JPH04311188A - Wide band cathode-ray tube driving circuit - Google Patents
Wide band cathode-ray tube driving circuitInfo
- Publication number
- JPH04311188A JPH04311188A JP19905591A JP19905591A JPH04311188A JP H04311188 A JPH04311188 A JP H04311188A JP 19905591 A JP19905591 A JP 19905591A JP 19905591 A JP19905591 A JP 19905591A JP H04311188 A JPH04311188 A JP H04311188A
- Authority
- JP
- Japan
- Prior art keywords
- ray tube
- luminance signal
- cathode ray
- drive circuit
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing Of Color Television Signals (AREA)
Abstract
Description
【産業上の利用分野】本発明はビデオ信号処理システム
における陰極線管駆動回路に係り、特に陰極線管の駆動
帯域幅を広めた広帯域陰極線管駆動回路に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode ray tube drive circuit in a video signal processing system, and more particularly to a wideband cathode ray tube drive circuit that widens the drive bandwidth of the cathode ray tube.
【従来の技術】映像表示装置の代表的な例として陰極線
管(CRT;Cathod Ray Tube )が挙
げられる。かかる陰極線管の駆動回路は、陰極線管に供
給されるビデオ信号(または複合映像信号)の周波数帯
域幅及び高周波答性を増大させなければ、陰極線管上に
デイスプレイされる画質を向上させることができない。
画質の改善程度は、ラインの画素数と走査線数とに応じ
て決定される。
すなわち、ラインの画素数と走査数が多いほど、高画質
のイメージを陰極線管上にデイスプレイし得る。従って
、走査線が525本である標準方式のビデオ信号処理シ
ステムにおいて、フレーム走査周波数(=30Hz)×
走査線数(=525本)×ドツト数(≒266)=4.
2(MHz)で計算され、陰極線管の周波数駆動帯域は
4.2MHzになる。それで、この標準方式の陰極線管
駆動回路は4〜5MHzの周波数帯域幅を有していれば
、画質の劣化なしに標準ビデオ信号を陰極線管にデイス
プレイさせ得る。従来の陰極線管駆動回路は、図1に示
すように主に高周波回路で使われるカスケード型増幅器
(cascade amplefier) を使用して
いる。カスケード型はエミツタ接地トランジスタQ2と
ベース接地トランジスタQ1とが直列に接続されるよう
に構成されたものである。まず、色差信号処理部10で
復調され出力された色差信号(R−Y)が、駆動増幅部
40のエミツタ接地トランジスタQ2のベースに印加さ
れ、輝度信号処理部20ですでに手動により明るさ及び
明暗が調節された負極性の輝度信号(−Y)が、抵抗R
5を通じてトランジスタQ2のエミツタに印加される。
トランジスタQ2はNPN型なので、ベース入力端に印
加された色差信号(R−Y)を反転増幅する。従って、
トランジスタQ2のコレクタ側のA地点には{−(R−
Y)+(−Y)}=(−R)信号が高周波増幅されて出
力される。出力された(−R)信号はベース接地トラン
ジスタQ1のエミツタに印加されコレクタ側に増幅出力
され、増幅出力された原色信号Rは電流制限抵抗R2を
通じて、陰極線管30の陰極映像強度制御電極31に印
加される。前述したカスケード型増幅器による場合、温
度に対応する増幅度(または直流電流利得)hFE,順
方向バイアスされた接合部の電圧VBE及び逆方向飽和
電流ICBO の変化によるドリフト(drift)の
ために、調節の困難さが生じる。そして、前述した増幅
度,順方向バイアスされた接合部の電圧及び逆方向飽和
電流の内、いずれか1つが変わっても出力電圧が異なる
ようになる。この変化した出力電圧値が入力信号電圧の
変換によるものと区別できないため、安定度が低下する
問題点がある。しかし、カスケード型増幅器を使用した
場合の陰極線管駆動回路がカバーできる映像周波数帯域
は約4〜5MHz程度で、一般のビデオ信号処理システ
ムで使用するには十分である。2. Description of the Related Art A typical example of a video display device is a cathode ray tube (CRT). Such a cathode ray tube drive circuit cannot improve the image quality displayed on the cathode ray tube unless it increases the frequency bandwidth and high frequency response of the video signal (or composite video signal) supplied to the cathode ray tube. . The degree of improvement in image quality is determined depending on the number of pixels in a line and the number of scanning lines. That is, the greater the number of pixels and the number of scans in a line, the higher the quality of the image that can be displayed on the cathode ray tube. Therefore, in a standard video signal processing system with 525 scanning lines, the frame scanning frequency (=30Hz) x
Number of scanning lines (=525) x number of dots (≒266) = 4.
