JPH04321600A - Heat treatment of single crystal - Google Patents
Heat treatment of single crystalInfo
- Publication number
- JPH04321600A JPH04321600A JP9181091A JP9181091A JPH04321600A JP H04321600 A JPH04321600 A JP H04321600A JP 9181091 A JP9181091 A JP 9181091A JP 9181091 A JP9181091 A JP 9181091A JP H04321600 A JPH04321600 A JP H04321600A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- heat treatment
- scintillator
- cerium
- silicate compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、セリウム付活珪酸ガド
リニウム化合物からなる単結晶の熱処理法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heat treating a single crystal of a cerium-activated gadolinium silicate compound.
【0002】0002
【従来の技術】セリウムで付活した珪酸ガドリニウム化
合物 Gd2SiO5(以下GSOと呼ぶ)のシンチ
レータは蛍光減衰時間が60nsと短く、放射線吸収係
数も大きいことからポジトロンCTなどの放射線検出器
として実用化されている。しかし、蛍光出力がBGOシ
ンチレータよりは大きいものの、NaI(Tl)シンチ
レータの20%程度しかなく、その改善が望まれていた
。[Prior Art] A scintillator made of a gadolinium silicate compound Gd2SiO5 (hereinafter referred to as GSO) activated with cerium has a short fluorescence decay time of 60 ns and a large radiation absorption coefficient, so it has been put into practical use as a radiation detector for positron CT and other devices. There is. However, although the fluorescence output is higher than that of the BGO scintillator, it is only about 20% that of the NaI (Tl) scintillator, and improvement has been desired.
【0003】シンチレータの蛍光出力を向上させる方法
として熱処理が考えられる。GSOシンチレータのよう
な酸化物シンチレータの蛍光出力を向上させる熱処理方
法として、タングステン酸化合物の単結晶を、酸素を有
する雰囲気において、該単結晶の融点未満乃至融点より
200℃低い温度で加熱する熱処理法(特公昭64−6
160号公報に記載)がある。Heat treatment can be considered as a method of improving the fluorescence output of a scintillator. A heat treatment method for improving the fluorescence output of an oxide scintillator such as a GSO scintillator is a heat treatment method in which a single crystal of a tungstic acid compound is heated at a temperature below the melting point of the single crystal or 200° C. lower than the melting point of the single crystal in an oxygen-containing atmosphere. (Tokuko Showa 64-6
(described in Publication No. 160).
【0004】0004
【発明が解決しようとする課題】GSOシンチレータは
、タングステン酸化合物単結晶と同様の酸化合物単結晶
シンチレータであるが、上記従来技術の酸素を有する雰
囲気での熱処理を適用すると、単結晶が黄緑色に着色し
て蛍光出力が低下してしまい、この従来技術が適用でき
ないことがわかった。[Problems to be Solved by the Invention] A GSO scintillator is an acid compound single crystal scintillator similar to a tungstic acid compound single crystal, but when the above-mentioned conventional heat treatment in an oxygen-containing atmosphere is applied, the single crystal becomes yellowish-green. It was found that this conventional technique could not be applied because the fluorescent output was reduced due to coloration.
【0005】本発明は、蛍光出力の高いシンチレータを
得るための単結晶の熱処理法を提供するものである。The present invention provides a single crystal heat treatment method for obtaining a scintillator with high fluorescence output.
【0006】[0006]
【課題を解決するための手段】本発明者らは、セリウム
付活珪酸ガドリニウム化合物からなる単結晶を、酸素の
少ない雰囲気において熱処理することにより、蛍光出力
などのシンチレータ特性を向上させ得ることを見いだし
た。[Means for Solving the Problems] The present inventors have discovered that scintillator properties such as fluorescence output can be improved by heat-treating a single crystal made of a cerium-activated gadolinium silicate compound in an oxygen-poor atmosphere. Ta.
