[go: up one dir, main page]

JPH04319260A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH04319260A
JPH04319260A JP3085109A JP8510991A JPH04319260A JP H04319260 A JPH04319260 A JP H04319260A JP 3085109 A JP3085109 A JP 3085109A JP 8510991 A JP8510991 A JP 8510991A JP H04319260 A JPH04319260 A JP H04319260A
Authority
JP
Japan
Prior art keywords
zirconium
battery
secondary battery
aqueous electrolyte
licoo2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3085109A
Other languages
Japanese (ja)
Other versions
JP2855877B2 (en
Inventor
Shoichiro Watanabe
庄一郎 渡邊
Akiyoshi Nishiyama
西山 晃好
Hide Koshina
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3085109A priority Critical patent/JP2855877B2/en
Publication of JPH04319260A publication Critical patent/JPH04319260A/en
Application granted granted Critical
Publication of JP2855877B2 publication Critical patent/JP2855877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To give a non-aqueous electrolyte secondary battery having high capacity, good cycle properties, and good high temperature storage properties by making the cathode active material better quality. CONSTITUTION:LiCoO2 or a composite oxide, which is the compound of which cobalt is partly substituted with a transition metal, to which zirconium is added is used as a cathode active mass powder. Consequently, cycle properties and high temperature storage properties of a secondary battery are remarkably improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非水電解液二次電池、
特にリチウム複合酸化物を正極に用いた電池の特性改良
に関するものである。
[Industrial Application Field] The present invention relates to non-aqueous electrolyte secondary batteries,
In particular, it relates to improving the characteristics of batteries using lithium composite oxides as positive electrodes.

【0002】0002

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のポ−タブル化、コ−ドレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
−密度を有する二次電池への要望が高い。このような点
で非水系二次電池、特にリチウム二次電池はとりわけ高
電圧、高エネルギ−密度を有する電池として期待が大き
い。
[Prior Art] In recent years, electronic devices such as AV devices and personal computers have rapidly become portable and cordless. Demand for batteries is high. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, have high expectations as batteries with particularly high voltage and high energy density.

【0003】この要望を満たす正極活物質としてリチウ
ムをインタ−カレ−ション、デインタ−カレ−ションす
ることのできる層状化合物、例えばLiCoO2、Li
NiO2(例えば米国特許第4302518号)やLi
CoxNi1−xO2(x≦0.27)(特開昭62−
264560号)などのリチウムと遷移金属を主体とす
る複合酸化物(以下、リチウム複合酸化物と記す)が提
案され、これらの活物質を用いて4V級の電圧をもった
高エネルギ−密度二次電池の具体化開発が進められてい
る。
[0003] Layered compounds capable of intercalating and deintercalating lithium, such as LiCoO2, Li
NiO2 (e.g. U.S. Pat. No. 4,302,518) and Li
CoxNi1-xO2 (x≦0.27) (Unexamined Japanese Patent Publication No. 1986-
Composite oxides mainly composed of lithium and transition metals (hereinafter referred to as lithium composite oxides) such as No. 264560) have been proposed, and high energy density secondary The specific development of the battery is progressing.