2 (MHz), and the frequency drive band of the cathode ray tube is 4.2 MHz. Therefore, if this standard type cathode ray tube driving circuit has a frequency bandwidth of 4 to 5 MHz, it is possible to display a standard video signal on the cathode ray tube without deteriorating the image quality. A conventional cathode ray tube drive circuit uses a cascade amplifier, which is mainly used in high frequency circuits, as shown in FIG. The cascade type is configured such that a common emitter transistor Q2 and a common base transistor Q1 are connected in series. First, the color difference signal (RY) demodulated and output by the color difference signal processing section 10 is applied to the base of the common emitter transistor Q2 of the drive amplification section 40, and the brightness signal processing section 20 has already manually adjusted the brightness and A negative polarity luminance signal (-Y) with adjusted brightness is connected to the resistor R.
5 to the emitter of transistor Q2. Since the transistor Q2 is of the NPN type, it inverts and amplifies the color difference signal (RY) applied to its base input terminal. Therefore,
At point A on the collector side of transistor Q2 is {-(R-
Y)+(-Y)}=(-R) signal is high-frequency amplified and output. The output (-R) signal is applied to the emitter of the common base transistor Q1 and amplified and output to the collector side, and the amplified and output primary color signal R is applied to the cathode image intensity control electrode 31 of the cathode ray tube 30 through the current limiting resistor R2. applied. In the case of the cascaded amplifier described above, the temperature-dependent amplification (or DC current gain) hFE is adjusted for drift due to changes in the forward biased junction voltage VBE and the reverse saturation current ICBO. difficulties arise. Further, even if any one of the aforementioned amplification degree, forward biased junction voltage, and reverse saturation current changes, the output voltage will differ. Since this changed output voltage value cannot be distinguished from that caused by conversion of the input signal voltage, there is a problem that stability is reduced. However, the video frequency band that can be covered by a cathode ray tube drive circuit using a cascade amplifier is about 4 to 5 MHz, which is sufficient for use in general video signal processing systems.
【発明が解決しようとする課題】しかしながら、近年、
走査線数及び画素の数を大幅に増大させて高画質の映像
をデイスプレイさせる装置が開発されている。例えば、
HD(High Dehinition)TV,ID(
Improved Definition) TV,E
D(Enhanced Definition) TV
などである。これらの装置に使用される陰極線管駆動回
路としては、約8〜20MHzの周波数帯域を有する広
帯域陰極線管駆動回路が要求される。従って、前述した
カスケード型増幅器を使用した場合には、十分に高画質
のイメージをデイスプレイできないという問題点がある
。このような問題点を解決するために、本発明の目的は
、ビデオ信号処理システムにおいて、差動増幅器を用い
て高周波応答及び帯域幅を増大させる広帯域陰極線管駆
動回路を提供することにある。[Problem to be solved by the invention] However, in recent years,
Devices have been developed that display high quality images by greatly increasing the number of scanning lines and pixels. for example,
HD (High Dehinition) TV, ID (
Improved Definition) TV,E
D (Enhanced Definition) TV
etc. A wideband cathode ray tube drive circuit having a frequency band of about 8 to 20 MHz is required as a cathode ray tube drive circuit used in these devices. Therefore, when the above-mentioned cascade type amplifier is used, there is a problem that an image of sufficiently high quality cannot be displayed. In order to solve these problems, an object of the present invention is to provide a wideband cathode ray tube driving circuit that uses a differential amplifier to increase high frequency response and bandwidth in a video signal processing system.
