society mainly takes the form of printed matter (prints) and electronic images (television, etc.), and a huge amount of this visual information is used in a variety of situations and will continue to grow in the future. The amount is on the rise. Printed matter has its limits when it comes to sorting, arranging, storing, and transmitting this vast amount of visual information at high speed, so we have no choice but to use electronic video. However, it cannot be denied that the image quality, especially the resolution, of electronic images is lower than that of printed materials.

この低い解像力は主として撮像素子の画素数が少なすぎ
ることに原因がある。例えば現時点では4.8mmX6
.4mmの撮像面に490X670個の画素が配列され
ているが、1画素当たりの大きさを小さくして画素数を
増やすことはもはや限界に近く、画素毎にマイクロレン
ズを設けて光量増を計るなどしてS/Nを高レベルに維
持しようとしているのが現状である。したがって、35
−フルサイズ銀塩フィルム並に画素を高密度化する道に
は厳しいものがある。画素の高密度化へのもう一つの通
としては物体の像を太き(結像させて撮像面積を増大す
ることがあるが、この方法では必然的に光学系が大きく
なるためコンパクト化の点で時代の流れに逆行すること
になる。
This low resolution is mainly due to the fact that the number of pixels of the image sensor is too small. For example, currently 4.8mmX6
.. 490 x 670 pixels are arranged on a 4mm imaging surface, but increasing the number of pixels by reducing the size of each pixel is close to the limit, so measures such as installing a microlens for each pixel to increase the amount of light are being taken. Currently, attempts are being made to maintain the S/N ratio at a high level. Therefore, 35
-The path to increasing pixel density to the level of full-size silver halide film is difficult. Another way to increase the density of pixels is to increase the imaging area by forming a thicker image of the object, but this method inevitably requires a larger optical system, so it is difficult to make it more compact. This would go against the flow of time.

3発明が解決17ようとする問題点〕 ところで、撮像素子の撮像面の形状は現在NTSC規格
に基づいて縦横比が3:4となっており、将来の高品位
テレビジョン規格においては更に縦横比が大きくなるこ
とが予測されている。これらに対応するレンズ系では少
なくとも撮像面(矩形)の外接円の内部での光学性能を
保証しなくてはならない。同一面積の矩形の撮像面にお
いては縦横比が大きいほどその外接円の半径が大きくな
り、これに対応するレンズ系は大きくならざるを得ない
[3] Problems that the Invention Attempts to Solve] By the way, the shape of the imaging surface of the image sensor currently has an aspect ratio of 3:4 based on the NTSC standard, and future high-definition television standards will further increase the aspect ratio. is predicted to increase. Lens systems compatible with these must ensure optical performance at least within the circumscribed circle of the imaging surface (rectangle). In a rectangular imaging surface with the same area, the larger the aspect ratio, the larger the radius of its circumscribed circle, and the corresponding lens system must be larger.

一方、同じ大きさの光学系を用いる場合、撮像面の縦横
比が大きいほど画素数を少なくせざるを得す、効率が良
くない。つまり、同じ大きさの光学系を用いる場合、撮
像面が正方形のとき受光面積が最大となるので、1画素
の大きさを同じとすれば画素数を最大とすることができ
る。垂直方間の画素数は規格で決められているので、水
平方向に画素数の増加分を割当てれば水平解像度を向上
させることができる。しかし、撮像面を正方形に構成し
たとしても、再生画面はNTSC規格ではあくまで縦横
比3:4であり、高品位テレビジョン規格ではそれ以上
としなくてはならない。
On the other hand, when using optical systems of the same size, the larger the aspect ratio of the imaging surface, the smaller the number of pixels must be, which is not efficient. That is, when using optical systems of the same size, the light receiving area is maximized when the imaging surface is square, so if the size of each pixel is the same, the number of pixels can be maximized. Since the number of pixels in the vertical direction is determined by the standard, horizontal resolution can be improved by allocating the increased number of pixels in the horizontal direction. However, even if the imaging surface is configured to be square, the reproduction screen has an aspect ratio of 3:4 according to the NTSC standard, and must be higher than this according to the high-definition television standard.