【0004】0004

【発明が解決しようとする課題】Li1−xCoO2(
0≦x<1)(以下LiCoO2と記す)は、リチウム
に対し4V以上の電位を示し、正極活物質として用いる
と高エネルギ−密度を有する二次電池が実現できる。し
かし、逆に電位が高い故に電解液を形成するプロピレン
カ−ボネ−トやジメトキシエタンなどの有機溶媒を分解
するなど、電池の充放電特性に悪影響を与え、電池特性
の劣化の原因となっていた。このような問題に対し、コ
バルトの一部をニッケル(特開昭63−299056号
)、鉄(特開昭63−211564号)、アルミニウム
、スズ、インジウム(特開昭62−90863号)で置
換した複合酸化物を合成し、正極活物質を改質すること
により優れた充放電特性が得られるという提案がなされ
ている。しかし、このような元素でコバルトの一部を置
換したリチウム複合酸化物は、放電電圧が小さくなる傾
向があり、本来の高電圧、高エネルギ−密度という特徴
を低減する結果となる。また、このようなリチウム複合
酸化物は、充電状態で高温に保存すると、LiCoO2
と同様に著しく容量が減少するという問題が依然として
残されている。
[Problem to be solved by the invention] Li1-xCoO2 (
0≦x<1) (hereinafter referred to as LiCoO2) exhibits a potential of 4 V or more with respect to lithium, and when used as a positive electrode active material, a secondary battery with high energy density can be realized. However, on the other hand, because of its high potential, it decomposes organic solvents such as propylene carbonate and dimethoxyethane that form the electrolyte, which adversely affects the charge and discharge characteristics of the battery and causes deterioration of battery characteristics. Ta. To solve this problem, some of the cobalt is replaced with nickel (Japanese Patent Application Laid-Open No. 63-299056), iron (Japanese Patent Application Laid-Open No. 63-211564), aluminum, tin, and indium (Japanese Patent Application Laid-Open No. 62-90863). It has been proposed that excellent charge-discharge characteristics can be obtained by synthesizing composite oxides and modifying the positive electrode active material. However, a lithium composite oxide in which a portion of cobalt is replaced with such an element tends to have a low discharge voltage, resulting in a reduction in the original characteristics of high voltage and high energy density. In addition, when such lithium composite oxide is stored at high temperature in a charged state, LiCoO2
Similarly, there still remains the problem of a significant reduction in capacity.

【0005】本発明はこのような課題を解決するもので
、高い作動電圧を維持すると共に、優れた充放電特性、
保存特性をもった二次電池を提供することを目的とする
ものである。
[0005] The present invention solves these problems by maintaining a high operating voltage and providing excellent charge/discharge characteristics.
The purpose is to provide a secondary battery with storage characteristics.

【0006】[0006]

【課題を解決するための手段】これらの課題を解決する
ために本発明は、正極活物質であるLiCoO2にラン
タンを添加することで、高電圧を発生し、かつ優れた充
放電特性と保存特性を示す非水電解液二次電池が得られ
ることを見出したものである。
[Means for Solving the Problems] In order to solve these problems, the present invention generates high voltage by adding lanthanum to LiCoO2, which is a positive electrode active material, and has excellent charge/discharge characteristics and storage characteristics. It has been discovered that a non-aqueous electrolyte secondary battery can be obtained.

【0007】[0007]

【作用】LiCoO2を正極活物質とした電池を充電状
態で高温保存した場合、保存後の電池の容量、サイクル
特性は極端に劣化する。これは電解液の分解や結晶構造
の破壊が原因と考えられる。このような高電位における
LiCoO2上での電解液の分解反応や結晶破壊を抑制
することが、実用上の電池として非常に重要なポイント
となる。
[Operation] When a battery using LiCoO2 as a positive electrode active material is stored in a charged state at a high temperature, the capacity and cycle characteristics of the battery after storage are extremely deteriorated. This is thought to be caused by decomposition of the electrolyte and destruction of the crystal structure. Suppressing the decomposition reaction and crystal destruction of the electrolyte on LiCoO2 at such a high potential is a very important point for a practical battery.

【0008】本発明はLiCoO2にランタンを添加す
ることにより、LiCoO2粒子の表面が酸化ランタン
(La2O3)、リチウムとランタンとの複合酸化物(
LiLaO2)、もしくはランタンとコバルトの複合酸
化物(LaCoO3)に覆われることによって安定化さ
れ、その結果高い電位においても電解液の分解反応や結
晶破壊を起こすことなく、優れたサイクル特性、保存特
性を示す正極活物質が得られることによるものである。 また、この効果は単にLiCoO2に、ジルコニウムも
しくはジルコニウムの化合物を混合するだけでは得られ
ないものである。
In the present invention, by adding lanthanum to LiCoO2, the surface of the LiCoO2 particles becomes lanthanum oxide (La2O3), a composite oxide of lithium and lanthanum (
It is stabilized by being covered with LiLaO2) or a composite oxide of lanthanum and cobalt (LaCoO3), and as a result, it does not cause electrolyte decomposition reactions or crystal destruction even at high potentials, and has excellent cycle and storage characteristics. This is because the positive electrode active material shown in FIG. Further, this effect cannot be obtained simply by mixing zirconium or a zirconium compound with LiCoO2.

【0009】[0009]

【実施例】以下、図面とともに本発明を具体的な実施例
に沿って説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to the drawings and specific examples.