【0007】本発明は、一般式 Gd2−(x+y)
LnxCeySiO5(ここにLnは希土類元素の中か
ら選ばれる少なくとも1種の元素を表わし、xは0〜2
及びyは0を越え2以下の値である。)で示されるセリ
ウム付活珪酸ガドリニウム化合物からなる単結晶を酸素
の少ない雰囲気で加熱するセリウム付活珪酸ガドリニウ
ム化合物からなる単結晶の熱処理法に関する。[0007] The present invention has the general formula Gd2-(x+y)
LnxCeySiO5 (here, Ln represents at least one element selected from rare earth elements, x is 0 to 2
and y is a value greater than 0 and less than or equal to 2. The present invention relates to a heat treatment method for a single crystal made of a cerium-activated gadolinium silicate compound, in which the single crystal made of a cerium-activated gadolinium silicate compound shown in ) is heated in an oxygen-poor atmosphere.
【0008】本発明において、請求項1のx及びyの値
はセリウム付活珪酸ガドリニウム化合物を構成する限界
の数値を規定したものである。xが0でかつyが0.0
01〜0.2の値の場合は熱処理による螢光出力の向上
が顕著で好ましい。また、式中Lnは希土類元素の中か
ら選ばれる少なくとも1種の元素であるが、LnがSc
、Tb、Dy、Ho、Er、Tm、Yb及びLuからな
る群より選ばれる少なくとも1種の元素で、かつxが0
.1〜1.999及びyが0.001〜0.2の値の場
合も良好なシンチレータ特性を示すので好ましい。[0008] In the present invention, the values of x and y in claim 1 define the limit numerical values constituting the cerium-activated gadolinium silicate compound. x is 0 and y is 0.0
A value of 0.01 to 0.2 is preferable because the fluorescent output is significantly improved by heat treatment. Further, in the formula, Ln is at least one element selected from rare earth elements, but Ln is Sc
, Tb, Dy, Ho, Er, Tm, Yb and Lu, and x is 0
.. Values of 1 to 1.999 and y of 0.001 to 0.2 are also preferred since they exhibit good scintillator properties.
【0009】本発明では酸素の少ない雰囲気で熱処理を
行って単結晶の着色を防止し、螢光出力等のシンチレー
タ特性の向上を図る。酸素の少ない雰囲気としては、酸
素量が空気中の含有量より少ない雰囲気が好ましく、特
に制限はないが例えば窒素雰囲気が採用される。この熱
処理は通常育成後の単結晶について行うが、育成工程の
中に熱処理を組入れて、単結晶育成と熱処理とを連続し
て行ってもよく、同時に行ってもよい。In the present invention, heat treatment is performed in an oxygen-poor atmosphere to prevent coloring of the single crystal and improve scintillator characteristics such as fluorescent output. The oxygen-poor atmosphere is preferably an atmosphere in which the amount of oxygen is less than the content in air, and is not particularly limited, but for example, a nitrogen atmosphere may be used. This heat treatment is normally performed on the single crystal after growth, but the heat treatment may be incorporated into the growth process and the single crystal growth and heat treatment may be performed consecutively or simultaneously.
【0010】熱処理の温度は、シンチレータの種類、熱
処理炉の構造、熱処理の時間などによって決められる。
シンチレータ結晶の融点に近いような高い温度では結晶
が融解する恐れがあり、従って結晶の融点より50〜5
50℃低い温度で熱処理すればシンチレータ特性も顕著
に向上出来て好ましい。熱処理の時間についても、シン
チレータの種類、熱処理炉の構造、熱処理の時間などに
よって決められるが、1時間以上熱処理すれば、性能の
向上が顕著であり、また15時間以内であれば経済的で
ある。従って好ましい時間は1〜15時間である。[0010] The temperature of the heat treatment is determined by the type of scintillator, the structure of the heat treatment furnace, the time of the heat treatment, etc. At high temperatures close to the melting point of the scintillator crystal, the crystal may melt;
It is preferable to perform the heat treatment at a temperature 50° C. lower because the scintillator properties can be significantly improved. The heat treatment time is also determined by the type of scintillator, the structure of the heat treatment furnace, the heat treatment time, etc., but if the heat treatment is performed for more than 1 hour, the performance will be significantly improved, and if it is performed for less than 15 hours, it will be economical. . Therefore, the preferred time is 1 to 15 hours.