本発明は上記の諸点に鑑み、撮影レンズとし回転対称で
ない光学系を用いることにより、光学系を大きくせずに
画素数を増大させ解像力を改善した電子撮像装置を提供
することを目的とする。
In view of the above-mentioned points, an object of the present invention is to provide an electronic imaging device in which the number of pixels is increased and resolution is improved without increasing the size of the optical system by using an optical system that is not rotationally symmetrical as a photographing lens.

〔問題点を解決するための手段および作用〕本発明の電
子撮像装置は、xyz3次元座標空間において、2軸を
光軸としたときxz断面とyz断面とで結像倍率の異な
る撮像レンズ系により物体の像を形成し、前記像を光軸
にほぼ垂直な光電変換面を有する撮像素子で受けるよう
にした撮像光学系と、この撮像素子からの出力信号に基
づいて物体とほぼ相似形の映像を表示するための映像信
号を形成する映像信号プロセス回路とを備えたことを特
徴とするものである。
[Means and effects for solving the problem] The electronic imaging device of the present invention uses an imaging lens system that has different imaging magnifications in the xz section and the yz section when two axes are optical axes in an xyz three-dimensional coordinate space. An imaging optical system that forms an image of an object and receives the image with an image sensor having a photoelectric conversion surface substantially perpendicular to the optical axis, and an image that is substantially similar to the object based on an output signal from the image sensor. The present invention is characterized by comprising a video signal processing circuit that forms a video signal for displaying.

第1図は本発明の原理を示す概念図である。FIG. 1 is a conceptual diagram showing the principle of the present invention.

撮影レンズ系1はいわゆるアナモフィック光学系であっ
て、被写体である文字Aを縦方向を横方向よりも伸長し
て結像している。この像を正方形の光電変換面を有する
撮像素子2で受け、充電変換する。この撮像素子2から
得られる出力信号に映像プロセス回路3において所定の
処理を施し、正しい縦横比でモニター4に表示する。
The photographing lens system 1 is a so-called anamorphic optical system, and forms an image of the object, the letter A, by elongating it in the vertical direction more than in the horizontal direction. This image is received by an image sensor 2 having a square photoelectric conversion surface and charged and converted. The output signal obtained from the image sensor 2 is subjected to predetermined processing in the video processing circuit 3, and displayed on the monitor 4 with the correct aspect ratio.

一般に撮影レンズ系1のイメージサークルは撮像素子2
の矩形の光電変換面の外接円となるが、同じ大きさのイ
メージサークルに対し内接する矩形のうち最も面積が広
いのは正方形である。したがって、正方形の光電変換面
を有する撮像素子は撮影レンズ系を通って入射する光の
利用効率が最も高く、1画素の面積を同じとすれば画素
数を最大とすることができ、解像力向上という点で有利
である。しかし、通常のテレビジョン規格のうち画面の
縦横比などは人間工学に基づいて決められるべきもので
あるから、画面の形状を勝手に変更することは好ましく
ない。
Generally, the image circle of the photographing lens system 1 is the image circle of the image sensor 2.
This is the circumscribed circle of the rectangular photoelectric conversion surface, but the square has the largest area among the rectangles inscribed in an image circle of the same size. Therefore, an image sensor with a square photoelectric conversion surface has the highest utilization efficiency of light incident through the photographic lens system, and if the area of each pixel is the same, it can maximize the number of pixels, which improves resolution. It is advantageous in this respect. However, among the normal television standards, the aspect ratio of the screen should be determined based on ergonomics, so it is not desirable to change the shape of the screen arbitrarily.

