[go: up one dir, main page]

JPH0431718A - Liquid level sensor - Google Patents

Liquid level sensor

Info

Publication number
JPH0431718A
JPH0431718A JP13899390A JP13899390A JPH0431718A JP H0431718 A JPH0431718 A JP H0431718A JP 13899390 A JP13899390 A JP 13899390A JP 13899390 A JP13899390 A JP 13899390A JP H0431718 A JPH0431718 A JP H0431718A
Authority
JP
Japan
Prior art keywords
depth
electrodes
liquid level
electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13899390A
Other languages
Japanese (ja)
Other versions
JPH0711440B2 (en
Inventor
Kenji Matsuo
研志 松尾
Akira Kumada
明 久万田
Mitsuhiro Murata
充弘 村田
Kazutaka Ochiai
千貴 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP13899390A priority Critical patent/JPH0711440B2/en
Publication of JPH0431718A publication Critical patent/JPH0431718A/en
Publication of JPH0711440B2 publication Critical patent/JPH0711440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To make it possible to detect a liquid level accurately even if the depth of electrolyte is shallow by independently providing a plurality of depth detecting electrodes in approximately parallel with a resistor film on the insulating substrate of a liquid level sensor, and setting the tips of the depth detecting electrodes at the different positions in specified depth regions from the bottom surface of the insulating substrate. CONSTITUTION:When a region wherein the impedance of electrolyte is large and measurement becomes unstable is, e.g. about 5 mm, the positions of the tips of depth detecting electrodes 50 are determined at the different depths in a depth region. Lead electrodes 52-1 - 52-11 are connected to the upper end sides of the electrodes 50 and further connected to an external processing circuit with connectors. The electrolyte is sequentially brought into contact with the tips of the electrodes 50 in conformity with standards. Therefore, the lower ends of the electrodes 50 correspond to the windows of a water repelling layer 40. As the depth of the electrode increases, the electrodes 50 sequentially come into contact with the electrolyte one by one. The depth detecting electrode 50-1 forms the reference electrode. The other depth detecting electrodes 50-2 - 50-11 output the specified liquid-level signals based on the conduction with the reference-depth detecting electrode 50-1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液面センサ、特に電解液の液面変化を簡単に測
定するために好適な液面センサの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid level sensor, and particularly to an improvement of a liquid level sensor suitable for easily measuring changes in the liquid level of an electrolytic solution.

[従来の技術] 液体の液面位置を検出するためにいくつかの液面センサ
が提案されており、これによって液体の貯溜量あるいは
流量を測定することか可能となる。
[Prior Art] Several liquid level sensors have been proposed for detecting the liquid level position, which makes it possible to measure the amount of liquid stored or the flow rate.

通常の場合、これらの液面センサは、液面にl?かせた
フロートの位置を光学的あるいは磁気的に検出する構造
から成る。
In normal cases, these liquid level sensors detect l? It consists of a structure that optically or magnetically detects the position of the floating float.

前記従来の液面センサによれば、液体の種類を問わず、
その液面を検出できるが、正確な液面位置を求めること
が比較的困難であり、また、簡易小型のセンサにて液面
検出を行うことができないという問題があった。
According to the conventional liquid level sensor, regardless of the type of liquid,
Although the liquid level can be detected, there is a problem in that it is relatively difficult to determine the exact position of the liquid level, and it is not possible to detect the liquid level with a simple and small sensor.

被測定液体が電解液である場合、前記フロートを用いる
ことなく、電解液の電気的導通を利用したセンサが用い
得る。
When the liquid to be measured is an electrolytic solution, a sensor that utilizes electrical continuity of the electrolytic solution can be used without using the float.