【課題を解決するための手段】前述した目的を達成する
ために、本発明の広帯域陰極線管駆動回路は、色差信号
を発生する色差信号発生手段と、輝度信号を発生する輝
度信号発生手段と、陰極線管とを含むビデオ信号処理シ
ステムにおいて、前記輝度信号と色差信号とを差動増幅
して前記陰極線管に供給する差動増幅手段と、該差動増
幅手段の電流通路上の電流量を調節する電流調節手段と
を備える。更に、前記輝度信号発生手段と前記差動増幅
手段との間に接続されて、前記輝度信号発生手段から発
生される輝度信号を緩衝して前記差動増幅手段に供給す
る緩衝手段を備える。更に、前記緩衝手段で出力される
信号の基準レベルを送信側で送り出される映像信号の明
るさに応じて自動調節する手段を備える。又、前記映像
信号の明るさに対応する情報はフライバツクトランスで
提供される。ここで、前記電流調節手段は可変抵抗によ
り利得を可変させることにより前記差動増幅手段の総電
流量を調節する。更に、前記輝度信号発生手段で発生さ
れる輝度信号の基準レベルを送信側で送り出された映像
信号の明るさに応じて自動調節する基準レベル調節手段
を備える。[Means for Solving the Problems] In order to achieve the above-mentioned object, a wideband cathode ray tube drive circuit of the present invention includes a color difference signal generating means for generating a color difference signal, a luminance signal generating means for generating a luminance signal, A video signal processing system including a cathode ray tube, a differential amplification means for differentially amplifying the luminance signal and the color difference signal and supplying the same to the cathode ray tube, and adjusting the amount of current on a current path of the differential amplification means. and current adjustment means. Furthermore, a buffering means is provided, which is connected between the luminance signal generation means and the differential amplification means, and buffers the luminance signal generated from the luminance signal generation means and supplies the buffered luminance signal to the differential amplification means. Furthermore, means is provided for automatically adjusting the reference level of the signal outputted by the buffering means according to the brightness of the video signal sent out from the transmitting side. Further, information corresponding to the brightness of the video signal is provided by a flyback transformer. Here, the current adjusting means adjusts the total amount of current of the differential amplifying means by varying the gain using a variable resistor. Furthermore, the apparatus further includes a reference level adjusting means for automatically adjusting the reference level of the luminance signal generated by the luminance signal generating means according to the brightness of the video signal sent out from the transmitting side.
【作用】本発明の広帯域陰極線管駆動回路では、差動増
幅手段が陰極線管に供給される輝度信号と色差信号とを
差動増幅し、電流調節手段が差動増幅手段の電流量を制
御することにより、印加されるビデオ信号に対する高周
波応答及び増幅器の帯域幅を増大させて高画質の画面を
十分にデイスプレイさせ得る。[Operation] In the broadband cathode ray tube drive circuit of the present invention, the differential amplification means differentially amplifies the luminance signal and the color difference signal supplied to the cathode ray tube, and the current adjustment means controls the amount of current of the differential amplification means. As a result, the high frequency response to the applied video signal and the bandwidth of the amplifier can be increased to fully display a high quality screen.
【実施例】以下、添付した図面を参照して本発明の実施
例を詳細に説明する。図2は本実施例の広帯域陰極線管
駆動回路の構成を示す図である。ここで、色差信号処理
部10と輝度信号処理部20とは、図1と同様に公知の