そこで、本発明では通常の規格で定められた縦横比a:
b(例えばNTSC規格では3:4)の撮影範囲の被写
体をアナモ比1/’a:1/b(N’FSCでは1/’
3 : 1/4=4 : 3 )を有する撮影レンズ系
を用いて正方形に結像し、この像を正方形の光電変換面
を持った撮像素子2で受ける。撮像素子の垂直方向の画
素数を通常の規格で定められた走査線本数(N’f’S
C規格では525本)に合わせて決めておけば、水平方
向の画素数が増加することになり水平解像度を向上させ
ることができる。この場合、撮影レンズ系1では同じイ
メージサークルを持つ通常の撮影レンズ系に比較して縦
方向を横方向よりも伸長して結像させることになるので
、各画素を縦方向に細長い形状にすれば1画素の面積を
変えることなく水平方向の画素の密度を高くすることが
できる。
Therefore, in the present invention, the aspect ratio a defined by the usual standard:
b (for example, 3:4 according to the NTSC standard) with an analog ratio of 1/'a:1/b (1/' according to the N'FSC standard)
A square image is formed using a photographing lens system having a ratio of 3:1/4=4:3), and this image is received by an image sensor 2 having a square photoelectric conversion surface. The number of pixels in the vertical direction of the image sensor is the number of scanning lines (N'f'S) defined by the normal standard.
If the number of pixels is determined according to the C standard (525 lines), the number of pixels in the horizontal direction will increase, and the horizontal resolution can be improved. In this case, the photographic lens system 1 forms an image by elongating the vertical direction more than the horizontal direction compared to a normal photographing lens system having the same image circle, so each pixel is formed into an elongated shape in the vertical direction. For example, the density of pixels in the horizontal direction can be increased without changing the area of one pixel.

垂直方向の画素数は規格に合わせて決めであるので、光
電変換後は通常の信号処理を行なえば被写体と同じa 
: b (NTSCでは3:4)の縦横比を持った水平
解像度の高い再生画像を得ることができる。
The number of pixels in the vertical direction is determined according to the standard, so if normal signal processing is performed after photoelectric conversion, it will be the same as the subject.
A reproduced image with a high horizontal resolution and an aspect ratio of :b (3:4 in NTSC) can be obtained.

〔実施例〕〔Example〕

次に、本発明に用いる撮影レンズ系の実施例について説
明する。
Next, an example of a photographic lens system used in the present invention will be described.

アナモフィック光学系には、互いに直交する2方向で曲
率半径の異なるレンズを用いるもの、プリズムを用いる
ものなどがあるが、ここではレンズを用いたものを採用
している。
Anamorphic optical systems include those that use lenses with different radii of curvature in two directions orthogonal to each other, and those that use prisms, but those that use lenses are used here.

第2図はこの実施例のレンズ系の断面図で、(A)は水
平方向、(B)は垂直方向の断面を示している。図から
明らかなようにこのレンズ系は物体側から順に、正の屈
折力を持つ第ルンズ群Iと、負の屈折力を持ち変倍のた
めに光軸に沿って移動する第2レンズ群■と、正の屈折
力を持ち変倍のために光軸に沿って移動する第3レンズ
群■と、正の屈折力を持ち結像作用を有する第4レンズ
群■とから成り、第3レンズ群と第4レンズ群との間に
明るさ絞りSを有するものである。第4レンズ群の後方
に配置された平面板は赤外光カットフィルタ、光学的ロ
ーパスフィルタ等のフィルタ類である。このレンズ系は
撮像素子2の水平走査方向と垂直走査刃高とで異なる焦
点距離を持つレンズ要素を含んでおり垂直方向の結像倍
率が水平方向より大きいが、焦点位置はいずれの方向に
おいてもほぼ等しくなるようにしなければならないので
、以下のような点に注意する必要がある。
FIG. 2 is a cross-sectional view of the lens system of this embodiment, with (A) showing the cross section in the horizontal direction and (B) showing the cross section in the vertical direction. As is clear from the figure, this lens system consists of, in order from the object side, a lens group I that has positive refractive power, and a second lens group II that has negative refractive power and moves along the optical axis for zooming. , a third lens group (■) that has a positive refractive power and moves along the optical axis for zooming, and a fourth lens group (■) that has a positive refractive power and has an imaging function. An aperture stop S is provided between the lens group and the fourth lens group. The plane plate arranged behind the fourth lens group is a filter such as an infrared cut filter or an optical low-pass filter. This lens system includes lens elements that have different focal lengths in the horizontal scanning direction and vertical scanning blade height of the image sensor 2, and the imaging magnification in the vertical direction is larger than that in the horizontal direction, but the focal position remains unchanged in either direction. Since they must be approximately equal, the following points need to be taken into consideration.