このような電解液としては、各種の化学処理に用いられ
る電解液が挙げられるほか、病院などで患者の体液を採
取する場合、尿等の体液が比較的良好な電気的導通度を
示す電解液であるため、このような体液採取量を測定す
るためにも好適である。
Examples of such electrolytes include electrolytes used in various chemical treatments, as well as electrolytes in which body fluids such as urine have relatively good electrical conductivity when body fluids are collected from patients in hospitals. Therefore, it is also suitable for measuring the amount of body fluid collected.

第3.4図には、従来における電解液面を検出する液面
センサの一例が示されており、患者の体液採取量を測定
するため、容器10の内部に液面センサ20が装着され
た状態が示されている。
FIG. 3.4 shows an example of a conventional liquid level sensor for detecting the electrolyte level, in which a liquid level sensor 20 is attached inside a container 10 to measure the amount of body fluid collected from a patient. The condition is shown.

この液面センサ20はプラスチック等から成る絶縁基板
22上に一対の抵抗体被膜24a、24bが垂直方向に
平行に印刷または蒸着等によって設けられている。
This liquid level sensor 20 has a pair of resistor films 24a and 24b provided vertically in parallel on an insulating substrate 22 made of plastic or the like by printing, vapor deposition, or the like.

このような抵抗体被膜24a、24bは例えば、カーボ
ン抵抗体から成り、図の従来例においては、絶縁基板2
2上に印刷されている。
Such resistor coatings 24a and 24b are made of carbon resistors, for example, and in the conventional example shown in the figure, the insulating substrate 2
2 is printed on.

そして前記抵抗体被膜24a、24b上には、その長さ
方向に沿って間欠的に複数の電極26a−1〜26a−
n、そして26b−1〜26b−mが蒸着等によって設
けられている。
A plurality of electrodes 26a-1 to 26a- are disposed on the resistor coatings 24a and 24b intermittently along their length.
n, and 26b-1 to 26b-m are provided by vapor deposition or the like.

これらの電極26は例えば銀薄膜などから成り、一対の
抵抗体被膜24aに対してそれぞれ千鳥状に互いの設置
位置かずれるように配置されている。
These electrodes 26 are made of, for example, a thin silver film, and are arranged in a staggered manner with respect to the pair of resistor coatings 24a so as to be offset from each other.

実施例において、最上段の電極26a−1,26b−1
がそれぞれリード電極28a及び28bに一体化されて
おり、外部のコネクタ端子30a及び30bによって液
面検出回路と接続されている。
In the embodiment, the uppermost electrodes 26a-1, 26b-1
are integrated into lead electrodes 28a and 28b, respectively, and are connected to a liquid level detection circuit via external connector terminals 30a and 30b.

一方、抵抗体被膜24の最下端においては、共通電極3
2が両紙抗体被膜24a、24bを連接している。
On the other hand, at the lowest end of the resistor coating 24, the common electrode 3
2 connects both paper antibody coatings 24a and 24b.

従って、容器10内に矢印100で示されるように測定
液が順次注入されると、そのときの液面200は注入量
によって順次変化し、このときに両紙抗体被膜24a、
24bに設けられている電極26を順次電解液によって
導通し、リード端子2ga、28b間の抵抗値を液面の
上昇と共に順次減少させ、これによって液面を電気的に
極めて容易に検出することができる。
Therefore, when the measurement liquid is sequentially injected into the container 10 as shown by the arrow 100, the liquid level 200 at that time changes sequentially depending on the injection amount, and at this time, the antibody coating 24a,
The electrodes 26 provided on the electrodes 24b are successively connected to each other by an electrolytic solution, and the resistance value between the lead terminals 2ga and 28b is successively decreased as the liquid level rises, thereby making it possible to electrically detect the liquid level very easily. can.

第5図には、従来における液面センサの等価回路が示さ
れており、センサには交流源32から測定用の交流信号
が供給され、その出力はインピーダンス変換回路34か
ら信号処理部36へ供給され、前記液面200が電気的
に処理されて演算・表示部38により表示される。
FIG. 5 shows an equivalent circuit of a conventional liquid level sensor, in which an AC signal for measurement is supplied from an AC source 32 to the sensor, and its output is supplied from an impedance conversion circuit 34 to a signal processing section 36. Then, the liquid level 200 is electrically processed and displayed by the calculation/display unit 38.