【0011】[0011]
【作用】セリウム付活珪酸ガドリニウム化合物の単結晶
を、酸素の少ない雰囲気で加熱することにより、光の吸
収の原因となる着色が減少し、蛍光出力が向上する。こ
の理由は次のように考えられる。付活剤であるCeは、
一般に結晶中で3価のイオンとして存在し、これが発光
中心として働くと考えられる。しかし、結晶育成の条件
などの影響によって一部のCeが4価で存在し、これが
着色やシンチレーション発光の阻害要因となる。このよ
うな4価のCeイオンを含むセリウム付活珪酸ガドリニ
ウム化合物を、酸素の少ない雰囲気で加熱すると、結晶
中の4価のイオンは3価に還元され、着色が減少しかつ
シンチレーション特性が向上する。[Operation] By heating a single crystal of a cerium-activated gadolinium silicate compound in an oxygen-poor atmosphere, coloration that causes light absorption is reduced and fluorescence output is improved. The reason for this is thought to be as follows. Ce, which is an activator, is
Generally, it exists as a trivalent ion in a crystal, and it is thought that this acts as a luminescent center. However, due to the influence of crystal growth conditions, some Ce exists in a tetravalent state, which becomes a factor that inhibits coloring and scintillation luminescence. When such a cerium-activated gadolinium silicate compound containing tetravalent Ce ions is heated in an atmosphere with little oxygen, the tetravalent ions in the crystal are reduced to trivalent, reducing coloration and improving scintillation properties. .
【0012】0012
【実施例】次に、本発明の実施例を説明する。[Example] Next, an example of the present invention will be described.
【0013】実施例1
組成が式 Gd2−(x+y)LnxCeySiO5
におけるxが0、yが0.005で、融点が1900℃
のGSO単結晶をチョクラルスキー法で育成した。育成
した単結晶から30mmφ×100mmのシンチレータ
を切り出し、その30mmφの両端面を鏡面研摩した。
そして100mm方向の光透過率及びシンチレータ特性
を測定した。次に、これを融点より約400℃低い15
00℃の温度で10時間、0.5容量%の酸素を含む窒
素雰囲気中で加熱した。熱処理後にGSOの光透過率及
びシンチレータ特性を測定した。その結果を表1に示す
。なお、表1におけるエネルギー分解能は662keV
の場合及び光透過率は430nmの場合の値である。Example 1 The composition is of the formula Gd2-(x+y)LnxCeySiO5
x is 0, y is 0.005, and the melting point is 1900°C
GSO single crystals were grown using the Czochralski method. A scintillator of 30 mmφ×100 mm was cut out from the grown single crystal, and both end faces of the 30 mmφ were mirror-polished. Then, the light transmittance in the 100 mm direction and the scintillator characteristics were measured. Next, this is heated to 15
Heating was carried out at a temperature of 0.000C for 10 hours in a nitrogen atmosphere containing 0.5% by volume of oxygen. After heat treatment, the light transmittance and scintillator properties of GSO were measured. The results are shown in Table 1. Note that the energy resolution in Table 1 is 662 keV.
and the light transmittance is the value at 430 nm.
【0014】比較例1
実施例1における熱処理の雰囲気を空気とした以外は実
施例1と全く同様にしてシンチレータの熱処理を行い、
実施例1と同様にして特性の測定を実施した。この結果
を表1に示す。Comparative Example 1 A scintillator was heat-treated in the same manner as in Example 1 except that the atmosphere for the heat treatment in Example 1 was air.
Characteristics were measured in the same manner as in Example 1. The results are shown in Table 1.