【0010】Li2CO3とCoCO3とをLiとCo
の原子比が1対1になるように混合したものに、酸化ジ
ルコニウム(ZrO2)を添加し、空気中において90
0℃で5時間焼成したものを正極活物質とした。酸化ジ
ルコニウム(ZrO2)の添加割合は、合成した主活物
質LiCoO2のコバルトに対しジルコニウムのモル%
で表すものとし、表1に示したように6種類の検討を行
った。
[0010] Li2CO3 and CoCO3 are Li and Co
Zirconium oxide (ZrO2) was added to the mixture with an atomic ratio of 1:1, and the mixture was heated to 90% in air.
The material that was fired at 0° C. for 5 hours was used as a positive electrode active material. The addition ratio of zirconium oxide (ZrO2) is the mol% of zirconium to cobalt of the synthesized main active material LiCoO2.
As shown in Table 1, six types of studies were conducted.

【0011】[0011]

【表1】[Table 1]

【0012】このようにして合成した正極活物質100
重量部、アセチレンブラック4重量部、グラファイト4
重量部、フッ素樹脂系結着剤7重量部を混合して正極合
剤とし、カルボキシメチルセルロ−ス水溶液に懸濁させ
てペ−スト状にした。このぺ−ストをアルミ箔の両面に
塗着し、乾燥後圧延して極板とした。
[0012] Positive electrode active material 100 synthesized in this way
Parts by weight, 4 parts by weight of acetylene black, 4 parts by weight of graphite
parts by weight and 7 parts by weight of a fluororesin binder were mixed to prepare a positive electrode mixture, which was suspended in an aqueous carboxymethyl cellulose solution to form a paste. This paste was applied to both sides of aluminum foil, dried, and then rolled to form an electrode plate.

【0013】負極は、コ−クスを焼成した炭素材100
重量部に、フッ素樹脂系結着剤10重量部を混合し、カ
ルボキシメチルセルロ−ス水溶液に懸濁させてペ−スト
状にした。そしてこのぺ−ストを銅箔の両面に塗着し、
乾燥後圧延して極板とした。
[0013] The negative electrode is a carbon material 100 made of fired coke.
10 parts by weight of a fluororesin binder was mixed with each part by weight, and the mixture was suspended in an aqueous carboxymethyl cellulose solution to form a paste. Then apply this paste to both sides of the copper foil,
After drying, it was rolled into an electrode plate.

【0014】図1に本実施例で用いた円筒形電池の縦断
面図を示す。電池の構成は正、負極それぞれにリ−ドを
取りつけ、ポリプロピレン製のセパレ−タを介して渦巻
き状に巻回し、電池ケ−ス内に収納した。電解液には炭
酸プロピレンと炭酸エチレンとの等容積混合溶媒に、過
塩素酸リチウムを1モル/lの割合で溶解したものを用
い、封口したものを試験電池とした。
FIG. 1 shows a longitudinal cross-sectional view of the cylindrical battery used in this example. The battery was constructed by attaching leads to each of the positive and negative electrodes, winding them in a spiral shape through a polypropylene separator, and storing them in a battery case. The electrolyte was prepared by dissolving lithium perchlorate at a ratio of 1 mol/l in an equal volume mixed solvent of propylene carbonate and ethylene carbonate, and the test battery was sealed.

【0015】この図1において1は耐有機電解液性のス
テンレス鋼板を加工した電池ケ−ス、2は安全弁を設け
た封口板、3は絶縁パッキングを示す。4は極板群であ
り、正極および負極がセパレ−タを介して渦巻き状に巻
回されてケ−ス内に収納されている。そして上記正極か
らは正極リ−ド5が引き出されて封口板2に接続され、
負極からは負極リ−ド6が引き出されて電池ケ−ス1の
底部に接続されている。7は絶縁リングで極板群4の上
下部にそれぞれ設けられている。
In FIG. 1, numeral 1 indicates a battery case made of a stainless steel plate resistant to organic electrolytes, 2 a sealing plate provided with a safety valve, and 3 an insulating packing. Reference numeral 4 denotes a group of electrode plates, in which a positive electrode and a negative electrode are spirally wound through a separator and housed in a case. A positive electrode lead 5 is pulled out from the positive electrode and connected to the sealing plate 2.
A negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Insulating rings 7 are provided at the upper and lower portions of the electrode plate group 4, respectively.