図において、液面200の上昇によって順次間欠的に左
右の電極26が導通されていくが、このときに液体の表
面張力によって液面200より上の電極か濡れてしまう
ことを防ぐために、必要な電極部を残して撥水層が表面
に形成されている。
In the figure, as the liquid level 200 rises, the left and right electrodes 26 are successively and intermittently brought into conduction. A water-repellent layer is formed on the surface except for the electrode portion.

すなわち、通常の絶縁基板22、抵抗体被膜24及び電
極26は比較的液体に濡れやすく、この結果、液面20
0の揺れ、あるいは液の飛散時に液面200より上の電
極が導通してしまうことがあり、このために測定誤差が
生じるという問題がある。
That is, the ordinary insulating substrate 22, resistor film 24, and electrode 26 are relatively easily wetted by liquid, and as a result, the liquid level 20
There is a problem in that the electrodes above the liquid level 200 become conductive during zero fluctuation or liquid scattering, which causes measurement errors.

前記撥水層はこのような事態を防ぐために好適であり、
図の鎖線で示した如く撥水層40を設けて各電極26の
中央部のみを液体に露出することにより撥水層ではほと
んど水を撥いてしまうために、液面200の揺れ、ある
いは飛沫が生じた場合でも電気的導通が完全に絶たれて
、測定誤差が発生することがないという利点かある。
The water repellent layer is suitable for preventing such a situation,
By providing a water-repellent layer 40 and exposing only the central part of each electrode 26 to the liquid as shown by the chain line in the figure, the water-repellent layer repels most of the water, so that the liquid surface 200 shakes or splashes are prevented. This has the advantage that even if this happens, electrical continuity is completely cut off and measurement errors do not occur.

従って、このような撥水層40を用いた液面センサ20
によれば、第6図で示されるように液面位置すなわち水
深によって抵抗値の出力が各電極を順次導通させる段階
的な出力となり、電極間距離を適当に設定することによ
って所定の測定分解能を得ることが可能となる。
Therefore, the liquid level sensor 20 using such a water repellent layer 40
According to Fig. 6, the resistance value output becomes a stepwise output that sequentially conducts each electrode depending on the liquid level position, that is, the water depth, and by appropriately setting the distance between the electrodes, a predetermined measurement resolution can be achieved. It becomes possible to obtain.

[発明が解決しようとする課題] しかしながら、このような従来における液面センサにお
いては、電解液の深さが浅い場合には、両紙抗体被膜間
の電解液インピーダンスか抵抗体被膜のインピーダンス
よりも大きくなってしまい、この結果、電解液量が少な
い時には実際上測定値が著しく不安定になり、大きな誤
差を含んでしまうという問題があった。
[Problems to be Solved by the Invention] However, in such a conventional liquid level sensor, when the depth of the electrolyte is shallow, the electrolyte impedance between the two paper antibody coatings is greater than the impedance of the resistor coating. As a result, when the amount of electrolyte is small, the measured value becomes extremely unstable and contains a large error.

すなわち、電解液の深度が十分に大きい場合には、抵抗
体被膜間には十分な導通度を有するが、その深さが浅い
領域では、電解液自体のインピーダンスが測定値に影響
を与えてしまうため、前述した不安定な測定値が生じる
In other words, if the depth of the electrolyte is sufficiently large, there is sufficient conductivity between the resistor films, but if the depth is shallow, the impedance of the electrolyte itself will affect the measured value. Therefore, the unstable measurement value described above occurs.