【0015】実施例2
実施例1における式 Gd2−(x+y)LnxCe
ySiO5の組成において、LnをLu元素、xを0.
5及びyを0.005とした融点が1900℃のGSO
単結晶(以下、LGSOと呼ぶ)をチョクラルスキー法
で育成し、実施例1と同様にしてシンチレータの切り出
し、熱処理及び熱処理前後の特性を測定した。この結果
を表1に示す。Example 2 Formula in Example 1 Gd2-(x+y)LnxCe
In the composition of ySiO5, Ln is Lu element and x is 0.
GSO with a melting point of 1900°C when 5 and y are 0.005
A single crystal (hereinafter referred to as LGSO) was grown by the Czochralski method, and in the same manner as in Example 1, a scintillator was cut out, heat treated, and the characteristics before and after the heat treatment were measured. The results are shown in Table 1.
【0016】[0016]
【表1】[Table 1]
【0017】表1から次のことがわかる。熱処理後の螢
光出力は熱処理前より、実施例1の場合は35%及び実
施例2の場合は10%向上している。また662keV
に対するエネルギー分解能は、熱処理後の方が熱処理前
より小さくなっており、向上している。さらに、熱処理
によって結晶の光透過率も向上しており、着色の減少し
ていることがわかる。実施例2のLGSOの場合は、前
述したようにCeに4価から3価への変化が起きて、シ
ンチレータ特性が向上したものと考えられる。The following can be seen from Table 1. The fluorescent output after heat treatment was improved by 35% in Example 1 and by 10% in Example 2 compared to before heat treatment. Also 662keV
The energy resolution after heat treatment is smaller than before heat treatment, which is an improvement. Furthermore, it can be seen that the light transmittance of the crystals was also improved by the heat treatment, and the coloring was reduced. In the case of LGSO of Example 2, it is considered that the scintillator properties were improved due to a change in Ce from tetravalent to trivalent as described above.
【0018】[0018]
【発明の効果】本発明の熱処理をすることにより、セリ
ウム付活珪酸ガドリニウム化合物の単結晶の螢光出力や
エネルギー分解能などのシンチレータ特性を向上させる
ことができる。また、このような蛍光出力の高いシンチ
レータをポジトロンCTの放射線検出器として用いるこ
とにより、高い空間分解能の診断画像が得られる。さら
に、単結晶育成条件の違いなどの影響によるシンチレー
タ特性のばらつきも小さくすることが可能となる。[Effects of the Invention] By carrying out the heat treatment of the present invention, scintillator characteristics such as fluorescence output and energy resolution of a single crystal of a cerium-activated gadolinium silicate compound can be improved. Further, by using such a scintillator with high fluorescence output as a radiation detector for positron CT, a diagnostic image with high spatial resolution can be obtained. Furthermore, it is possible to reduce variations in scintillator characteristics due to differences in single crystal growth conditions.
Claims (6)
CeySiO5(ここにLnは希土類元素の中から選ば
れる少なくとも1種の元素を表わし、xは0〜2及びy
は0を越え2以下の値である。)で示されるセリウム付
活珪酸ガドリニウム化合物の単結晶を、酸素の少ない雰
囲気で加熱することを特徴とするセリウム付活珪酸ガド
リニウム化合物からなる単結晶の熱処理法。[Claim 1] General formula Gd2-(x+y)Lnx
CeySiO5 (here, Ln represents at least one element selected from rare earth elements, x is 0 to 2 and y
is a value greater than 0 and less than or equal to 2. 1. A heat treatment method for a single crystal of a cerium-activated gadolinium silicate compound, which comprises heating a single crystal of a cerium-activated gadolinium silicate compound represented by ) in an oxygen-poor atmosphere.
値である請求項1記載の単結晶の熱処理法。2. The method for heat treatment of a single crystal according to claim 1, wherein x is 0 and y is a value of 0.001 to 0.2.
、Tm、Yb及びLuからなる群より選ばれる少なくと
も1種の元素を表わし、xは0.1〜1.999及びy
は0.001〜0.2の値である請求項1記載の単結晶
の熱処理法。[Claim 3] Ln is Sc, Tb, Dy, Ho, Er
, represents at least one element selected from the group consisting of Tm, Yb and Lu, x is 0.1 to 1.999 and y
2. The method for heat treatment of a single crystal according to claim 1, wherein: is a value of 0.001 to 0.2.
る請求項1、2又は3記載の単結晶の熱処理法。4. The single crystal heat treatment method according to claim 1, wherein the oxygen-poor atmosphere is a nitrogen atmosphere.
り50〜550℃低い温度である請求項1、2、3又は
4記載の単結晶の熱処理法。5. The method for heat treatment of a single crystal according to claim 1, wherein the heating temperature is 50 to 550° C. lower than the melting point of the single crystal obtained.
項1、2、3、4又は5記載の単結晶の熱処理法。6. The single crystal heat treatment method according to claim 1, wherein the heating time is 1 to 15 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9181091A JP2701577B2 (en) | 1991-04-23 | 1991-04-23 | Single crystal heat treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9181091A JP2701577B2 (en) | 1991-04-23 | 1991-04-23 | Single crystal heat treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04321600A true JPH04321600A (en) | 1992-11-11 |
JP2701577B2 JP2701577B2 (en) | 1998-01-21 |
Family
ID=14036986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9181091A Expired - Lifetime JP2701577B2 (en) | 1991-04-23 | 1991-04-23 | Single crystal heat treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2701577B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005053772A (en) * | 2003-07-24 | 2005-03-03 | Hitachi Chem Co Ltd | Rare earth silicate single crystal and method for manufacturing the same |
JP2006083272A (en) * | 2004-09-15 | 2006-03-30 | Hitachi Chem Co Ltd | Inorganic scintillator and method for producing the same |
JP2007001850A (en) * | 2005-05-27 | 2007-01-11 | Hitachi Chem Co Ltd | Method for heat treating single crystal |
JP2007001849A (en) * | 2005-05-27 | 2007-01-11 | Hitachi Chem Co Ltd | Heat treatment method for single crystal |
JP2007008983A (en) * | 2005-06-28 | 2007-01-18 | Hitachi Chem Co Ltd | Inorganic scintillator |
US20110095230A1 (en) * | 2008-03-26 | 2011-04-28 | Università Degli Studi Di Cagliari | Doped rare earths orthosilicates used as optical devices for recording information |
US9868900B2 (en) | 2010-11-16 | 2018-01-16 | Samuel Blahuta | Scintillation compound including a rare earth element and a process of forming the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5017821B2 (en) | 2005-06-10 | 2012-09-05 | 日立化成工業株式会社 | Single crystal for scintillator and method for producing the same |
JP5087913B2 (en) | 2006-05-30 | 2012-12-05 | 日立化成工業株式会社 | Single crystal for scintillator and method for producing the same |
-
1991
- 1991-04-23 JP JP9181091A patent/JP2701577B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4622329B2 (en) * | 2003-07-24 | 2011-02-02 | 日立化成工業株式会社 | Rare earth silicate single crystal and method for producing rare earth silicate single crystal |
JP2005053772A (en) * | 2003-07-24 | 2005-03-03 | Hitachi Chem Co Ltd | Rare earth silicate single crystal and method for manufacturing the same |
JP2006083272A (en) * | 2004-09-15 | 2006-03-30 | Hitachi Chem Co Ltd | Inorganic scintillator and method for producing the same |
JP4639711B2 (en) * | 2004-09-15 | 2011-02-23 | 日立化成工業株式会社 | Inorganic scintillator and method for producing the same |
JP2007001849A (en) * | 2005-05-27 | 2007-01-11 | Hitachi Chem Co Ltd | Heat treatment method for single crystal |
JP2007001850A (en) * | 2005-05-27 | 2007-01-11 | Hitachi Chem Co Ltd | Method for heat treating single crystal |
US8728232B2 (en) | 2005-05-27 | 2014-05-20 | Hitachi Chemical Co., Ltd. | Single crystal heat treatment method |
JP2007008983A (en) * | 2005-06-28 | 2007-01-18 | Hitachi Chem Co Ltd | Inorganic scintillator |
JP4682718B2 (en) * | 2005-06-28 | 2011-05-11 | 日立化成工業株式会社 | Inorganic scintillator |
US20110095230A1 (en) * | 2008-03-26 | 2011-04-28 | Università Degli Studi Di Cagliari | Doped rare earths orthosilicates used as optical devices for recording information |
US9868900B2 (en) | 2010-11-16 | 2018-01-16 | Samuel Blahuta | Scintillation compound including a rare earth element and a process of forming the same |
US10647916B2 (en) | 2010-11-16 | 2020-05-12 | Saint-Gobain Cristaux Et Detecteurs | Scintillation compound including a rare earth element in a tetravalent state |
US10907096B2 (en) | 2010-11-16 | 2021-02-02 | Saint-Gobain Cristaux & Detecteurs | Scintillation compound including a rare earth element and a process of forming the same |
US11926777B2 (en) | 2010-11-16 | 2024-03-12 | Luxium Solutions, Llc | Scintillation compound including a rare earth element and a process of forming the same |
Also Published As
Publication number | Publication date |
---|---|
JP2701577B2 (en) | 1998-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Teng et al. | Highly efficient luminescence in bulk transparent Sr2GdF7: Tb3+ glass ceramic for potential X-ray detection | |
CA2741850C (en) | Cerium-doped lutetium oxyorthosilicate (lso) scintillators | |
US5728213A (en) | Method of growing a rare earth silicate single crystal | |
US20070292330A1 (en) | Scintillator single crystal and process for its production | |
US4064066A (en) | Phosphors for infrared-to-visible conversion | |
JP4760236B2 (en) | Single crystal heat treatment method | |
Chen et al. | The influence of air annealing on the microstructure and scintillation properties of Ce, Mg: Lu AG ceramics | |
JP2011026547A (en) | Single crystal for scintillator, method of heat treatment for manufacturing single crystal for scintillator, and method of manufacturing single crystal for scintillator | |
Petrosyan et al. | A study of radiation effects on LuAG: Ce (Pr) co-activated with Ca | |
JPH04321600A (en) | Heat treatment of single crystal | |
Ma et al. | On fast LuAG: Ce scintillation ceramics with Ca2+ co‐dopants | |
JP4770337B2 (en) | Single crystal heat treatment method | |
CN105332056A (en) | Divalent metal cation and cerium co-doped lutetium aluminum garnet crystal for laser illumination and preparation method thereof | |
JP2016056378A (en) | Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method for producing single crystal for scintillator | |
Lertloypanyachai et al. | Luminescence and light yield of Ce3+-doped (60− x) SiO2-xBaF2-20Al2O3-20Gd2O3 scintillation glasses: The effect of BaF2 admixture | |
JPH02283663A (en) | Transparent polycrystalline yttrium aluminum garnet and its manufacturing method | |
JP5055910B2 (en) | Single crystal heat treatment method | |
CN112522787A (en) | Rare earth orthosilicate scintillation material with silicon lattice doped competitive luminescence center and preparation method and application thereof | |
US6926847B2 (en) | Single crystals of silicates of rare earth elements | |
JP4228609B2 (en) | Cerium-activated gadolinium silicate single crystal | |
US3484381A (en) | Method of preparing phosphors | |
JP4228611B2 (en) | Cerium-activated gadolinium silicate single crystal | |
CN115044373B (en) | Al, ga/Ce codoped yttrium lutetium silicate scintillation crystal material and annealing method | |
JP4195732B2 (en) | Method for growing rare earth silicate single crystals | |
JP4228610B2 (en) | Rare earth silicate single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071003 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081003 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091003 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091003 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101003 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 14 |