アナモフィックレンズをトーリック面等で構成する場合
、最も物体側のトーリック面と最も像側のトーリック面
とで挟まれる部分系の寄与により撮影レンズ系1の垂直
断面と水平断面の焦点距離が異なるので、この部分系に
よる像点が両断面でほぼ一致するようにすれば良い。し
かし、この種の部分系では両断面で共通する共役点は一
種類しかない。したがって、この部分系はフォーカシン
グの際には移動しないようにし、ピント調節は必ずこの
部分系よりも物体側の別の部分系により行なうようにし
てこの部分系に対する物点位置を常時固定するようにし
なければならない。
When an anamorphic lens is composed of a toric surface or the like, the focal lengths of the vertical and horizontal sections of the photographing lens system 1 differ due to the contribution of the partial system sandwiched between the toric surface closest to the object side and the toric surface closest to the image side. The image points of this partial system may be made to substantially coincide on both cross sections. However, in this type of subsystem, there is only one type of conjugate point common to both cross sections. Therefore, this subsystem should not move during focusing, and focus adjustment should always be performed using another subsystem closer to the object than this subsystem, so that the object point position with respect to this subsystem is always fixed. There must be.

また゛、2方向の焦点距離が異なるレンズ要素を含んだ
部分系の撮像素子に対するアジマス(光軸の回りの傾き
)が変化すると像が歪む方向が一定せず非常に見難くな
るので、この部分系は光軸の回りに回転しない方が良い
Also, if the azimuth (tilt around the optical axis) of a partial system that includes lens elements with different focal lengths in two directions changes, the direction in which the image is distorted will not be constant and it will become very difficult to see. It is better not to rotate around the optical axis.

以上の考察に基づき、この実施例においてはアナモフィ
ックなレンズ要素をズーミング、フォーカシングなどの
際に移動しない第4レンズ群の中に設けた。
Based on the above considerations, in this example, an anamorphic lens element is provided in the fourth lens group that does not move during zooming, focusing, etc.

なお、ズームレンズにおいてはアナモフィックなレンズ
要素を変倍に寄与する部分に設けると2つの方向で変倍
比を一定にすることが難しくなるので、この点からも固
定レンズ群内にアナモフィックレンズ要素を設けること
が得策である。
In addition, in a zoom lens, if an anamorphic lens element is installed in the part that contributes to zooming, it becomes difficult to maintain a constant zoom ratio in two directions, so from this point of view as well, it is recommended to include an anamorphic lens element in the fixed lens group. It is a good idea to set one up.

この実施例のレンズデータを以下に示す。Lens data for this example is shown below.