第7図にはこの特性か示されており、横軸に示した電解
液深さが浅い時には、電解液のインピーダンスが急激に
上昇してしまい、この結果、抵抗体被膜のインピーダン
ス変化が直線的であっても全体的なインピーダンス特性
は鎖線で示されるように、深度の浅い領域では十分な直
線性を示すことができないという問題があった。
This characteristic is shown in Figure 7. When the electrolyte depth shown on the horizontal axis is shallow, the impedance of the electrolyte increases rapidly, and as a result, the impedance change of the resistor film becomes linear. Even so, there was a problem in that the overall impedance characteristic could not exhibit sufficient linearity in a shallow region, as shown by the chain line.

本発明は、上記従来の課題に鑑みなされたものであり、
その目的は、従来において測定不能な電解液深度が浅い
領域でも正確な液面検出を可能とする液面センサを提供
することにある。
The present invention has been made in view of the above-mentioned conventional problems,
The purpose is to provide a liquid level sensor that can accurately detect the liquid level even in areas where the depth of the electrolyte is shallow, which cannot be measured conventionally.

[課題を解決するための手段] 上記目的を達成するために、本発明においては、液面セ
ンサの絶縁基板に抵抗体被膜とほぼ平行に複数の探深電
極を互いに独立して設け、この探深電極の先端を絶縁基
板の底面から所定深度領域内でそれぞれ異なる位置に設
定したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, a plurality of depth-search electrodes are independently provided on the insulating substrate of the liquid level sensor substantially parallel to the resistor coating, and It is characterized in that the tips of the deep electrodes are set at different positions within a predetermined depth region from the bottom surface of the insulating substrate.

[作用] 従って、本発明によれば、電解液深度が浅い状態では、
液面検出は探深電極により行われ、深さの異なる探深電
極の導通を電解液の液面にて検出し、この小深度領域を
過ぎた後には通常の液面センサと同様に抵抗体被膜の導
通にて液面検出を行うことを特徴とする。
[Function] Therefore, according to the present invention, when the electrolyte depth is shallow,
Liquid level detection is performed using depth-seeking electrodes, and the conductivity of the depth-seeking electrodes at different depths is detected at the liquid level of the electrolyte.After passing this small depth area, a resistor is detected as in a normal liquid level sensor. It is characterized by detecting the liquid level through conduction of the coating.

このように、本発明によれば、電解液深度に応じて最適
な液面検出が可能となるので、全ての電解液深度に対し
て常に正確な液面検出か可能となる。
As described above, according to the present invention, it is possible to perform optimum liquid level detection according to the electrolyte depth, so that accurate liquid level detection is always possible for all electrolyte depths.

[実施例] 以下、図面に基づいて本発明の好適な実施例を説明する
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には、本発明に係る液面センサの好適な実施例が
示されており、前述した第3図の従来の液面センサと同
一部材には同一符号を付して説明を省略する。
FIG. 1 shows a preferred embodiment of the liquid level sensor according to the present invention, and the same members as those of the conventional liquid level sensor shown in FIG. .

図から明らかなように、2本の平行な抵抗体被膜24a
、24bそしてこれらに間欠的に配置された電極26a
、26bは従来と同様である。
As is clear from the figure, two parallel resistor coatings 24a
, 24b and electrodes 26a arranged intermittently thereon.
, 26b are the same as the conventional one.

本発明において特徴的なことは、前記平行な抵抗体被膜
24とほぼ平行に前記絶縁基板22上には複数の探深電
極50−1〜50−11か印刷あるいは蒸着等によって
設けられていることである。
A characteristic feature of the present invention is that a plurality of depth sensing electrodes 50-1 to 50-11 are provided on the insulating substrate 22 almost parallel to the parallel resistor coating 24 by printing or vapor deposition. It is.