ものと類似に構成されている。駆動増幅部40は、2個
のトランジスタQ3,Q4で構成された差動増幅部41
と、このトランジスタQ3,Q4が共通結合されたエミ
ツタ結合地点Cにコレクタが接続されるエミツタ接地ト
ランジスタQ5で構成された電流調節部42とを有する
。差動増幅部41は、トランジスタQ3のベースが抵抗
R10を通じて色差信号処理部10の出力端(R−Y)
に接続され、トランジスタQ3とトランジスタQ4のコ
レクタがそれぞれコレクタ抵抗R7,R8と接続点Dと
を通じて供給電源B+ に接続される。接続点Dと供給
電源B+ との間にはインダクタL1と抵抗R6とが直
列接続され、また接続点Dは抵抗R9を通じて陰極線管
のカソード端31に接続される。電流調節部42は、抵
抗R12及び可変抵抗R13が供給電源B+ と接地電
位GNDとの間に直列に接続され、抵抗R12と可変抵
抗R13との間の接続点にトランジスタQ5のベースが
接続されている。緩衝部50は、輝度信号処理部20及
び駆動信号増幅部40との間にエミツタ接地トランジス
タQ6とコレクタ接地トランジスタQ7とを縦続接続す
るように構成されている。エミツタ接地トランジスタQ
6にはベースにバイアス抵抗R15,R16が接続され
、抵抗R14を通じて供給電源B+ がコレクタに接続
され、並列に連結された抵抗R17とコンデンサC1と
を通じて接地電位GNDがエミツタに接続されている。
コレクタ接地(またはエミツタホロワ (emitte
r follower)) トランジスタQ7は、その
ベースがトランジスタQ6のコレクタに接続される。ト
ランジスタQ7のベースとトランジスタQ6のコレクタ
出力端の間の接続点Eと接地電位GNDとの間にはバイ
アス抵抗R18が接続され、トランジスタQ7のコレク
タには供給電源B+ が接続され、トランジスタQ7の
エミツタと接地電位GNDとの間には抵抗R19が接続
される。トランジスタQ7のエミツタは、抵抗11を通
じて差動増幅部41内のトランジスタQ4のベースに接
続される。自動輝度制限部60は、フライバツクトラン
ス(Flyback Transformer) と緩
衝部50との間に接続される。すなわち、フライバツク
トランスの自動ビーム制限器(ABL;Auto Be
am Limiter)の出力端がコレクタ接地トラン
ジスタQ8のベースに接続され、トランジスタQ8のエ
ミツタはトランジスタQ7のエミツタに接続される。こ
の時、トランジスタQ8のエミツタとトランジスタQ7
のエミツタとの間には、電圧分配抵抗R20,R21と
ダイオードD1とが接続される。トランジスタQ8のベ
ースには、電圧分配抵抗R22,R24及び電流制限抵
抗R24と交流バイパスコンデンサC2とが接続される
。図2において、色差信号処理部10と輝度信号処理部
20とは図1と同様に作動して、それぞれ色差信号(R
−Y)と負極性輝度信号(−Y)とを出力する。色差信
号処理部10で出力された(R−Y)信号は、差動増幅
部41のトランジスタQ3のベースに抵抗R10を通じ
て入力される。一方、輝度信号処理部20の負極性輝度
信号(−Y)は、緩衝部50及び抵抗R11を通じて差
動増幅部41のトランジスタQ4のベースに印加される
。緩衝部50に印加された負極性輝度信号(−Y)はト
ランジスタQ6のベースに印加され、反転増幅されてト
ランジスタQ6のコレクタに反転された輝度信号Yの形
態で現れる。この時、コンデンサC1は、高域遮断周波
数付近での利得の低下を防ぐためのピーキング(pea
king) 補償用として使用される。この反転増幅さ
れた輝度信号Yは、トランジスタQ7のベースに印加さ
れる。トランジスタQ7は負荷により利得が落ちること
を防止するための緩衝役を果たす。すなわち、緩衝部5
0は、印加された輝度信号Yを差動増幅部41のトラン
ジスタQ4のベースに印加され得るようインピーダンス
マツチングさせる部分である。一方、自動輝度制限部6
0には、フライバツクトランス(水平偏向コイルに対す
る出力変成器)のABL端子から、送信側で送り出され
た映像信号の明るさが明るければローレベルの電圧が、
暗ければハイレベルの電圧が発生される。このフライバ
ツクトランスのABLから発生された信号は、トランジ
スタQ8のベースに印加される前に、コンデンサC2に
より交流成分が除去され、電圧分配抵抗R22,R24
により分圧される。
トランジスタQ8は印加されるフライバツクトランスの
ABL端子上の電圧状態に応じて、ベースに供給される
電圧を線形的に増幅し、これによりエミツタに現れる電
圧を変化させる。また、トランジスタQ8のエミツタの
電圧は、電圧分配抵抗R21,R22により電圧分配さ
れた後、一方向ダイオードD1を通じてトランジスタQ
7のエミツタに印加され、トランジスタQ7のエミツタ
で出力される輝度信号の基準レベルを制御することによ
り、映像信号の明るさを調節する。このように調節され
た輝度信号Yは、差動増幅部41のトランジスタQ4の
ベースに印加される。差動増幅部41は、両側のトラン
ジスタQ3,Q4のベースに入力された(R−Y)信号
とY信号間の差{−(R−Y)−Y}=(−R)信号を
増幅して、接続点Dを通じて出力する。この時、トラン
ジスタQ5は、利得(gain)を変化させるために、
可変抵抗R13の調節に応じてトランジスタQ3,Q4
の総電流量を制御する。そして、トランジスタQ3とト
ランジスタQ4とにより増幅された接続点D上の差信号
(−R)は、インダクタンスL1によりピーキング(p
eaking) され、抵抗R9で電流制御され、陰極
線管のカソード映像強度制御電極(図示していない)に
印加される。
この時、陰極線管に印加される前に増幅された差信号(
−R)の状態を反転させるバツフア(例えば図1のトラ
ンジスタQ1のような構成)を経て、図1のように原色
信号Rの状態で印加される。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 2 is a diagram showing the configuration of the broadband cathode ray tube drive circuit of this embodiment. Here, the color difference signal processing section 10 and the luminance signal processing section 20 are configured similarly to known ones as in FIG. 1. The drive amplification section 40 includes a differential amplification section 41 composed of two transistors Q3 and Q4.