【0016】これらの試験電池を充放電電流100mA
h、充電終止電圧4.1V、放電終止電圧3.0Vの条
件下で定電流充放電試験を行った。また、充放電を10
サイクル繰り返した後、充電状態において60℃、20
日間の保存試験(以下、高温充電保存と記す)を行い、
保存後の電池における容量保持率を求めた。
These test batteries were charged and discharged at a current of 100 mA.
A constant current charge/discharge test was conducted under conditions of a charge end voltage of 4.1 V and a discharge end voltage of 3.0 V. Also, charge/discharge 10
After repeating the cycle, the battery was heated to 60°C and 20°C in the charged state.
A storage test (hereinafter referred to as high-temperature charging storage) was conducted for 1 day.
The capacity retention rate of the battery after storage was determined.

【0017】このときの電池A〜Fの充放電サイクル数
と放電容量との関係を図2に示す。また、LiCoO2
へのジルコニウムの添加量とそれに対応した電池A〜F
の高温充電保存試験後の電池の容量保持率(保存後の容
量/保存前の容量)との関係を図3に示す。
FIG. 2 shows the relationship between the number of charge/discharge cycles and the discharge capacity of batteries A to F at this time. Also, LiCoO2
The amount of zirconium added to the battery and the corresponding batteries A to F
FIG. 3 shows the relationship between the battery capacity retention rate (capacity after storage/capacity before storage) after the high temperature charging storage test.

【0018】図2より、ジルコニウムをまったく添加し
ていない電池Aは初期の放電容量は大きいものの、充放
電に伴う容量低下は大きく、300サイクル時点では初
期容量の50%となる。これに対し、ジルコニウムを添
加した電池B〜Fでは添加量が増加するに従い容量は低
下するが、充放電サイクルに伴う容量低下はAに比べて
著しく緩和され、ジルコニウムを5モル%以上添加した
電池D〜Fでは300サイクルの時点でも初期容量の8
0%以上を維持している。
From FIG. 2, although battery A to which no zirconium is added has a large initial discharge capacity, the capacity decreases significantly with charging and discharging, reaching 50% of the initial capacity at the 300th cycle. On the other hand, in batteries B to F with zirconium added, the capacity decreases as the amount added increases, but the capacity decrease due to charge/discharge cycles is significantly alleviated compared to battery A, and batteries with zirconium added of 5 mol% or more In D to F, the initial capacity is 8 even after 300 cycles.
It remains above 0%.

【0019】また、図3からジルコニウムを添加するこ
とにより、高温保存後の電池の容量保持率は著しく向上
し、ジルコニウムを添加しない電池Aが52%であるの
に対し、5%添加した電池Dでは88%以上を示した。 さらにジルコニウムの添加量を増加しても容量保持率は
余り変化しなかった。ジルコニウムを10%添加した電
池Fではサイクル特性、保存特性共に良好であるが、L
iCoO2の表面被覆率が大きくなるので相対的に放電
容量がかなり小さくなる。このためジルコニウムの添加
量は5%程度が適当である。
Furthermore, as shown in FIG. 3, by adding zirconium, the capacity retention rate of the battery after high-temperature storage is significantly improved, and while battery A with no zirconium added has a capacity retention rate of 52%, battery D with 5% zirconium added has a capacity retention rate of 52%. It showed more than 88%. Furthermore, even when the amount of zirconium added was increased, the capacity retention rate did not change much. Battery F with 10% zirconium added has good cycle characteristics and storage characteristics, but L
Since the surface coverage of iCoO2 increases, the discharge capacity becomes relatively small. Therefore, the appropriate amount of zirconium added is about 5%.

【0020】LiCoO2のコバルトの一部をニッケル
(特開昭63−299056号)、鉄(特開昭63−2
11564号)、アルミニウム、スズ、インジウム(特
開昭62−90863号)で置換した場合、コバルトと
固溶体を形成してLiMyCo1−yO2(0≦y≦1
:MはNi,Fe,Al等)で示される複合酸化物とな
るため、表面を安定化させるジルコニウムのような効果
は得られない。
Part of the cobalt in LiCoO2 is replaced with nickel (Japanese Patent Application Laid-open No. 63-299056) and iron (Japanese Patent Application Laid-open No. 63-299056).
11564), aluminum, tin, and indium (JP-A-62-90863), it forms a solid solution with cobalt and LiMyCo1-yO2 (0≦y≦1
:M is a composite oxide represented by Ni, Fe, Al, etc.), so it cannot have the effect of stabilizing the surface like zirconium.