これらの電極は、例えば銀電極等によって良好な電気的
導通度を提供しており、本発明において、その先端、す
なわち絶縁基板22の底面22a側の端部がそれぞれ異
なる深さまで伸長しており、これが前記底面22aから
所定深度内に均等に配置されている。
These electrodes provide good electrical conductivity by, for example, silver electrodes, and in the present invention, their tips, that is, the ends on the bottom surface 22a side of the insulating substrate 22, extend to different depths, These are evenly arranged within a predetermined depth from the bottom surface 22a.

実施例において、例えば電解液インピーダンスが大きく
て測定が不安定となる領域が、例えば5mm程度である
場合、この深度領域内で前記各探深電極50の先端がそ
れぞれ異なる深度に位置決めされている。
In the embodiment, if the region where the electrolyte impedance is large and the measurement becomes unstable is, for example, about 5 mm, the tips of the depth-search electrodes 50 are positioned at different depths within this depth region.

前記各探深電極50の上端側にはそれぞれリード電極5
2−1〜52−11が連接されており、前記従来の抵抗
体被膜のリード電極28と同様に図示していないコネク
タにて外部の処理回路と接続されている。
A lead electrode 5 is provided on the upper end side of each of the depth sensing electrodes 50.
2-1 to 52-11 are connected to each other, and are connected to an external processing circuit by a connector (not shown) in the same manner as the lead electrode 28 of the conventional resistor film.

電解液を順次各探深電極50の先端と節度をもって接触
させるため、各探深電極50の下端は撥水層40の窓と
対応し、これによって、電解液の深度が増大するに従っ
て、順次探深電極50か1つずつ電解液と接触すること
となる。
In order to bring the electrolyte into contact with the tip of each probing electrode 50 in a controlled manner, the lower end of each probing electrode 50 corresponds to the window of the water-repellent layer 40, so that as the depth of the electrolyte increases, the probing is carried out sequentially. The deep electrodes 50 come into contact with the electrolyte one by one.

実施例において、探深電極50−1は基準電極を形成し
、他の探深電極50−2〜50−11か前記基準探深電
極50−1との導通にて所定の液面検出信号を出力する
In the embodiment, the depth-seeking electrode 50-1 forms a reference electrode, and generates a predetermined liquid level detection signal by being electrically connected to the other depth-seeking electrodes 50-2 to 50-11 or the reference depth-seeking electrode 50-1. Output.

第2図には本実施例の処理回路の一例か示されており、
CPU演算回路60は、従来と同様に端子62.64か
ら供給される抵抗体被膜からの液面検出信号と共に、エ
ンコーダ66からの小深度検出信号を受は入れ、両者を
切替えて出力端子68.70に検出結果を出力する。
FIG. 2 shows an example of the processing circuit of this embodiment.
The CPU arithmetic circuit 60 receives the liquid level detection signal from the resistor film supplied from the terminals 62, 64 as well as the small depth detection signal from the encoder 66 as in the conventional case, switches between the two, and outputs the output terminal 68. The detection result is output to 70.

前記探深電極は第2図において、基準探深電極50−1
が接地側の電極を形成し、他の電極5〇−2〜50−1
1は等価的なスイッチSWI〜5WIOの他の端子を形
成している。
In FIG. 2, the depth sensing electrode is a reference depth sensing electrode 50-1.
forms the ground side electrode, and the other electrodes 50-2 to 50-1
1 forms the other terminal of equivalent switches SWI to 5WIO.

従って、電解液の深度が順次増加するに従って、SWI
から順次SW2・・・・・・5WIOと順次スイッチか
導通することと等価になり、これらの導通信号がアンプ
70−1〜70−10にて増幅されてエンコーダ66に
供給される。
Therefore, as the electrolyte depth increases sequentially, SWI
This is equivalent to sequentially connecting the switches SW2, .

エンコーダ66は10本の入力端子を4本のデジット信
号に変換してCPU演算回路60へ出力する。
The encoder 66 converts the ten input terminals into four digit signals and outputs them to the CPU arithmetic circuit 60.