and a current adjusting section 42 composed of a common emitter transistor Q5 whose collector is connected to an emitter coupling point C where the transistors Q3 and Q4 are commonly coupled. In the differential amplification section 41, the base of the transistor Q3 is connected to the output terminal (R-Y) of the color difference signal processing section 10 through the resistor R10.
The collectors of transistor Q3 and transistor Q4 are connected to power supply B+ through collector resistors R7 and R8 and connection point D, respectively. An inductor L1 and a resistor R6 are connected in series between the node D and the power supply B+, and the node D is connected to the cathode end 31 of the cathode ray tube through a resistor R9. In the current adjustment section 42, a resistor R12 and a variable resistor R13 are connected in series between a power supply B+ and a ground potential GND, and a base of a transistor Q5 is connected to a connection point between the resistor R12 and the variable resistor R13. There is. The buffer section 50 is configured such that a grounded emitter transistor Q6 and a grounded collector transistor Q7 are connected in cascade between the luminance signal processing section 20 and the drive signal amplification section 40. Grounded emitter transistor Q
6 has bias resistors R15 and R16 connected to its base, a power supply B+ connected to its collector through a resistor R14, and a ground potential GND connected to its emitter through a resistor R17 and a capacitor C1 connected in parallel. Collector ground (or emitter follower)
r follower)) Transistor Q7 has its base connected to the collector of transistor Q6. A bias resistor R18 is connected between the connection point E between the base of the transistor Q7 and the collector output terminal of the transistor Q6 and the ground potential GND, the supply power B+ is connected to the collector of the transistor Q7, and the emitter of the transistor Q7 is connected to the ground potential GND. A resistor R19 is connected between the GND and the ground potential GND. The emitter of transistor Q7 is connected through resistor 11 to the base of transistor Q4 in differential amplifier section 41. The automatic brightness limiter 60 is connected between a flyback transformer and the buffer 50. That is, the automatic beam limiter (ABL) of the flyback transformer
am Limiter) is connected to the base of a common collector transistor Q8, and the emitter of the transistor Q8 is connected to the emitter of the transistor Q7. At this time, the emitter of transistor Q8 and transistor Q7
Voltage distribution resistors R20 and R21 and a diode D1 are connected between the emitter and the emitter. Voltage distribution resistors R22, R24, current limiting resistor R24, and AC bypass capacitor C2 are connected to the base of transistor Q8. In FIG. 2, the color difference signal processing section 10 and the luminance signal processing section 20 operate in the same manner as in FIG.
-Y) and a negative polarity luminance signal (-Y). The (RY) signal output from the color difference signal processing section 10 is input to the base of the transistor Q3 of the differential amplification section 41 through the resistor R10. On the other hand, the negative polarity luminance signal (-Y) of the luminance signal processing section 20 is applied to the base of the transistor Q4 of the differential amplifier section 41 through the buffer section 50 and the resistor R11. The negative luminance signal (-Y) applied to the buffer section 50 is applied to the base of the transistor Q6, is inverted and amplified, and appears in the form of an inverted luminance signal Y at the collector of the transistor Q6. At this time, the capacitor C1 has a peaking (pea
king) is used for compensation. This inverted and amplified luminance signal Y is applied to the base of transistor Q7. Transistor Q7 serves as a buffer to prevent the gain from decreasing due to load. That is, the buffer section 5
0 is a portion that performs impedance matching so that the applied luminance signal Y can be applied to the base of the transistor Q4 of the differential amplification section 41. On the other hand, the automatic brightness limiter 6
At 0, if the brightness of the video signal sent out from the transmitting side is bright from the ABL terminal of the flyback transformer (output transformer for the horizontal deflection coil), a low level voltage is applied.