【0021】また、これらのコバルトの一部を遷移金属
で置換した複合酸化物は、平均電圧が小さくなる欠点が
あったが、ジルコニウム添加の場合はこのような電圧降
下は認めらなかった。従って、ジルコニウムは最適な添
加剤であると言える。
[0021] Furthermore, these composite oxides in which a part of cobalt was replaced with a transition metal had a drawback that the average voltage was small, but such a voltage drop was not observed in the case of adding zirconium. Therefore, zirconium can be said to be the optimal additive.

【0022】なお、本実施例では正極合成時の出発材料
としてLi2CO3とCoCO3とを用いたが、それぞ
れリチウムとコバルトの酸化物、水酸化物、酢酸塩など
であっても構わない。添加するジルコニウムについても
酸化ジルコニウムを用いたが、他のジルコニウム化合物
であってもよい。また正極活物質としてLiCoO2を
用いたが、化合物中のコバルトの一部を遷移金属で置換
した化合物でも同様の効果が認められる。さらに負極と
して炭素質材料を用いたが、これはリチウム金属やリチ
ウム合金であっても構わない。さらにまた電解液には炭
酸プロピレンと炭酸エチレンとの等容積混合溶媒に、過
塩素酸リチウムを1モル/lの割合で溶解したものを用
いたが、他の溶媒にリチウム塩を溶解した電解液でも同
様である。
[0022] In this example, Li2CO3 and CoCO3 were used as starting materials for the synthesis of the positive electrode, but oxides, hydroxides, acetates, etc. of lithium and cobalt, respectively, may also be used. Although zirconium oxide was used as the zirconium to be added, other zirconium compounds may be used. Furthermore, although LiCoO2 was used as the positive electrode active material, a similar effect can also be observed with a compound in which part of the cobalt in the compound is replaced with a transition metal. Furthermore, although a carbonaceous material was used as the negative electrode, it may also be lithium metal or a lithium alloy. Furthermore, the electrolytic solution used was one in which lithium perchlorate was dissolved at a ratio of 1 mol/l in an equal volume mixed solvent of propylene carbonate and ethylene carbonate, but an electrolytic solution in which lithium salt was dissolved in another solvent was used. But it's the same.

【0023】[0023]

【発明の効果】以上の説明で明らかなように、本発明に
よれば正極活物質であるLiCoO2に適量のジルコニ
ウムを添加することにより、充放電サイクル特性および
高温保存特性に優れた非水電解液二次電池を得ることが
できる。
Effects of the Invention As is clear from the above explanation, according to the present invention, by adding an appropriate amount of zirconium to LiCoO2, which is a positive electrode active material, a non-aqueous electrolyte with excellent charge-discharge cycle characteristics and high-temperature storage characteristics can be obtained. A secondary battery can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例における円筒形電池の縦断面図
FIG. 1: A longitudinal cross-sectional view of a cylindrical battery in an embodiment of the present invention.

【図2】同電池の20℃での充放電サイクル特性図[Figure 2] Charging and discharging cycle characteristics diagram of the same battery at 20°C

【図
3】ジルコニウムの添加量と、それに対応した電池の高
温保存後の容量保存率との関係図
[Figure 3] Relationship diagram between the amount of zirconium added and the corresponding capacity storage rate of batteries after high-temperature storage

【符号の説明】[Explanation of symbols]

1  電池ケ−ス 2  封口板 3  絶縁パッキング 4  極板群 5  正極リ−ド 6  負極リ−ド 7  絶縁リング 1 Battery case 2 Sealing plate 3 Insulating packing 4 Plate group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ジルコニウム(Zr)を添加したLi1−
xCoO2(0≦x<1)もしくはそのコバルトの一部
を他の遷移金属で置換したものからなる正極と、リチウ
ム、リチウム合金もしくは炭素質材料からなる負極と、
非水電解液とからなる非水電解液二次電池。
Claim 1: Li1- added with zirconium (Zr)
A positive electrode made of xCoO2 (0≦x<1) or one in which a part of the cobalt is replaced with another transition metal, and a negative electrode made of lithium, a lithium alloy, or a carbonaceous material,
A non-aqueous electrolyte secondary battery consisting of a non-aqueous electrolyte.
【請求項2】上記ジルコニウムの添加割合が上記コバル
トに対しモル比で1〜10%である請求項1記載の非水
電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the molar ratio of the zirconium to the cobalt is 1 to 10%.
JP3085109A 1991-04-17 1991-04-17 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2855877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3085109A JP2855877B2 (en) 1991-04-17 1991-04-17 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085109A JP2855877B2 (en) 1991-04-17 1991-04-17 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04319260A true JPH04319260A (en) 1992-11-10
JP2855877B2 JP2855877B2 (en) 1999-02-10