rx  =  22.9782 dx −1,5nl−1,84866νl −23,7
8r 2  =  16.5102 d2−0.3 r 3 − 17.8333 d5 = 4.7   n2−L72916  ν2−
54.88r4−   ω d4−可変 r5・ 37.6803 d 5−0.9   n3 =1.6968  νs 
−56,49r 6 =  8.9793 d6−2.58 rツー−13,43148 d7= 0.8   n4”1.617   ν4”8
2.79r@ −52,3345 d8−可変 r、 −28,918 d9 =  1.7 r xo’″   ω dlo−可変 rl、−a  Co(絞り d xx=  1.8 r 12− 29.4596 d+2−2.1 r 13−−14.4996 d 13−0.33 r 14−− 9.1605 614−4.4237 r 15− 15.0204 dl;−0,4 r□6− 17.2834 d 16− 3.85 r 1アー−10,5496 dl7−0.2 r 18− 61.6049 dlg−2,t r□9=−28,462:J n 5  =1.84668 n6 −1.80518 n 7−1.80518 nB  =1.58913 =1.65844 ν5 −23.78 シロ ”25.43 シフ  −25,43 νa  −60,97 シ9 −50.86 d 19−13.8 Rhz=  14.1276 Dxz”dt2 R□3−−13.1097 Dx3−dl3 R工4−−10.9672 D x4−  d 14   N7−  n7R’、i
s=  11.0472 D工=−dl5 R16−17,0453 px6−aig R17−− 13.7064 D17−dxフ R工a” 278.7502 Dxs−dxs R□e=−53,4914 D19−dl9 r2o−(X) d 20− 1.6 r21ga  c。
rx = 22.9782 dx -1,5nl-1,84866νl -23,7
8r 2 = 16.5102 d2-0.3 r 3 - 17.8333 d5 = 4.7 n2-L72916 ν2-
54.88r4-ω d4-variable r5・37.6803 d5-0.9 n3 =1.6968 νs
-56,49r 6 = 8.9793 d6-2.58 r2-13,43148 d7 = 0.8 n4"1.617 ν4"8
2.79r@ -52,3345 d8-variable r, -28,918 d9 = 1.7 r xo''' ω dlo-variable rl, -a Co (aperture d xx = 1.8 r 12- 29.4596 d+2 -2.1 r 13--14.4996 d 13-0.33 r 14-- 9.1605 614-4.4237 r 15- 15.0204 dl;-0,4 r□6- 17.2834 d 16 - 3.85 r 1-10,5496 dl7-0.2 r 18- 61.6049 dlg-2, t r□9=-28,462:J n 5 =1.84668 n6 -1.80518 n 7 -1.80518 nB =1.58913 =1.65844 ν5 -23.78 Shiro ``25.43 Schiff -25,43 νa -60,97 Shi9 -50.86 d 19-13.8 Rhz= 14.1276 Dxz"dt2 R□3--13.1097 Dx3-dl3 R Eng4--10.9672 D x4- d 14 N7- n7R', i
s= 11.0472 D engineering=-dl5 R16-17,0453 px6-aig R17-- 13.7064 D17-dxF R engineering a" 278.7502 Dxs-dxs R□e=-53,4914 D19-dl9 r2o -(X) d20- 1.6 r21ga c.

s−rig n 10−1.51633  シ1o−84.i59−
ng Nb=n6 V6− シロ ■7  配  】ノ 7 Vs−ν8 ■、−ν9 dl1−4.4 r22′   ω d 22− 0.5 r231   l a:as−0,6 r 24−    (1) n xx−1,54771 n 12−1.51633 ν、□−62.83 ν□2”64.15 f LX= 10.3〜2B、19 、  f r−Y
= 13.74〜34.92 。
s-rig n 10-1.51633 Si1o-84. i59-
ng Nb=n6 V6- Shiro ■7 arrangement ]ノ 7 Vs-ν8 ■, -ν9 dl1-4.4 r22' ω d 22- 0.5 r231 l a: as-0,6 r 24- (1) n xx-1,54771 n 12-1.51633 ν, □-62.83 ν□2”64.15 f LX= 10.3~2B, 19, f r-Y
= 13.74~34.92.

Fx 7.′2.7 、  FY / 3.6 、  
I H=4.7但し、r+、R,+は各レンズ面の曲率
半径、d+、II)+は各レンズ面の間隔、n l 、
NJは各レンズの屈折率、νl、VJ は各レンズのア
ツベ数、ftxsfLyはそれぞれ水平方向および垂直
方向の全系の焦点距離、Fx、FYはそれぞれレンズ系
の水平方向および垂直方向のエフナンバ、IHは像高、
f−、fs、ftはそれぞれワイド、スタンダード、テ
レ状態における全系の焦点距離である。
Fx 7. '2.7, FY/3.6,
I H=4.7 However, r+, R, + is the radius of curvature of each lens surface, d+, II)+ is the distance between each lens surface, n l ,
NJ is the refractive index of each lens, νl, VJ is the Atsube number of each lens, ftxsfLy is the focal length of the entire system in the horizontal and vertical directions, respectively, Fx, FY are the f-numbers of the lens system in the horizontal and vertical directions, respectively, and IH is image height,
f-, fs, and ft are the focal lengths of the entire system in wide, standard, and telephoto conditions, respectively.