If it is dark, a high level voltage is generated. The AC component of the signal generated from ABL of this flyback transformer is removed by capacitor C2 before being applied to the base of transistor Q8, and voltage distribution resistors R22 and R24
The pressure is divided by Transistor Q8 linearly amplifies the voltage supplied to its base depending on the voltage state applied to the ABL terminal of the flyback transformer, thereby changing the voltage appearing at its emitter. Further, the voltage at the emitter of transistor Q8 is divided by voltage distribution resistors R21 and R22, and then passed through one-way diode D1 to transistor Q.
The brightness of the video signal is adjusted by controlling the reference level of the luminance signal applied to the emitter of transistor Q7 and output from the emitter of transistor Q7. The brightness signal Y adjusted in this way is applied to the base of the transistor Q4 of the differential amplifier section 41. The differential amplification section 41 amplifies the difference {-(RY)-Y}=(-R) signal between the (RY) signal and the Y signal input to the bases of the transistors Q3 and Q4 on both sides. and output through connection point D. At this time, in order to change the gain, the transistor Q5
Transistors Q3 and Q4 according to the adjustment of variable resistor R13.
control the total amount of current. Then, the difference signal (-R) on the connection point D amplified by the transistor Q3 and the transistor Q4 peaks (p
The current is controlled by resistor R9 and applied to the cathode image intensity control electrode (not shown) of the cathode ray tube. At this time, the amplified difference signal (
-R) is applied in the state of the primary color signal R as shown in FIG. 1 through a buffer (for example, a configuration such as transistor Q1 in FIG. 1).
【発明の効果】本発明により、ビデオ信号処理システム
において、差動増幅器を用いて高周波応答及び帯域幅を
増大させる広帯域陰極線管駆動回路を提供できる。すな
わち、本発明はビデオ信号処理システムの陰極線管駆動
回路において、直流分の増幅ができ、バイアス安定度が
優れ、特に広範な温度及び電源変動によつても安定に作
動する差動増幅器を用いることにより、ビデオ信号に対
する高周波応答及び増幅器の帯域幅を増大させ、高画質
の画面を陰極線管にデイスプレイさせうる利点がある。According to the present invention, it is possible to provide a wideband cathode ray tube drive circuit that uses a differential amplifier to increase high frequency response and bandwidth in a video signal processing system. That is, the present invention uses, in a cathode ray tube drive circuit of a video signal processing system, a differential amplifier that can amplify a DC component, has excellent bias stability, and operates stably even over a wide range of temperature and power fluctuations. This has the advantage of increasing the high frequency response to the video signal and the bandwidth of the amplifier, allowing the cathode ray tube to display a high-quality screen.
【図1】従来の広帯域陰極線管駆動回路の構成を示す図
である。FIG. 1 is a diagram showing the configuration of a conventional broadband cathode ray tube drive circuit.
【図2】本実施例の広帯域陰極線管駆動回路の構成を示
す図である。FIG. 2 is a diagram showing the configuration of a broadband cathode ray tube drive circuit of this embodiment.
Claims (6)
と、輝度信号を発生する輝度信号発生手段と、陰極線管
とを含むビデオ信号処理システムにおいて、前記輝度信
号と色差信号とを差動増幅して前記陰極線管に供給する
差動増幅手段と、該差動増幅手段の電流通路上の電流量
を調節する電流調節手段とを備えることを特徴とする広
帯域陰極線管駆動回路。1. A video signal processing system including a color difference signal generating means for generating a color difference signal, a luminance signal generating means for generating a luminance signal, and a cathode ray tube, wherein the luminance signal and the color difference signal are differentially amplified. 1. A wideband cathode ray tube drive circuit, comprising: differential amplification means for supplying a current to the cathode ray tube; and current adjustment means for adjusting the amount of current on a current path of the differential amplification means.
手段との間に接続されて、前記輝度信号発生手段から発
生される輝度信号を緩衝して前記差動増幅手段に供給す
る緩衝手段を更に備えることを特徴とする請求項1記載
の広帯域陰極線管駆動回路。2. A buffering means connected between the luminance signal generation means and the differential amplification means, buffering the luminance signal generated from the luminance signal generation means and supplying the buffer to the differential amplification means. The broadband cathode ray tube drive circuit according to claim 1, further comprising: a wideband cathode ray tube drive circuit;
レベルを送信側で送り出される映像信号の明るさに応じ
て自動調節する手段を更に備えることを特徴とする請求
項2記載の広帯域陰極線管駆動回路。3. The broadband cathode ray tube according to claim 2, further comprising means for automatically adjusting the reference level of the signal outputted by the buffering means according to the brightness of the video signal sent out on the transmitting side. drive circuit.
はフライバツクトランスで提供されることを特徴とする
請求項3記載の広帯域陰極線管駆動回路。4. The broadband cathode ray tube drive circuit according to claim 3, wherein information corresponding to the brightness of the video signal is provided by a flyback transformer.
得を可変させることにより前記差動増幅手段の総電流量
を調節することを特徴とする請求項1記載の広帯域陰極
線管駆動回路。5. The broadband cathode ray tube drive circuit according to claim 1, wherein the current adjusting means adjusts the total amount of current of the differential amplifying means by varying the gain using a variable resistor.
度信号の基準レベルを送信側で送り出された映像信号の
明るさに応じて自動調節する基準レベル調節手段を更に
備えることを特徴とする請求項1記載の広帯域陰極線管
駆動回路。6. The apparatus further comprises a reference level adjusting means for automatically adjusting the reference level of the luminance signal generated by the luminance signal generating means according to the brightness of the video signal sent out on the transmitting side. 2. The broadband cathode ray tube drive circuit according to item 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR910091736 | 1991-01-17 | ||
KR91-736 | 1991-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04311188A true JPH04311188A (en) | 1992-11-02 |
Family
ID=19327529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19905591A Pending JPH04311188A (en) | 1991-01-17 | 1991-08-08 | Wide band cathode-ray tube driving circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04311188A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5136967A (en) * | 1974-09-13 | 1976-03-29 | Kawasaki Heavy Ind Ltd | SHINKAI YOSHIKOSE ISOJUHAKI |
JPS57145602A (en) * | 1981-01-28 | 1982-09-08 | Nordica Spa | Clamping tool of ski boots |
-
1991
- 1991-08-08 JP JP19905591A patent/JPH04311188A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5136967A (en) * | 1974-09-13 | 1976-03-29 | Kawasaki Heavy Ind Ltd | SHINKAI YOSHIKOSE ISOJUHAKI |
JPS57145602A (en) * | 1981-01-28 | 1982-09-08 | Nordica Spa | Clamping tool of ski boots |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100274281B1 (en) | Beam scan velocity modulation apparatus | |
JPS61157177A (en) | Gamma controller | |
JPS6096081A (en) | Image reproduction device current changing device | |
JP3749554B2 (en) | Cathode ray tube drive device | |
KR830002170B1 (en) | Automatic brightness control circuit | |
US5453798A (en) | Black compensation circuit for a video display system | |
KR100688133B1 (en) | Dynamic focus voltage amplitude controller | |
US4622589A (en) | Television receiver on-screen character display | |
US3813488A (en) | Video stripper | |
JPH04311188A (en) | Wide band cathode-ray tube driving circuit | |
JP2000196973A (en) | Pulse correction device in display system | |
US5920157A (en) | Circuit and method for compensating for fluctuations in high voltage of fly back transformer for semiwide-screen television receiver | |
KR100338232B1 (en) | Kinescope drive with gamma correction | |
US6297600B1 (en) | Blanked dynamic focus power supply transient elimination | |
US5216508A (en) | Wide-band cathode-ray tube driving circuit | |
JPS6012872A (en) | video amplifier | |
JPS607871B2 (en) | signal processing circuit | |
KR100345435B1 (en) | Picture display apparatus with beam scan velocity modulation | |
EP1142305B1 (en) | Blanked dynamic focus power supply transient elimination | |
US3919472A (en) | Automatic target control system for a television camera tube | |
JPH0741257Y2 (en) | Luminance signal correction circuit for television receiver | |
KR820000914B1 (en) | Combined blanking level and kinescope bias clamp for a television signal processing system | |
KR100241048B1 (en) | Beam scan velocity modulation apparatus | |
JP3822264B2 (en) | Cathode ray tube drive amplifier | |
JPH0229096A (en) | automatic white balance circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19960521 |