Family

ID=13849460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085109A Expired - Lifetime JP2855877B2 (en) 1991-04-17 1991-04-17 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2855877B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395426B1 (en) 1998-10-30 2002-05-28 Sanyo Electric Co., Ltd. Non-aqueous electrolyte cell having a positive electrode with Ti-attached LiCoO2
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
US6723472B2 (en) 1999-12-01 2004-04-20 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2005056830A (en) * 2003-07-24 2005-03-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2005027243A1 (en) * 2003-09-09 2005-03-24 Sanyo Electric Co.,Ltd. Nonaqueous electrolyte secondary battery
KR100501104B1 (en) * 2001-06-01 2005-07-18 니폰 가가쿠 고교 가부시키가이샤 Lithium cobalt based composite oxide, manufacturing method thereof, positive electrode active material for lithium secondary batteries containing the same and lithium secondary batteries
JP2005339887A (en) * 2004-05-25 2005-12-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2007037145A1 (en) * 2005-09-29 2007-04-05 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using those
JP2007123238A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and manufacturing method of this separator
JP2007123237A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery
JP2007280911A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacturing method thereof
JP2007280917A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2007280918A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
US7381395B2 (en) 2003-09-30 2008-06-03 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method of manufacturing the same
US7851088B2 (en) 2003-03-25 2010-12-14 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US7939207B2 (en) 2003-12-18 2011-05-10 Sanyo Electric Co., Ltd. Non-aqueous electrolyte lithium ion secondary cell with improved cycle characteristics and method for fabricating the same
US8197968B2 (en) 2006-05-26 2012-06-12 Sony Corporation Cathode active material and battery
US8287773B2 (en) 2009-01-20 2012-10-16 Tdk Corporation Method for producing active material and electrode, active material, and electrode
US8338030B2 (en) 2005-02-24 2012-12-25 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US8343377B2 (en) 2008-11-14 2013-01-01 Tdk Corporation Method of making active material and electrode
US8366968B2 (en) 2009-05-29 2013-02-05 Tdk Corporation Methods of manufacturing active material and electrode, active material, and electrode
JP2013089321A (en) * 2011-10-13 2013-05-13 Samsung Yokohama Research Institute Co Ltd Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2013206679A (en) * 2012-03-28 2013-10-07 Sumitomo Metal Mining Co Ltd Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
CN105140492A (en) * 2015-10-14 2015-12-09 广东天劲新能源科技股份有限公司 Cobalt-nickel lithium manganate composite positive electrode material with surface wrapped by lithium zirconate and preparation method
WO2020195432A1 (en) 2019-03-27 2020-10-01 住友金属鉱山株式会社 Positive-electrode active material for lithium-ion secondary cell, method for manufacturing positive-electrode active material, and lithium-ion secondary cell
WO2020195431A1 (en) 2019-03-27 2020-10-01 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
WO2022065443A1 (en) 2020-09-25 2022-03-31 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4353808B2 (en) 2002-02-15 2009-10-28 Agcセイミケミカル株式会社 Particulate cathode active material for lithium secondary battery
JP5036121B2 (en) 2003-08-08 2012-09-26 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4841116B2 (en) 2004-05-28 2011-12-21 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4721729B2 (en) 2004-11-12 2011-07-13 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4841133B2 (en) 2004-11-16 2011-12-21 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4813165B2 (en) * 2005-12-07 2011-11-09 Agcセイミケミカル株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR101260539B1 (en) 2006-03-02 2013-05-06 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode active material for rechargeable battery with nonaqueous electrolyte and method for manufacturing the same
JP5807747B2 (en) 2011-11-25 2015-11-10 ソニー株式会社 Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP7268142B2 (en) 2019-04-26 2023-05-02 日本碍子株式会社 lithium secondary battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395426B1 (en) 1998-10-30 2002-05-28 Sanyo Electric Co., Ltd. Non-aqueous electrolyte cell having a positive electrode with Ti-attached LiCoO2
US6723472B2 (en) 1999-12-01 2004-04-20 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