従って、このような探深電極50による液面検出によれ
ば、電解液のインピーダンスが不安定あるいは大きい場
合においても、エンコーダ66は確実に基準探深電極5
0−1と他の探深電極との接続を電気的に検出して出力
可能である。
Therefore, according to the liquid level detection using the depth-seeking electrode 50, even when the impedance of the electrolyte is unstable or large, the encoder 66 can reliably detect the reference depth-seeking electrode 5.
It is possible to electrically detect and output the connection between 0-1 and other probing electrodes.

CPU演算回路60はエンコーダ66からの出力が所定
値、例えば所定の深度領域最上部まで電解液の深さが増
大したときに信号入力をそれまでのエンコーダ66から
従来と同様の端子62゜64からの検出信号に切替え、
以降は従来と同様な液面検出作用を行う。
When the output from the encoder 66 reaches a predetermined value, for example, when the depth of the electrolyte increases to the top of a predetermined depth region, the CPU arithmetic circuit 60 inputs a signal from the encoder 66 to the conventional terminals 62 and 64. Switch to the detection signal of
Thereafter, the liquid level detection function is performed in the same manner as in the conventional case.

以上のようにして、本実施例によれば、例えば電解液の
深度が5mmに達するまでの領域で等間隔に10個の異
なる深度の液面として検出し、これによって0.5mm
毎に正確な測定信号を得ることができ、それ以上の十分
な電解液深度がある状態では従来と同様の抵抗体被膜に
よる液面検出が可能となる。
As described above, according to this embodiment, for example, the liquid level is detected at ten different depths at equal intervals in the area until the depth of the electrolytic solution reaches 5 mm, and thereby 0.5 mm
Accurate measurement signals can be obtained at each time, and when there is a sufficient electrolyte depth beyond this point, it is possible to detect the liquid level using a resistor film as in the past.

[発明の効果] 以上説明したように、本発明によれば、電解液の導通を
利用して液面を検出するセンサにおいて、電解液深度が
小さい場合においても、正確な液面検出を可能とする。
[Effects of the Invention] As explained above, according to the present invention, a sensor that detects the liquid level using conduction of the electrolyte can accurately detect the liquid level even when the depth of the electrolyte is small. do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る液面センサの好適な実施例を示す
平面図、 第2図は本発明に係る液面センサに好適な処理回路の一
部を示す回路図、 第3図は従来における液面センサの構成を示す説明図、 第4図は第3図のIV−IV断面図、 第5図は従来における抵抗体液面センサの等価回路図、 第6図は従来における間欠電極を持った液面センサの特
性図、 第7図は従来における電解液深度とインピーダンスの特
性図である。 20 ・・・ 絶縁基板 24a、24b  ・・・ 抵抗体被膜26a、26b
  =−電極 50 ・・ 探深電極
FIG. 1 is a plan view showing a preferred embodiment of the liquid level sensor according to the present invention, FIG. 2 is a circuit diagram showing a part of a processing circuit suitable for the liquid level sensor according to the present invention, and FIG. 3 is a conventional example. 4 is a cross-sectional view taken along line IV-IV in FIG. 3, FIG. 5 is an equivalent circuit diagram of a conventional resistive liquid level sensor, and FIG. 6 is a conventional resistive liquid level sensor with an intermittent electrode. Figure 7 is a characteristic diagram of conventional electrolyte depth and impedance. 20... Insulating substrates 24a, 24b... Resistor coatings 26a, 26b
=-electrode 50... depth-seeking electrode

Claims (1)