〔発明の効果コ 本発明によれば、物体像をそのシステム本来の縦横比と
異なる比率で結像させて、この像を正方形の撮像面を持
つ撮像素子で受けるようにしているので撮像面積を大き
くすることができ、電子撮像装置の高解像化に大きな効
果がある。
[Effects of the Invention] According to the present invention, an object image is formed at a ratio different from the original aspect ratio of the system, and this image is received by an image sensor having a square imaging surface, thereby reducing the imaging area. It can be made larger and has a great effect on increasing the resolution of electronic imaging devices.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] xyz3次元座標空間において、z軸を光軸としたとき
xz断面とyz断面とで結像倍率の異なる撮像レンズ系
により物体の像を形成し、この像を光軸にほぼ垂直な光
電変換面を有する撮像素子で受けるようにした撮像光学
系と、前記撮像素子からの出力信号に基づいて物体とほ
ぼ相似形の映像を表示するための映像信号を形成する映
像信号プロセス回路とを備えたことを特徴とする電子撮
像装置。
In the xyz three-dimensional coordinate space, when the z-axis is the optical axis, an image of the object is formed by an imaging lens system with different imaging magnifications in the xz and yz sections, and this image is converted into a photoelectric conversion surface that is approximately perpendicular to the optical axis. and a video signal processing circuit that forms a video signal for displaying an image substantially similar to an object based on an output signal from the image sensor. Characteristic electronic imaging device.
JP2139468A 1990-04-28 1990-05-29 Electronic image pickup device Pending JPH0432374A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2139468A JPH0432374A (en) 1990-05-29 1990-05-29 Electronic image pickup device
US07/692,254 US5184223A (en) 1990-04-28 1991-04-26 Electronic imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139468A JPH0432374A (en) 1990-05-29 1990-05-29 Electronic image pickup device

Publications (1)

Publication Number Publication Date
JPH0432374A true JPH0432374A (en) 1992-02-04

Family

ID=15245941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139468A Pending JPH0432374A (en) 1990-04-28 1990-05-29 Electronic image pickup device

Country Status (1)

Country Link
JP (1) JPH0432374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309241A (en) * 1992-01-24 1994-05-03 Loral Fairchild Corp. System and method for using an anamorphic fiber optic taper to extend the application of solid-state image sensors
CN102903092A (en) * 2012-09-07 2013-01-30 珠海一多监测科技有限公司 Four-point transformation based image adaptive-correction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309241A (en) * 1992-01-24 1994-05-03 Loral Fairchild Corp. System and method for using an anamorphic fiber optic taper to extend the application of solid-state image sensors
CN102903092A (en) * 2012-09-07 2013-01-30 珠海一多监测科技有限公司 Four-point transformation based image adaptive-correction method
CN102903092B (en) * 2012-09-07 2016-05-04 珠海一多监测科技有限公司 A kind of image adaptive bearing calibration based on four point transformation

Similar Documents

Publication Publication Date Title
CN105739071B (en) Zoom lens and the camera device including the zoom lens
US5184223A (en) Electronic imaging apparatus
US7180679B2 (en) Image-taking apparatus
JP2552861B2 (en) Zoom lens
CN214409431U (en) Light turning element for camera module, camera module and electronic device
KR100388917B1 (en) Optic system for photo lens
US20050200972A1 (en) Image-taking apparatus
US7139129B2 (en) Image-taking apparatus
CN103454754B (en) Zoom lens and the image pick-up device being furnished with zoom lens
JPH06165024A (en) Image pickup device, image reproducing device and video system
JP2000105334A (en) Image-formation lens
JP3519817B2 (en) Zoom lens
CN111538153B (en) High definition camera device and deformation doubling mirror
US5942746A (en) Multi-lenses optical device
JP2002357771A (en) Wide angle zoom lens and projection type display device using the same
JP3431968B2 (en) Optical system of amphibious camera
JP2984954B2 (en) Imaging device
EP1054281B1 (en) Zoom lens and video camera and electronic still camera using this
US4585314A (en) Projection lens
JP3368138B2 (en) Retro focus lens
JPH0432374A (en) Electronic image pickup device
JPH10227974A (en) Photographic lens for electronic still camera
US7035479B2 (en) Graded zooming
JP4663866B2 (en) Varifocal finite zoom lens
JPH116960A (en) Lens system and image pickup device