KR100501104B1 (en) * 2001-06-01 2005-07-18 니폰 가가쿠 고교 가부시키가이샤 Lithium cobalt based composite oxide, manufacturing method thereof, positive electrode active material for lithium secondary batteries containing the same and lithium secondary batteries
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
US7851088B2 (en) 2003-03-25 2010-12-14 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005056830A (en) * 2003-07-24 2005-03-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2005027243A1 (en) * 2003-09-09 2005-03-24 Sanyo Electric Co.,Ltd. Nonaqueous electrolyte secondary battery
US8268485B2 (en) 2003-09-09 2012-09-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7381395B2 (en) 2003-09-30 2008-06-03 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method of manufacturing the same
US7939207B2 (en) 2003-12-18 2011-05-10 Sanyo Electric Co., Ltd. Non-aqueous electrolyte lithium ion secondary cell with improved cycle characteristics and method for fabricating the same
KR101224735B1 (en) * 2004-05-25 2013-01-21 산요덴키가부시키가이샤 Nonaqueous Electrolyte Secondary Battery
JP2005339887A (en) * 2004-05-25 2005-12-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8338030B2 (en) 2005-02-24 2012-12-25 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP2007123238A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and manufacturing method of this separator
JP2007123237A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery
WO2007037145A1 (en) * 2005-09-29 2007-04-05 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using those
JP2007280917A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2007280911A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacturing method thereof
JP2007280918A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
US8197968B2 (en) 2006-05-26 2012-06-12 Sony Corporation Cathode active material and battery
US8343377B2 (en) 2008-11-14 2013-01-01 Tdk Corporation Method of making active material and electrode
US8287773B2 (en) 2009-01-20 2012-10-16 Tdk Corporation Method for producing active material and electrode, active material, and electrode
US8366968B2 (en) 2009-05-29 2013-02-05 Tdk Corporation Methods of manufacturing active material and electrode, active material, and electrode
JP2013089321A (en) * 2011-10-13 2013-05-13 Samsung Yokohama Research Institute Co Ltd Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2013206679A (en) * 2012-03-28 2013-10-07 Sumitomo Metal Mining Co Ltd Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
CN105140492A (en) * 2015-10-14 2015-12-09 广东天劲新能源科技股份有限公司 Cobalt-nickel lithium manganate composite positive electrode material with surface wrapped by lithium zirconate and preparation method
WO2020195432A1 (en) 2019-03-27 2020-10-01 住友金属鉱山株式会社 Positive-electrode active material for lithium-ion secondary cell, method for manufacturing positive-electrode active material, and lithium-ion secondary cell
WO2020195431A1 (en) 2019-03-27 2020-10-01 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
WO2022065443A1 (en) 2020-09-25 2022-03-31 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
KR20230074480A (en) 2020-09-25 2023-05-30 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, lithium ion secondary battery

Also Published As

Publication number Publication date
JP2855877B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP2855877B2 (en) Non-aqueous electrolyte secondary battery
US20110059356A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JPH0831417A (en) Positive electrode active material of non-aqueous electrolyte secondary battery and battery using it
JP4055241B2 (en) Nonaqueous electrolyte secondary battery
JPH04155776A (en) Nonaqueous electrolyte secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2002358961A (en) Non-aqueous electrolyte secondary battery
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2751624B2 (en) Non-aqueous electrolyte secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2001351624A (en) Non-aqueous secondary battery and method of using the same
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JPH056779A (en) Nonaqueous electrolytic secondary battery
JPH04319259A (en) Non-aqueous electrolyte secondary battery
JPH056780A (en) Nonaqueous electrolytic secondary battery
JPH06124707A (en) Nonaqueous electrolytic battery
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JP3049973B2 (en) Non-aqueous electrolyte secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
JP3008627B2 (en) Non-aqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP3751133B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH04351860A (en) Non-aqueous electrolyte battery
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13