【特許請求の範囲】 絶縁基板上に一対の抵抗体被膜を平行に設け、該抵抗体
被膜上にその長さ方向に沿って間欠的に電極を設け、前
記抵抗体被膜の長さ方向を垂直に被測定電解液中に浸漬
させ、電解液によって平行配置された抵抗体被膜が両電
極を介して導通することにより抵抗値が変化し、液面を
検出する液面センサにおいて、 前記絶縁基板上に前記抵抗体被膜とほぼ平行に複数の探
深電極を互いに独立して設け、 前記探深電極はその先端が絶縁基板の底面から所定距離
まで順次異なる深度に設定され、 基板底面側の液面は探深電極の導通によって検出される
ことを特徴とする液面センサ。
[Claims] A pair of resistor films are provided in parallel on an insulating substrate, electrodes are provided intermittently along the length direction of the resistor film, and the length direction of the resistor film is perpendicular to the resistor film. A liquid level sensor that detects the liquid level by immersing it in an electrolytic solution to be measured and changing the resistance value by connecting the resistor films arranged in parallel with the electrolytic solution through both electrodes, wherein: A plurality of depth-seeking electrodes are provided independently from each other substantially parallel to the resistor film, and the tips of the depth-seeking electrodes are set at successively different depths up to a predetermined distance from the bottom surface of the insulating substrate, and the liquid level on the bottom side of the substrate is a liquid level sensor characterized in that detection is performed by conduction of a depth-seeking electrode.
JP13899390A 1990-05-28 1990-05-28 Liquid level sensor Expired - Fee Related JPH0711440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13899390A JPH0711440B2 (en) 1990-05-28 1990-05-28 Liquid level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13899390A JPH0711440B2 (en) 1990-05-28 1990-05-28 Liquid level sensor

Publications (2)

Publication Number Publication Date
JPH0431718A true JPH0431718A (en) 1992-02-03
JPH0711440B2 JPH0711440B2 (en) 1995-02-08

Family

ID=15234978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13899390A Expired - Fee Related JPH0711440B2 (en) 1990-05-28 1990-05-28 Liquid level sensor

Country Status (1)

Country Link
JP (1) JPH0711440B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079522A (en) * 2001-04-10 2002-10-19 야자키 소교 가부시키가이샤 Resistance plate of thick film, and manufacturing method thereof
US9939306B2 (en) 2012-08-16 2018-04-10 The University Of Bradford Device and method for measuring the depth of media

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099707B2 (en) * 2018-06-15 2022-07-12 株式会社AmaterZ Water level sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079522A (en) * 2001-04-10 2002-10-19 야자키 소교 가부시키가이샤 Resistance plate of thick film, and manufacturing method thereof
US9939306B2 (en) 2012-08-16 2018-04-10 The University Of Bradford Device and method for measuring the depth of media
US10234320B2 (en) 2012-08-16 2019-03-19 The University Of Bradford Device and method for measuring the depth of media

Also Published As

Publication number Publication date
JPH0711440B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPH0413930A (en) Level sensor
US10527575B2 (en) Embedded strip lot autocalibration
US9012232B2 (en) Diagnostic strip coding system and related methods of use
EP1600773B1 (en) Measurement of substances in liquids
AU2001237587A1 (en) Measurement of substances in liquids
US20100082271A1 (en) Fluid level and concentration sensor
JPS6450948A (en) Ion activity measuring sensor, manufacture thereof and sensor attachment circuit therefor
US9754708B2 (en) Encoded biosensors and methods of manufacture and use thereof
JPH0431718A (en) Liquid level sensor
US20150107994A1 (en) Biosensor
TW201819637A (en) Capacitive autocoding
CN1051624A (en) Detect the multielectrode sensor of dissolved oxygen DO
JPH04110618A (en) Liquid level sensor
EP3637096B1 (en) Solution property sensor
EP4239328A1 (en) Testing implement and measuring device
US10772210B2 (en) Solution property sensor
CN2083294U (en) Multi-point dissolved oxygen electrode having electrolyte
JPH116755A (en) Interface detection switch
AU2006270355C1 (en) Diagnostic strip coding system and related methods of use
JPH03163346A (en) Reference electrode
JPH0312549A (en) Ion sensor
HK1049696B (en) Measurement of substances in liquids

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees