[go: up one dir, main page]

JPH04322065A - Manufacture of alkaline secondary battery - Google Patents

Manufacture of alkaline secondary battery

Info

Publication number
JPH04322065A
JPH04322065A JP3090886A JP9088691A JPH04322065A JP H04322065 A JPH04322065 A JP H04322065A JP 3090886 A JP3090886 A JP 3090886A JP 9088691 A JP9088691 A JP 9088691A JP H04322065 A JPH04322065 A JP H04322065A
Authority
JP
Japan
Prior art keywords
lithium ion
battery
charging
electrode
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3090886A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hasebe
裕之 長谷部
Koji Taguchi
田口 幸治
Kazuhiro Takeno
和太 武野
Katsuharu Ikeda
克治 池田
Yuji Sato
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP3090886A priority Critical patent/JPH04322065A/en
Publication of JPH04322065A publication Critical patent/JPH04322065A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve charging characteristic at high temperature and to improve discharging characteristic at low temperature by individually injecting at least two kinds of alkalline electrolytes of different lithium ion concentrations into battery cans stored in an electrode group. CONSTITUTION:Alkaline electrodes of different lithium ion concentrations are injected into an electrode group of battery cans, and are infiltrated gradually downward as in a layered manner in the order they are injected, until the electrolyte comes into electrode and is thus fixed. A layer portion of high lithium ion concentration and a layer portion of low lithium ion concentration are created in the battery can. In the portion where the concentration is high, charging characteristic at high temperature including in a case of oxygen excessive voltage at the time of charging at high temperature is improved. In the portion of low concentration, generation of NiOOH under excessive charging is suppressed, and discharging characteristic, in particular the discharging characteristic at low temperature is improved. As a result, an alkaline battery excellent in charging/discharging characteristics and in large current discharging characteristics in a wide temperature range is manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はアルカリ二次電池の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an alkaline secondary battery.

【0002】0002

【従来の技術】近年、電子部品の高集積化や実装技術の
進歩により電子機器のポータブル化,コードレス化が進
んでいる。それに伴って、屋外で使用される電子機器が
増加している。このため、かかる電子機器を駆動するた
めのアルカリ二次電池に対して高容量化と共に、広い温
度範囲において使用可能なことが要求されている。
BACKGROUND OF THE INVENTION In recent years, electronic devices have become more portable and cordless due to higher integration of electronic components and advances in packaging technology. Along with this, the number of electronic devices used outdoors is increasing. For this reason, alkaline secondary batteries for driving such electronic devices are required to have a high capacity and to be usable over a wide temperature range.

【0003】上記高容量化の要求に応えるため、ニッケ
ルカドミウム二次電池では、電池構造を改良したり、容
量規制電極であるニッケル電極の利用率を向上させたり
、或いは焼結式電極からペースト式電極にすることなど
によって、電池容量が40%程度向上されている。また
、負極に水素吸蔵合金を使用したニッケル水素二次電池
では、ニッケルカドミウム二次電池の2倍程度にまで電
池容量を高めたものが開発されている。
In order to meet the above-mentioned demand for higher capacity, nickel-cadmium secondary batteries have been developed by improving the battery structure, increasing the utilization rate of the nickel electrode, which is a capacity-limiting electrode, or changing from a sintered electrode to a paste type. By using it as an electrode, battery capacity has been improved by about 40%. Furthermore, nickel-metal hydride secondary batteries using a hydrogen storage alloy for the negative electrode have been developed with battery capacity approximately twice that of nickel-cadmium secondary batteries.

【0004】一方、広い温度範囲において使用する要求
に対しては、ニッケル電極中にカドミウムを添加したり
、アルカリ電解液にリチウムイオンやナトリウムイオン
などを添加することによって特定の温度領域の電池特性
を改善することが知られている。しかしながら、広い温
度範囲において良好な電池特性を得ることは困難である
。また、前記カドミウムの添加による改善は環境問題の
観点から好ましくない。しかも、高容量化を進めると使
用可能な温度範囲がより狭くなってしまうという傾向も
あった。このようなことから、従来のアルカリ二次電池
では、用途に応じて高温用、低温用、大電流放電用など
の多数の種類のものを用意する必要があった。
On the other hand, in response to the requirement for use in a wide temperature range, battery characteristics in a specific temperature range can be improved by adding cadmium to the nickel electrode or adding lithium ions or sodium ions to the alkaline electrolyte. known to improve. However, it is difficult to obtain good battery characteristics over a wide temperature range. Further, the improvement by adding cadmium is not preferable from the viewpoint of environmental problems. Furthermore, as the capacity increases, the usable temperature range tends to become narrower. For this reason, it has been necessary to prepare many types of conventional alkaline secondary batteries, such as those for high temperatures, those for low temperatures, and those for large current discharge, depending on the application.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、広い温度範囲にお
いて良好な電池特性を有するアルカリ二次電池を製造し
得る方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and it is an object of the present invention to provide a method for manufacturing an alkaline secondary battery that has good battery characteristics over a wide temperature range. It is something to do.

【0006】[0006]

【課題を解決するための手段】本発明は、リチウムイオ
ン濃度の異なる少なくとも2種類のアルカリ電解液を電
極群を収納した電池缶内にそれぞれ別々に注液する工程
を具備することを特徴とするアルカリ二次電池の製造方
法である。
[Means for Solving the Problems] The present invention is characterized by comprising the step of separately injecting at least two types of alkaline electrolytes having different lithium ion concentrations into a battery can housing an electrode group. This is a method for manufacturing an alkaline secondary battery.

【0007】前記リチウムイオン濃度の異なる少なくと
も2種類のアルカリ電解液としては、例えば水酸化カリ
ウムや水酸化ナトリウムに水酸化リチウム量を異ならせ
て溶解した水溶液の組合せ、前記水溶液とリチウムイオ
ンを含まない水酸化カリウム水溶液や水酸化ナトリウム
水溶液との組合せ等を挙げることができる。かかる組合
せのアルカリ電解液は、水酸化リチウムの規定度の差が
0.5N以上となるように調製されたものを用いること
が望ましい。
[0007] The at least two types of alkaline electrolytes having different lithium ion concentrations are, for example, a combination of aqueous solutions in which different amounts of lithium hydroxide are dissolved in potassium hydroxide or sodium hydroxide, or a combination of the above aqueous solution and a solution containing no lithium ions. Combinations with potassium hydroxide aqueous solution and sodium hydroxide aqueous solution can be mentioned. It is desirable to use such a combination of alkaline electrolytes prepared so that the difference in normality of lithium hydroxide is 0.5N or more.

【0008】前記アルカリ電解液の注液は、電池特性を
より向上させる観点からリチウムイオン濃度の高い順に
行なうことが望ましい。また、電池特性をより向上させ
る観点から、異なる種類のアルカリ電解液に注液を切り
替える際の間隔(放置時間)を30秒以上とすることが
望ましい。
[0008] The alkaline electrolyte is preferably injected in order of increasing lithium ion concentration from the viewpoint of further improving battery characteristics. Further, from the viewpoint of further improving battery characteristics, it is desirable that the interval (standing time) when switching to a different type of alkaline electrolyte to be injected is 30 seconds or more.

【0009】前記電極群を構成する正極としては、ニッ
ケル電極等が挙げられ、同電極群を構成する負極として
は、水素吸蔵合金電極、カドミウム電極等が挙げられる
。例えば、非焼結式ニッケル正極と水素吸蔵合金負極と
の間にセパレータを介在した電極群の場合、以下に説明
する構成となる。
Examples of the positive electrode constituting the electrode group include a nickel electrode, and examples of the negative electrode constituting the electrode group include a hydrogen storage alloy electrode, a cadmium electrode, and the like. For example, in the case of an electrode group in which a separator is interposed between a non-sintered nickel positive electrode and a hydrogen storage alloy negative electrode, the configuration will be described below.

【0010】前記非焼結式ニッケル正極としては、活物
質としての水酸化ニッケルに結着剤及び必要に応じて酸
化コバルトなどを配合した組成の合剤を集電体である導
電性芯体に形成したものが挙げられる。
[0010] The above-mentioned non-sintered nickel positive electrode uses a mixture of nickel hydroxide as an active material, a binder, and cobalt oxide as necessary, on a conductive core as a current collector. Examples include those that have been formed.

【0011】前記正極の合剤中に配合される結着剤とし
ては、例えばポリアクリル酸ソーダ、ポリアクリル酸カ
リウムなどのポリアクリル酸塩及びカルボキシメチルセ
ルロース(CMC)等を挙げることができる。かかる結
着剤の配合割合は、水酸化ニッケル100重量部に対し
て0.1〜2重量部の範囲とすることが望ましい。
[0011] Examples of the binder to be incorporated into the positive electrode mixture include polyacrylates such as sodium polyacrylate and potassium polyacrylate, and carboxymethyl cellulose (CMC). The blending ratio of such a binder is preferably in the range of 0.1 to 2 parts by weight per 100 parts by weight of nickel hydroxide.

【0012】前記正極の導電性芯体としては、例えばパ
ンチドメタル、エキスパンドメタル、金網等の二次元構
造のもの、発泡メタル、金属繊維の焼結基板、フェルト
状金属多孔体などの三次元構造のもの等を挙げることが
できる。
The conductive core of the positive electrode may have a two-dimensional structure such as punched metal, expanded metal, or wire mesh, or a three-dimensional structure such as foamed metal, a sintered substrate of metal fibers, or a felt-like metal porous body. Examples include things such as.

【0013】前記非焼結式ニッケル正極は、例えば前記
水酸化ニッケル、結着剤、及び酸化コバルトなどを水の
存在下で混練してペーストを調製し、このペーストを前
記導電性芯体に塗布、乾燥した後、ローラプレスを行な
うことにより製造される。前記水素吸蔵合金負極として
は、水素吸蔵合金粉末及び導電材粉末と結着剤を配合し
た組成の合剤を集電体である導電性芯体に形成したもの
が挙げられる。
[0013] The non-sintered nickel positive electrode is prepared by, for example, kneading the nickel hydroxide, a binder, cobalt oxide, etc. in the presence of water to prepare a paste, and applying this paste to the conductive core. After drying, it is manufactured by roller pressing. Examples of the hydrogen storage alloy negative electrode include those in which a mixture of a hydrogen storage alloy powder, a conductive material powder, and a binder is formed on a conductive core serving as a current collector.

【0014】前記負極の合剤中に配合される水素吸蔵合
金としては、格別制限されるものではなく、電解液中で
電気化学的に発生させた水素を吸蔵でき、かつ放電時に
その吸蔵水素を容易に放出できるものであればよい。例
えば、一般式XY5−a Za (但し、XはLaを含
む希土類元素、YはNi、ZはCo、Mn、Al、Fe
、Ti、Cu、Zn、Zr、Cr、V、Bから選ばれる
少なくとも1種の元素、aは0≦a<2.0を示す)に
て表されるものが用いられる。具体的にはLaNi5、
MmNi5 、LmNi5 (Lm;ランタン富化した
ミッシュメタル)、及びこれらのNiの一部をCo、M
n、Al、Fe、Ti、Cu、Zn、Zr、Cr、V、
Bのような元素で置換した多元素系のものを挙げること
ができる。
The hydrogen storage alloy to be mixed in the negative electrode mixture is not particularly limited, and is capable of storing hydrogen electrochemically generated in the electrolyte and capable of absorbing the stored hydrogen during discharge. Any material that can be easily released may be used. For example, the general formula XY5-a Za (where X is a rare earth element including La, Y is Ni, Z is Co, Mn, Al, Fe
, Ti, Cu, Zn, Zr, Cr, V, and B (a represents 0≦a<2.0). Specifically, LaNi5,
Co, M
n, Al, Fe, Ti, Cu, Zn, Zr, Cr, V,
Examples include multi-element compounds substituted with elements such as B.

【0015】前記負極の合剤中に配合される導電材粉末
としては、例えばカーボンブラック、黒鉛、アセチレン
ブラック等を挙げることができる。かかる導電材粉末の
配合割合は、水素吸蔵合金粉末100重量部に対して0
.1〜4重量部の範囲とすることが望ましい。より好ま
しい導電性粉末の配合割合は、水素吸蔵合金粉末100
重量部に対して0.1〜2重量部の範囲である。
[0015] Examples of the conductive material powder blended in the negative electrode mixture include carbon black, graphite, and acetylene black. The blending ratio of the conductive material powder is 0 to 100 parts by weight of the hydrogen storage alloy powder.
.. The amount is preferably in the range of 1 to 4 parts by weight. A more preferable blending ratio of the conductive powder is hydrogen storage alloy powder 100%
It ranges from 0.1 to 2 parts by weight.

【0016】前記負極の合剤中に配合される結着剤とし
ては、例えばポリアクリル酸ソーダ、ポリアクリル酸カ
リウムなどのポリアクリル酸塩、ポリテトラフルオロエ
チレン(PTFE)などのフッ素系樹脂、及びカルボキ
シメチルセルロース(CMC)等を挙げることができる
。かかる結着剤の配合割合は、水素吸蔵合金粉末100
重量部に対して0.1〜5重量部の範囲とすることが望
ましい。
[0016] Examples of the binder blended in the negative electrode mixture include polyacrylates such as sodium polyacrylate and potassium polyacrylate, fluororesins such as polytetrafluoroethylene (PTFE), and Examples include carboxymethylcellulose (CMC). The blending ratio of such a binder is 100% hydrogen storage alloy powder
It is desirable that the amount is in the range of 0.1 to 5 parts by weight.

【0017】前記負極の導電性芯体としては、例えばパ
ンチドメタル、エキスパンドメタル、金網等の二次元構
造のもの、発泡メタル、金属繊維の焼結基板、フェルト
状金属多孔体などの三次元構造のもの等を挙げることが
できる。
The conductive core of the negative electrode may be, for example, a two-dimensional structure such as punched metal, expanded metal, or wire mesh, or a three-dimensional structure such as a foamed metal, a sintered substrate of metal fibers, or a felt-like metal porous body. Examples include things such as.

【0018】前記水素吸蔵合金負極は、例えば前記水素
吸蔵合金粉末、導電材粉末、及び結着剤などを水の存在
下で混練してペーストを調製し、このペーストを前記導
電性芯体に塗布、乾燥した後、ローラプレスを行なうこ
とにより製造される。
The hydrogen storage alloy negative electrode is prepared by, for example, preparing a paste by kneading the hydrogen storage alloy powder, conductive material powder, binder, etc. in the presence of water, and applying this paste to the conductive core. After drying, it is manufactured by roller pressing.

【0019】前記非焼結式ニッケル正極と水素吸蔵合金
負極との間に介在されるセパレータとしては、ナイロン
、ポリプロピレン等の合成樹脂製不織布などを挙げるこ
とができる。
The separator interposed between the non-sintered nickel positive electrode and the hydrogen storage alloy negative electrode may be a nonwoven fabric made of synthetic resin such as nylon or polypropylene.

【0020】[0020]

【作用】アルカリ二次電池の温度特性は、高温では放電
特性が向上するものの充電特性,特に充電受入れ性にか
かわる充電効率が低下し、低温では充電特性が良好であ
るものの放電特性が悪化する。従って、高温での充電特
性を改善し、かつ低温での放電特性を改善することによ
って広い温度範囲で良好な電池特性を得ることができる
[Function] Regarding the temperature characteristics of alkaline secondary batteries, at high temperatures, the discharge characteristics improve, but the charging characteristics, especially the charging efficiency related to charge acceptance, decrease, and at low temperatures, although the charging characteristics are good, the discharge characteristics deteriorate. Therefore, by improving the charging characteristics at high temperatures and the discharging characteristics at low temperatures, good battery characteristics can be obtained over a wide temperature range.

【0021】本発明の製造方法は、リチウムイオン濃度
の異なる少なくとも2種類のアルカリ電解液を電極群を
収納した電池缶内にそれぞれ別々に注液する。これによ
り、リチウムイオン濃度の異なるアルカリ電解液が注液
された順に電池缶内の電極群に下方へ層をなすように浸
透する。こうして浸透したアルカリ電解液中のリチウム
イオンは、カリウムイオンやナトリウムイオンなどと異
なり電極(例えばニッケル電極)中に侵入して固定され
る。このため、電池缶内にリチウムイオン濃度の高い層
状の部位とリチウムイオン濃度の低い層状(又はカリウ
ムイオンやナトリウムイオンのみの層状)の部位とが生
じる。前記リチウムイオン濃度の高い部位は、高温充電
時の酸素過電圧を高めて高温時の充電特性を向上させる
。また、前記リチウムイオン濃度の低い部位は、過充電
時のγ−NiOOHの生成を抑制して放電特性,特に低
温時の放電特性を向上させる。その結果、広い温度範囲
において充放電特性、大電流放電特性に優れたアルカリ
二次電池を製造できる。
In the manufacturing method of the present invention, at least two types of alkaline electrolytes having different lithium ion concentrations are separately injected into a battery can housing an electrode group. As a result, alkaline electrolytes with different lithium ion concentrations permeate downward into the electrode group in the battery can in the order in which they were injected, forming layers. The lithium ions in the alkaline electrolyte that have permeated in this way, unlike potassium ions, sodium ions, etc., enter the electrode (for example, a nickel electrode) and are fixed. Therefore, a layered portion with a high lithium ion concentration and a layered portion with a low lithium ion concentration (or a layered portion with only potassium ions or sodium ions) are created in the battery can. The portions with high lithium ion concentration increase oxygen overvoltage during high temperature charging and improve charging characteristics at high temperatures. In addition, the region with a low lithium ion concentration suppresses the formation of γ-NiOOH during overcharging and improves discharge characteristics, particularly discharge characteristics at low temperatures. As a result, an alkaline secondary battery with excellent charge/discharge characteristics and large current discharge characteristics over a wide temperature range can be manufactured.

【0022】なお、リチウムイオン濃度の高いアルカリ
電解液とリチウムイオン濃度の低いアルカリ電解液との
注液量の割合を変えることにより、高温時と低温時との
電池特性のバランスを制御することができる。
[0022] By changing the ratio of the injection amount of alkaline electrolyte with high lithium ion concentration and alkaline electrolyte with low lithium ion concentration, it is possible to control the balance of battery characteristics at high temperature and low temperature. can.

【0023】[0023]

【実施例】以下、本発明の実施例を詳細に説明する。 実施例1〜4及び比較例1〜3EXAMPLES Examples of the present invention will be described in detail below. Examples 1-4 and Comparative Examples 1-3

【0024】まず、水酸化ニッケル90重量部、添加剤
としての酸化コバルト10重量部、及び結着剤としての
CMC0.3重量部とポリアクリル酸ソーダ0.3重量
部を混合した後、撹拌しながらペースト状になるまで水
を添加して正極活物質ペーストを調製した。つづいて、
この正極活物質ペーストをフェルト状金属多孔体に充填
,乾燥,プレスしてペースト式ニッケル電極を作製した
First, 90 parts by weight of nickel hydroxide, 10 parts by weight of cobalt oxide as an additive, 0.3 parts by weight of CMC as a binder, and 0.3 parts by weight of sodium polyacrylate were mixed and then stirred. A positive electrode active material paste was prepared by adding water until it became paste-like. Continuing,
This positive electrode active material paste was filled into a felt-like porous metal body, dried, and pressed to produce a paste-type nickel electrode.

【0025】一方、ランタン富化ミッシュメタル(Lm
)、ニッケル、コバルト、マンガン、アルミニウムを組
成がLmNi4.0 Co0.4 Mn0.3 Al0
.3 となるように秤量して混合した後、高周波誘導炉
で溶解,冷却して水素吸蔵合金インゴットを作製した。 つづいて、このインゴットを電気炉で熱処理した後、粉
砕して水素吸蔵合金粉末を得た。得られた水素吸蔵合金
粉末にカーボンブラック1重量%、CMC0.5重量%
、及びポリアクリル酸ソーダ0.5重量%を混合した後
、撹拌しながらペースト状になるまで水を添加して負極
活物質ペーストを調製した。ひきづつき、この負極活物
質ペーストをパンチドメタルに塗着,乾燥,プレスして
水素吸蔵合金電極を作製した。
On the other hand, lanthanum-enriched misch metal (Lm
), nickel, cobalt, manganese, and aluminum with a composition of LmNi4.0 Co0.4 Mn0.3 Al0
.. After weighing and mixing so as to give a hydrogen storage alloy ingot of 3, the mixture was melted and cooled in a high frequency induction furnace to produce a hydrogen storage alloy ingot. Subsequently, this ingot was heat treated in an electric furnace and then ground to obtain a hydrogen storage alloy powder. 1% by weight of carbon black and 0.5% by weight of CMC were added to the obtained hydrogen storage alloy powder.
, and 0.5% by weight of sodium polyacrylate, and then water was added with stirring until it became paste-like to prepare a negative electrode active material paste. Subsequently, this negative electrode active material paste was applied to a punched metal, dried, and pressed to produce a hydrogen storage alloy electrode.

【0026】次いで、前記ペースト式ニッケル電極と水
素吸蔵合金電極とをナイロンセパレータを介して捲回し
てAAサイズの電極群を作製し、これを電池缶内に挿入
した。つづいて、前記電池缶内に下記表1に示す組成及
び量のアルカリ電解液を同表1に示す手段により注液し
た後、封口してニッケル水素二次電池を製造した。
Next, the paste-type nickel electrode and the hydrogen storage alloy electrode were wound together with a nylon separator interposed therebetween to produce an AA-sized electrode group, which was inserted into a battery can. Subsequently, an alkaline electrolyte having the composition and amount shown in Table 1 below was injected into the battery can by the means shown in Table 1, and the can was sealed to produce a nickel-metal hydride secondary battery.

【0027】こうして得られた実施例1〜4及び比較例
1〜3の電池を0.1CmAで15時間初充電した後、
1Aで0.8Vまで放電した。つづいて、20℃中1/
3CmAで5時間充電した後、20℃中1Aで0.8V
まで放電する条件で充放電を10サイクル繰り返し、1
0サイクル目の放電容量をそれぞれ基準容量として測定
した。
After the batteries of Examples 1 to 4 and Comparative Examples 1 to 3 thus obtained were initially charged at 0.1 CmA for 15 hours,
It was discharged to 0.8V at 1A. Continuing, 1/ at 20℃
After charging at 3CmA for 5 hours, 0.8V at 1A at 20℃
Repeat charging and discharging for 10 cycles under conditions of discharging until 1
The discharge capacity at the 0th cycle was measured as the reference capacity.

【0028】次いで、実施例1〜4及び比較例1〜3の
電池について、45℃中0.1CmAで150%充電し
た後、20℃中1Aで0.8Vまで放電する高温充電試
験を行なった。また、20℃中1/3CmAで150%
充電した後、0℃中3Aで0.8Vまで放電する低温放
電試験を行なった。これら高温充電試験及び低温放電試
験における放電容量を測定し、前記基準容量に対する割
合を求めた。その結果を同表1に併記する。
Next, the batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were subjected to a high temperature charging test in which they were charged to 150% at 0.1 CmA at 45° C. and then discharged to 0.8 V at 1 A at 20° C. . Also, 150% at 1/3CmA at 20℃
After charging, a low temperature discharge test was conducted in which the battery was discharged to 0.8V at 3A at 0°C. The discharge capacity in these high-temperature charge tests and low-temperature discharge tests was measured, and the ratio to the reference capacity was determined. The results are also listed in Table 1.

【0029】[0029]

【表1】[Table 1]

【0030】表1から明らかなように実施例1〜4の電
池は、比較例1の電池と比べて高温での充電特性に優れ
ている。これは、電池缶内にリチウムイオン濃度の高い
部位があることによるものである。また、実施例1〜4
の電池は、比較例2,3の電池と比べて低温での放電特
性にも優れている。これは、電池缶内にリチウムイオン
濃度の低い部位ないしはリチウムイオンが存在しない部
位があることによるものである。
As is clear from Table 1, the batteries of Examples 1 to 4 have better charging characteristics at high temperatures than the battery of Comparative Example 1. This is due to the fact that there are areas with high lithium ion concentration inside the battery can. In addition, Examples 1 to 4
The battery also has excellent discharge characteristics at low temperatures compared to the batteries of Comparative Examples 2 and 3. This is because there are areas within the battery can where the concentration of lithium ions is low or where lithium ions are absent.

【0031】また、実施例1,2を比較すると、先にリ
チウムイオン濃度の高い電解液を注液した実施例1の方
が電池特性が良いのがわかる。これは、リチウムイオン
濃度の高い部位と低い部位とがそれぞれ均一に形成され
たことよる。
Further, when comparing Examples 1 and 2, it can be seen that Example 1, in which an electrolytic solution with a high lithium ion concentration was first injected, had better battery characteristics. This is because regions with high lithium ion concentration and regions with low lithium ion concentration are formed uniformly.

【0032】更に、実施例1,3,4を比較すると、異
なる種類のアルカリ電解液に注液を切り替える際の間隔
を30秒未満にした実施例3の方が低温での放電特性が
劣るのがわかる。これは、注液を切り替える際の間隔を
30秒未満にすると、注液されたリチウムイオンがニッ
ケル極に吸収される前に濃度の異なる電解液が注液され
るため、リチウムイオン濃度の高い部位と低い部位とが
不明瞭になり、低温での放電特性の改善効果が小さくな
ることによる。
Furthermore, when comparing Examples 1, 3, and 4, it was found that Example 3, in which the interval between injections of different types of alkaline electrolytes was less than 30 seconds, had inferior discharge characteristics at low temperatures. I understand. This is because if the interval between injections is less than 30 seconds, an electrolyte with a different concentration will be injected before the injected lithium ions are absorbed by the nickel electrode, resulting in areas with high lithium ion concentrations. This is because the low-temperature and low-temperature regions become unclear, and the effect of improving discharge characteristics at low temperatures becomes small.

【0033】従って、特に先にリチウムイオン濃度の高
いアルカリ電解液を注液した後、リチウムイオンの低い
アルカリ電解液ないしはリチウムイオンを含まないアル
カリ電解液を注液し、かつ注液を切り替える際の間隔を
30秒以上とすれば、高温での充電特性を十分に改善で
き、かつ低温での放電特性も十分に改善できるため、広
い温度範囲において充放電特性、大電流放電特性に優れ
た電池が得られることがわかる。
Therefore, especially when an alkaline electrolyte with a high lithium ion concentration is first injected, an alkaline electrolyte with a low lithium ion concentration or an alkaline electrolyte containing no lithium ions is injected, and when switching between injections, If the interval is 30 seconds or more, the charging characteristics at high temperatures can be sufficiently improved, and the discharging characteristics at low temperatures can also be sufficiently improved, resulting in a battery with excellent charging and discharging characteristics and large current discharging characteristics over a wide temperature range. You can see what you can get.

【0034】なお、上記実施例ではAAサイズのニッケ
ル水素二次電池について説明したが、より大きなサイズ
のAサイズ等の電池でも同様な効果が得られた。更にニ
ッケルカドミウム二次電池でも同様の効果が得られた。
[0034] In the above example, an AA size nickel-metal hydride secondary battery was described, but similar effects were obtained with larger A size batteries. Furthermore, similar effects were obtained with nickel-cadmium secondary batteries.

【0035】また、上記実施例ではリチウムイオン濃度
の異なるアルカリ電解液を2種類とした場合について説
明したが、リチウムイオン濃度の異なる3種類以上のア
ルカリ電解液を調製し、これらをそれぞれ別々に電池缶
内に注液すれば、特定温度領域の電池特性をきめ細かく
改善できる。
[0035]Also, in the above example, the case where two types of alkaline electrolytes with different lithium ion concentrations were used was explained, but three or more types of alkaline electrolytes with different lithium ion concentrations were prepared, and these were separately used in the battery. By injecting the liquid into the can, it is possible to finely improve battery characteristics in a specific temperature range.

【0036】[0036]

【発明の効果】以上詳述した如く、高温での充電特性を
改善でき、かつ低温での放電特性を改善でき、広い温度
範囲において充放電特性、大電流放電特性等の電池特性
に優れたアルカリ二次電池を製造し得る方法を提供する
ことができる。
Effects of the Invention As detailed above, an alkali which can improve charging characteristics at high temperatures and discharge characteristics at low temperatures, and has excellent battery characteristics such as charging and discharging characteristics and large current discharging characteristics over a wide temperature range. A method for manufacturing a secondary battery can be provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  リチウムイオン濃度の異なる少なくと
も2種類のアルカリ電解液を電極群を収納した電池缶内
にそれぞれ別々に注液する工程を具備することを特徴と
するアルカリ二次電池の製造方法。
1. A method for manufacturing an alkaline secondary battery, comprising the step of separately injecting at least two types of alkaline electrolytes having different lithium ion concentrations into a battery can housing an electrode group.
JP3090886A 1991-04-22 1991-04-22 Manufacture of alkaline secondary battery Pending JPH04322065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3090886A JPH04322065A (en) 1991-04-22 1991-04-22 Manufacture of alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3090886A JPH04322065A (en) 1991-04-22 1991-04-22 Manufacture of alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH04322065A true JPH04322065A (en) 1992-11-12

Family

ID=14010916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3090886A Pending JPH04322065A (en) 1991-04-22 1991-04-22 Manufacture of alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH04322065A (en)

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP3092222B2 (en) Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same
JPH0521064A (en) Nickel hydroxide4 active material powder and nickel positive electrode and alkaline storage battery using this
JP4010630B2 (en) Hydrogen storage alloy electrode
JP4747233B2 (en) Alkaline storage battery
JPH11111330A (en) Nickel-hydrogen storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2926732B2 (en) Alkaline secondary battery
JPH04322065A (en) Manufacture of alkaline secondary battery
JPH11288735A (en) Alkaline secondary battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JP2001223000A (en) Alkaline secondary battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH1040950A (en) Alkaline secondary battery
JP3330088B2 (en) Negative electrode for secondary battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery