[go: up one dir, main page]

JPH04310299A - Advanced treatment methods and equipment for tap water raw water - Google Patents

Advanced treatment methods and equipment for tap water raw water

Info

Publication number
JPH04310299A
JPH04310299A JP3103933A JP10393391A JPH04310299A JP H04310299 A JPH04310299 A JP H04310299A JP 3103933 A JP3103933 A JP 3103933A JP 10393391 A JP10393391 A JP 10393391A JP H04310299 A JPH04310299 A JP H04310299A
Authority
JP
Japan
Prior art keywords
tank
treatment
enriched air
ozone
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3103933A
Other languages
Japanese (ja)
Inventor
Osamu Miki
理 三木
Masahiro Fujii
正博 藤井
Yasushi Kamori
裕史 嘉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3103933A priority Critical patent/JPH04310299A/en
Publication of JPH04310299A publication Critical patent/JPH04310299A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To sufficiently remove the contaminant contained in raw clean water. CONSTITUTION:Raw clean water is biologically treated in a nitration tank 1, a denitrification tank 2 and a sedimentation filter tank 6 in succession. Oxygen enriched air is supplied to the nitration tank 1 from an oxygen enriched air preparing device 3 to perform nitration treatment under the control of ORP. By controlling ORP by supplying oxygen enriched air to the denitrification tank 12 from the oxygen enriched air preparing device 3, denitrification treatment is performed. The flocculation, sedimentation and filtering of bacteria are performed in the sedimentation filter tank 6. Thereafter, ozone treatment is performed. Oxygen enriched air is supplied to an ozone generator 10 from the oxygen enriched air preparing device 3 and an ozone contact tank 9 is packed with an Fe type amorphous material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は上水原水の高度処理に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to advanced treatment of raw water.

【0002】0002

【従来の技術】上水は通常は河川等から取水し、これに
濾過等の処理を施して給水している。上水の処理として
は、原水の汚染が進むにつれ、単なる濾過と塩素消毒の
併用では足りなくなり、生物処理、オゾン処理、活性炭
処理等の高度処理が必要とされるようになってきた。
BACKGROUND OF THE INVENTION Clean water is normally taken from rivers, etc., and is supplied after being subjected to treatments such as filtration. As raw water becomes increasingly contaminated, simple filtration and chlorine disinfection are no longer sufficient for water treatment, and advanced treatments such as biological treatment, ozone treatment, and activated carbon treatment are now required.

【0003】生物処理は、ハニカムチューブ等を充填材
として処理槽の水中に浸漬し、これに微生物を付着させ
、微生物の生物膜を原水と接触させて浄化を行う方法で
ある。すなわち、処理槽に空気を吹き込んで好気性雰囲
気に保持しながら原水を供給すると、充填材表面に付着
した微生物の生物膜が原水中に含まれる各種の物質を分
解、凝集させるのである。また、オゾンはフッ素につぐ
強力な酸化剤であるので、この酸化力を利用し、原水に
オゾンを吹き込んで処理するのがオゾン処理である。 さらに、活性炭処理は、活性炭の吸着力を利用して溶存
有機物を除去する処理である。
[0003] Biological treatment is a method in which a honeycomb tube or the like is immersed as a filler in the water of a treatment tank, microorganisms are attached to it, and the biofilm of the microorganisms is brought into contact with raw water for purification. That is, when raw water is supplied while blowing air into the treatment tank to maintain an aerobic atmosphere, the biofilm of microorganisms attached to the surface of the filler decomposes and aggregates various substances contained in the raw water. Furthermore, since ozone is the second most powerful oxidizing agent after fluorine, ozone treatment utilizes this oxidizing power to blow ozone into raw water. Furthermore, activated carbon treatment is a process that uses the adsorption power of activated carbon to remove dissolved organic matter.

【0004】0004

【発明が解決しようとする課題】しかし、最近日本の主
要水源である河川の水質は、下水処理水の流入等のため
急速に悪化し、従来の技術では臭気の発生、トリハロメ
タン等の発癌性物質やアンモニア性窒素の増加等に対処
することができなくなっている。前述した従来の高度処
理も以下のような問題点を有している。
[Problems to be Solved by the Invention] Recently, however, the water quality of rivers, which are Japan's main water sources, has been rapidly deteriorating due to the inflow of treated sewage water, etc., and conventional techniques have been unable to produce odor or contain carcinogenic substances such as trihalomethane. It has become impossible to deal with the increase in ammonia nitrogen and ammonia nitrogen. The conventional advanced processing described above also has the following problems.

【0005】まず、生物処理はハニカムチューブなどの
プラスチック製品を微生物の固定化担体に用いる場合が
多いが、ハニカムチューブは以下の様な欠点を有してい
る。まず、ハニカムチューブは材質的にも、表面性状か
らも微生物が表面に固定化されにくい。したがって、処
理が順調に行われるための長い馴致期間を必要とする。 また、ハニカムチューブはチューブ間で閉塞が生じやす
く、さらに一度閉塞が生じると反応槽内で偏流が起こり
、処理水質が低下する。そして、水などの逆洗によって
閉塞を改善するのはかなり困難である。
First, in biological treatment, plastic products such as honeycomb tubes are often used as carriers for immobilizing microorganisms, but honeycomb tubes have the following drawbacks. First, microorganisms are difficult to immobilize on the surface of honeycomb tubes due to their material and surface properties. Therefore, a long acclimatization period is required for the process to proceed smoothly. In addition, honeycomb tubes are prone to blockage between the tubes, and once blockage occurs, uneven flow occurs within the reaction tank, reducing the quality of the treated water. It is quite difficult to correct the blockage by backwashing with water or the like.

【0006】窒素の除去については、従来の生物処理で
もある程度硝化反応を進めることによってアンモニア性
窒素を除去することは可能であったが、硝化反応をコン
トロールする明確な指標が無いため処理が不安定であっ
た。また、脱窒素反応によって硝酸態窒素を窒素ガスに
変換し、窒素を完全に除去することはほとんど考慮され
ていない。
Regarding the removal of nitrogen, it has been possible to remove ammonia nitrogen by advancing the nitrification reaction to some extent with conventional biological treatment, but the treatment is unstable because there is no clear indicator to control the nitrification reaction. Met. Furthermore, little consideration is given to converting nitrate nitrogen into nitrogen gas through a denitrification reaction and completely removing nitrogen.

【0007】臭気除去については、生物処理は不安定で
ばらつきが大きい。また、トリハロメタン前駆物質等の
除去はあまり期待できない。
[0007] Regarding odor removal, biological treatments are unstable and highly variable. Further, removal of trihalomethane precursors and the like cannot be expected to be very effective.

【0008】オゾン処理と活性炭処理とを併用する場合
、オゾン消費量を多くするとトリハロメタン等を除去す
る効果が表れる。また、臭気はオゾン処理で80〜90
%、活性炭を併用してほぼ100%除去できるが、窒素
の除去は期待できない。
When ozone treatment and activated carbon treatment are used together, the effect of removing trihalomethanes and the like becomes more apparent when the amount of ozone consumed is increased. In addition, the odor level is 80-90 with ozone treatment.
%, almost 100% can be removed by using activated carbon together, but nitrogen removal cannot be expected.

【0009】さらに、生物処理、オゾン処理および活性
炭処理を組み合わせるとトリハロメタン等および臭気は
ほぼ除去できる。そして、窒素除去も硝化まではある程
度効果があるが、不安定である。さらに、脱窒は行われ
ず、また効率が悪いため処理コストが上昇するという問
題点がある。
Furthermore, by combining biological treatment, ozone treatment, and activated carbon treatment, trihalomethane, etc. and odor can be almost completely removed. Nitrogen removal is also effective to some extent until nitrification, but it is unstable. Furthermore, there is a problem that denitrification is not performed and the efficiency is low, resulting in an increase in processing cost.

【0010】本発明は、上水原水に含まれる汚染物質を
総合的に十分に除去できる上水原水の高度処理技術を提
供する。
[0010] The present invention provides an advanced treatment technology for raw water that can comprehensively and sufficiently remove contaminants contained in raw water.

【0011】[0011]

【課題を解決するための手段】本発明の方法は、上水原
水を順次硝化槽、脱窒槽、および沈澱濾過槽で生物処理
するに際し、硝化槽および脱窒槽にサドル型セラミック
スを微生物の固定化担体として設け、硝化槽に酸素富化
空気製造装置からの酸素富化空気を供給してORPを制
御することにより硝化処理し、脱窒槽に酸素富化空気製
造装置からの窒素富化空気を供給してORPを制御する
ことにより脱窒処理を行い、続いて沈澱濾過槽で微生物
の凝集沈澱、濾過処理を行い、その後オゾン処理するこ
とを特徴とする上水原水の高度処理方法であり、本発明
の装置は、硝化槽、脱窒槽、および沈澱濾過槽ならびに
オゾン処理装置からなり、硝化槽および脱窒槽にサドル
型セラミックスを微生物の固定化担体として設け、さら
に硝化槽および脱窒槽にORP制御装置を備え、酸素富
化空気製造装置からの酸素富化空気を硝化槽およびオゾ
ン処理装置のオゾン発生装置に、酸素富化空気製造装置
からの窒素富化空気を脱窒槽に供給するよう構成し、オ
ゾン処理装置のオゾン接触槽にFe系アモルファス材を
充填したことを特徴とする上水原水の高度処理装置であ
る。
[Means for Solving the Problems] The method of the present invention involves using saddle-shaped ceramics to immobilize microorganisms in the nitrification tank and the denitrification tank when biologically treating raw water in a nitrification tank, a denitrification tank, and a sedimentation filter tank in sequence. Provided as a carrier, nitrification is performed by supplying oxygen-enriched air from the oxygen-enriched air production device to the nitrification tank and controlling ORP, and supplies nitrogen-enriched air from the oxygen-enriched air production device to the denitrification tank. This is an advanced treatment method for raw water, which is characterized by denitrification treatment by controlling ORP, followed by coagulation and sedimentation of microorganisms in a sedimentation filtration tank, filtration treatment, and then ozone treatment. The device of the invention consists of a nitrification tank, a denitrification tank, a sedimentation filter tank, and an ozone treatment device, and the nitrification tank and denitrification tank are provided with saddle-shaped ceramics as microorganism immobilization carriers, and the nitrification tank and denitrification tank are equipped with an ORP control device. , configured to supply oxygen-enriched air from the oxygen-enriched air production device to the nitrification tank and the ozone generator of the ozone treatment device, and supply nitrogen-enriched air from the oxygen-enriched air production device to the denitrification tank, This is an advanced treatment device for raw water, characterized in that an ozone contact tank of the ozone treatment device is filled with an Fe-based amorphous material.

【0012】0012

【作用】図1に本発明の上水原水の高度処理装置の例を
示す。
[Operation] Fig. 1 shows an example of the advanced treatment device for tap water raw water according to the present invention.

【0013】本発明においては、アンモニア性窒素を完
全に除去するため硝化槽1および脱窒槽2を設ける。硝
化槽1においては、ORP(酸化還元電位)を指標(金
−銀/塩化銀基準)にたとえば+100〜+150mV
のように好気性雰囲気に維持することにより、微生物に
各種物質を酸化分解させる。たとえば、硝化菌はアンモ
ニア性窒素を酸化する。次の脱窒槽2においては、逆に
ORPを指標にたとえば−50〜−150mVのように
嫌気性雰囲気に維持することにより、硝酸を窒素ガスに
変えて空気中に除去する。
In the present invention, a nitrification tank 1 and a denitrification tank 2 are provided to completely remove ammonia nitrogen. In the nitrification tank 1, for example, +100 to +150 mV using ORP (oxidation-reduction potential) as an index (gold-silver/silver chloride standard).
By maintaining an aerobic atmosphere like this, microorganisms are allowed to oxidize and decompose various substances. For example, nitrifying bacteria oxidize ammonia nitrogen. In the next denitrification tank 2, nitric acid is converted into nitrogen gas and removed into the air by maintaining an anaerobic atmosphere at, for example, -50 to -150 mV using ORP as an index.

【0014】ORPの測定装置としては、電極として金
または金とアンチモンの合金と銀−塩化銀からなる複合
電極のものが、指示値が安定している等の理由から、本
発明に適用するのが望ましい。
[0014] As an ORP measuring device, a composite electrode consisting of gold or an alloy of gold and antimony and silver-silver chloride as an electrode is suitable for use in the present invention because the indicated value is stable. is desirable.

【0015】硝化槽1および脱窒槽2にサドル型セラミ
ックスを微生物の固定化担体として設けるのは、付着す
る微生物の量を増やし、処理効率を上昇させるためであ
る。従来のハニカムチューブでは付着する微生物の量が
少ないが、セラミックスを処理槽に浸漬すると微生物が
セラミックス内部に積極的に入り込むので、付着する微
生物の量が多くなる。また、原水との接触を良くするた
めには、セラミックスの形状はサドル型が良い。サドル
型とは、図2に示すような形状であり、これを処理槽に
浸漬することにより付着する微生物の量を増加させると
ともに原水との接触を良好にすることができるのである
The reason why saddle-shaped ceramics are provided in the nitrification tank 1 and the denitrification tank 2 as microorganism immobilization carriers is to increase the amount of attached microorganisms and improve treatment efficiency. With conventional honeycomb tubes, the amount of microorganisms that adhere to them is small, but when ceramics are immersed in a treatment tank, the microorganisms actively enter the interior of the ceramics, so the amount of microorganisms that adhere to them increases. In addition, in order to improve contact with raw water, the shape of the ceramic is preferably saddle-shaped. The saddle type has a shape as shown in FIG. 2, and by immersing it in a treatment tank, it is possible to increase the amount of attached microorganisms and improve contact with raw water.

【0016】サドル型セラミックスとしては、高炉水砕
スラグを主原料としたものが特に望ましい。高炉水砕ス
ラグは微生物の微量栄養源であるFe、Mgを含んでい
るため微生物の付着性が向上し、また、Caが主成分で
あってセラミックスの焼成温度を低下させることができ
るため、サドル型セラミックスを安価に製造することが
可能となるからである。
[0016] As saddle type ceramics, those whose main raw material is granulated blast furnace slag are particularly desirable. Granulated blast furnace slag contains Fe and Mg, which are micronutrient sources for microorganisms, which improves the adhesion of microorganisms, and also contains Ca as a main component, which can lower the firing temperature of ceramics. This is because mold ceramics can be manufactured at low cost.

【0017】硝化槽1および脱窒槽2のORPを制御す
るためには、酸素富化空気製造装置3を使用する。
In order to control the ORP of the nitrification tank 1 and the denitrification tank 2, an oxygen enriched air production device 3 is used.

【0018】硝化槽1には、ORPを指標に好気性雰囲
気に維持するため、酸素富化空気製造装置3より得られ
る酸素富化空気を供給する。単に空気を供給するよりは
効率的に硝化槽1を好気性雰囲気に維持することができ
る。
Oxygen-enriched air obtained from an oxygen-enriched air production device 3 is supplied to the nitrification tank 1 in order to maintain an aerobic atmosphere using ORP as an index. The nitrification tank 1 can be maintained in an aerobic atmosphere more efficiently than simply supplying air.

【0019】また、脱窒槽2には、ORPを指標に嫌気
性雰囲気に維持するため、酸素富化空気製造装置3から
の窒素富化空気を供給する。嫌気性雰囲気にするために
は空気の供給を停止しても良いが、本発明のように窒素
富化空気を供給しても嫌気性雰囲気となる。しかも、窒
素富化空気の供給により処理槽内が攪拌され、反応が促
進される。酸素富化空気を供給すると副産物として窒素
富化空気も製造されるので、本発明はこれを有効に利用
するものである。
Further, the denitrification tank 2 is supplied with nitrogen-enriched air from an oxygen-enriched air production device 3 in order to maintain an anaerobic atmosphere using ORP as an index. In order to create an anaerobic atmosphere, the supply of air may be stopped, but even if nitrogen-enriched air is supplied as in the present invention, an anaerobic atmosphere is created. Moreover, the supply of nitrogen-enriched air agitates the inside of the treatment tank, promoting the reaction. Since nitrogen-enriched air is also produced as a by-product when oxygen-enriched air is supplied, the present invention makes effective use of this.

【0020】脱窒槽2から流出した水は沈澱濾過槽6に
導き、微生物を凝集沈澱させ、濾過して排出する。排出
後オゾン処理を行うため、微生物はここで完全に除去す
る必要がある。微生物が残存しているとオゾンを無駄に
消費してしまうので、これを避けるためである。ここで
、濾過に前述したサドル型セラミックスを利用すること
も可能である。
[0020] The water flowing out from the denitrification tank 2 is led to a sedimentation filter tank 6, where microorganisms are coagulated and precipitated, filtered, and discharged. Since ozone treatment is performed after discharge, microorganisms must be completely removed here. This is to avoid ozone being wasted if microorganisms remain. Here, it is also possible to utilize the saddle type ceramics mentioned above for filtration.

【0021】以上の生物処理を経た水は、次にオゾン処
理する。高価なオゾン処理の前に生物処理を行うので、
オゾン単独処理に比べて処理効率が高くなる。前述の通
り、オゾンはフッ素につぐ強力な酸化剤であり、この酸
化力を利用し、原水にオゾンを吹き込んで処理する。こ
の処理により、フミン酸などのトリハロメタン前駆物質
および臭気等の残存物が完全に除去できる。
[0021] The water that has undergone the above biological treatment is then subjected to ozone treatment. Biological treatment is performed before expensive ozone treatment, so
The treatment efficiency is higher than that of ozone treatment alone. As mentioned above, ozone is the second most powerful oxidizing agent after fluorine, and this oxidizing power is used to treat raw water by blowing it into it. Through this treatment, trihalomethane precursors such as humic acid and residual substances such as odors can be completely removed.

【0022】ただ、オゾン発生装置の改良が進んでいる
とはいえ、オゾン製造には多量の電力を必要とするとい
う問題がある。このためオゾンはかなり高価なものとな
り、しかも水への溶解度が比較的小さいので、処理コス
トの上昇が避けられず、現在日本であまり普及していな
い。処理コストを上昇させずにオゾンの優れた処理能力
を利用するためには、効果的な処理方法を開発すること
が重要であった。本発明では、この問題を解決するため
、生物処理を経てからオゾン処理するだけでなく、酸素
富化空気製造装置3からの酸素富化空気を硝化槽1とと
もにオゾン処理装置のオゾン発生装置10にも供給し、
また、オゾン処理装置のオゾン接触槽9にFe系アモル
ファス材を充填する。
However, although ozone generators have been improved, there is a problem in that ozone production requires a large amount of electricity. For this reason, ozone is quite expensive, and since its solubility in water is relatively low, an increase in treatment costs is unavoidable, and it is currently not widely used in Japan. It was important to develop effective treatment methods to take advantage of ozone's superior treatment capabilities without increasing treatment costs. In order to solve this problem, the present invention not only performs biological treatment and then ozone treatment, but also supplies the oxygen-enriched air from the oxygen-enriched air production device 3 together with the nitrification tank 1 to the ozone generator 10 of the ozone treatment device. We also supply
Further, the ozone contact tank 9 of the ozone treatment device is filled with Fe-based amorphous material.

【0023】まず、酸素富化空気製造装置3からの酸素
富化空気をオゾン発生装置10にも供給することにより
、オゾン発生装置10の効率を上げる。すなわち、空気
からオゾンを製造するよりも酸素富化空気からオゾンを
製造する方が効率が良い。
First, the efficiency of the ozone generator 10 is increased by supplying the oxygen-enriched air from the oxygen-enriched air production device 3 to the ozone generator 10 as well. In other words, it is more efficient to produce ozone from oxygen-enriched air than from air.

【0024】オゾン処理におけるアモルファス材の触媒
作用についてであるが、金属による触媒作用において、
アモルファスのほうが結晶よりも高い活性を示すことが
知られている(「アモルファス材料」東京大学出版会)
が、オゾンによる水処理の触媒として利用された例はな
い。本発明者は、Fe系アモルファス材を触媒として利
用するとオゾン処理の効率が2〜3倍も向上することを
確認した。すなわち、処理時間でいえば、オゾン単独処
理の場合に比較して1/2〜1/3に短縮できることに
なる。
Regarding the catalytic action of amorphous materials in ozone treatment, in the catalytic action of metals,
It is known that amorphous materials exhibit higher activity than crystalline materials ("Amorphous Materials", University of Tokyo Press).
However, there is no example of its use as a catalyst for water treatment using ozone. The present inventor has confirmed that the efficiency of ozone treatment can be improved by 2 to 3 times when an Fe-based amorphous material is used as a catalyst. That is, in terms of processing time, it can be shortened to 1/2 to 1/3 compared to the case of ozone treatment alone.

【0025】Fe系アモルファス材がオゾン処理の効率
を向上させる機構については、アモルファス材の表面積
当たりの活性点が多いことの他、Fe系アモルファス材
の表面が酸化され易く、オゾンの酸化作用により表面に
過酸化鉄(FeOOH)が生成され、これが目的とする
成分を酸化分解するためではないかと考えられる。アモ
ルファス材がないと発生期の酸素が短時間でO2 とな
ってしまい、目的成分の分解に寄与しないが、過酸化鉄
(FeOOH)はこの形で存在する時間が長いため、処
理効率が向上するのである。
Regarding the mechanism by which the Fe-based amorphous material improves the efficiency of ozone treatment, in addition to the fact that the amorphous material has many active points per surface area, the surface of the Fe-based amorphous material is easily oxidized, and the oxidation effect of ozone causes the surface to deteriorate. It is thought that this is because iron peroxide (FeOOH) is produced and this oxidizes and decomposes the target component. Without an amorphous material, the nascent oxygen will turn into O2 in a short time and will not contribute to the decomposition of the target component, but iron peroxide (FeOOH) remains in this form for a long time, improving processing efficiency. It is.

【0026】オゾン処理の後、さらに処理水質を向上さ
せるために活性炭処理装置を設置することも可能である
After the ozone treatment, it is also possible to install an activated carbon treatment device to further improve the quality of the treated water.

【0027】[0027]

【実施例】水道原水中の有機物、窒素、かび臭物質、フ
ミン酸の同時除去
[Example] Simultaneous removal of organic matter, nitrogen, musty odor substances, and humic acid in raw water from tap water

【0028】水道原水中に含まれる有機物、窒素、かび
臭物質およびフミン酸の除去について本法を適用した。 本法は、まず生物処理によって上記物質の大半を分解、
除去し、その後高効率のオゾン処理によって残存物質を
分解するので、オゾン処理単独の場合と比較して処理効
率、処理水質を大幅に向上させることが可能となる。
The present method was applied to remove organic matter, nitrogen, musty-smelling substances, and humic acid contained in raw tap water. This method first decomposes most of the above substances through biological treatment.
Since the remaining substances are removed and then decomposed by highly efficient ozone treatment, it is possible to significantly improve treatment efficiency and treated water quality compared to the case of ozone treatment alone.

【0029】実験は以下の手順で行った。まず、水道原
水としては、河川原水にかび臭物質として2MIB(2
メチルイソボルネオール)を500ng/l、窒素とし
てNH4 −Nを3mg/l、フミン酸として1mg/
lとなるように調整したものを使用した。これは、夏場
に最も水道原水の水質が悪化した場合の水質を想定した
ものである。続いて、生物処理装置とオゾン処理装置を
表1の条件で運転した。
The experiment was conducted according to the following procedure. First, as raw water for tap water, 2 MIB (2
500 ng/l of methyl isoborneol), 3 mg/l of NH4-N as nitrogen, and 1 mg/l of humic acid.
1 was used. This is based on the assumption that the water quality would be the worst in the summer when the water quality of raw water is the worst. Subsequently, the biological treatment device and the ozone treatment device were operated under the conditions shown in Table 1.

【0030】[0030]

【表1】[Table 1]

【0031】結果を表2に示す。The results are shown in Table 2.

【0032】[0032]

【表2】処理実験結果[Table 2] Treatment experiment results

【0033】表2から明らかなように、本法によって臭
気物質(2MIB)、NH4 −N、フミン酸などのト
リハロメタン前駆物質をほぼ完全に除去できる。さらに
、オゾン単独処理法と比較すると、オゾンの注入率を1
/3〜1/4に削減できる。
As is clear from Table 2, trihalomethane precursors such as odorants (2MIB), NH4-N, and humic acid can be almost completely removed by this method. Furthermore, compared to the ozone treatment method alone, the ozone injection rate can be reduced to 1
It can be reduced to /3 to 1/4.

【0034】なお、本実施例においては、フェライト系
アモルファスとしてリボン状のものを使用したが、本発
明においては線状、チップ状(1〜10cm)のアモル
ファスについても同様の効果が得られる。
In this embodiment, a ribbon-shaped ferrite-based amorphous material was used, but the same effect can be obtained using a linear or chip-shaped amorphous material (1 to 10 cm) in the present invention.

【0035】[0035]

【発明の効果】本発明により、従来の生物処理に比較し
て1/2〜1/3の生物処理時間で上水原水中のアンモ
ニア性窒素を完全に除去できるようになる。また、生物
処理後の水をさらに高効率でオゾン処理するので、オゾ
ン処理もオゾン単独処理に比べて1/3〜1/4に短縮
でき、最終処理水はトリハロメタン前駆物質および臭気
もほぼ完全に除去され、きわめて清浄度が高い。
According to the present invention, ammonia nitrogen in raw water can be completely removed in 1/2 to 1/3 of the biological treatment time compared to conventional biological treatment. In addition, since water after biological treatment is treated with ozone with higher efficiency, ozone treatment can be reduced to 1/3 to 1/4 compared to ozone treatment alone, and the final treated water is almost completely free of trihalomethane precursors and odors. removed, resulting in extremely high cleanliness.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の上水原水の高度処理装置の例を示す図
である。
FIG. 1 is a diagram showing an example of an advanced treatment device for raw water of tap water according to the present invention.

【図2】本発明で使用するサドル型セラミックスの例を
示す図である。
FIG. 2 is a diagram showing an example of saddle-shaped ceramics used in the present invention.

【符号の説明】[Explanation of symbols]

1    硝化槽 2    脱窒槽 3    酸素富化空気製造装置 4    ORP制御装置 5    ORP測定装置 6    沈澱濾過槽 7    散気管 8    送水ポンプ 9    オゾン接触槽 10  オゾン発生装置 11  排オゾン処理装置 12  サドル型セラミックス 1 Nitrification tank 2 Denitrification tank 3 Oxygen-enriched air production equipment 4 ORP control device 5 ORP measurement device 6 Sedimentation filtration tank 7. Air diffuser pipe 8 Water pump 9 Ozone contact tank 10 Ozone generator 11 Exhaust ozone treatment equipment 12 Saddle type ceramics

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  上水原水を順次硝化槽、脱窒槽、およ
び沈澱濾過槽で生物処理するに際し、硝化槽および脱窒
槽にサドル型セラミックスを微生物の固定化担体として
設け、硝化槽に酸素富化空気製造装置からの酸素富化空
気を供給してORPを制御することにより硝化処理し、
脱窒槽に酸素富化空気製造装置からの窒素富化空気を供
給してORPを制御することにより脱窒処理を行い、続
いて沈澱濾過槽で微生物の凝集沈澱、濾過処理を行い、
その後オゾン処理することを特徴とする上水原水の高度
処理方法。
Claim 1: When raw water is subjected to biological treatment in a nitrification tank, a denitrification tank, and a sedimentation filtration tank in sequence, saddle-shaped ceramics are provided in the nitrification tank and denitrification tank as microorganism immobilization carriers, and the nitrification tank is enriched with oxygen. Nitrification treatment is carried out by supplying oxygen-enriched air from an air production device and controlling ORP,
Denitrification treatment is performed by supplying nitrogen-enriched air from an oxygen-enriched air production device to a denitrification tank and controlling ORP, followed by coagulation and sedimentation of microorganisms and filtration treatment in a sedimentation filtration tank.
An advanced treatment method for raw water, which is characterized in that it is then subjected to ozone treatment.
【請求項2】  サドル型セラミックスとして高炉水砕
スラグを主原料としたサドル型セラミックスを用いるこ
とを特徴とする請求項1記載の上水原水の高度処理方法
2. The method for advanced treatment of raw water according to claim 1, characterized in that the saddle-shaped ceramic is made of granulated blast furnace slag as a main raw material.
【請求項3】  硝化槽、脱窒槽、および沈澱濾過槽な
らびにオゾン処理装置からなり、硝化槽および脱窒槽に
サドル型セラミックスを微生物の固定化担体として設け
、さらに硝化槽および脱窒槽にORP制御装置を備え、
酸素富化空気製造装置からの酸素富化空気を硝化槽およ
びオゾン処理装置のオゾン発生装置に、酸素富化空気製
造装置からの窒素富化空気を脱窒槽に供給するよう構成
し、オゾン処理装置のオゾン接触槽にFe系アモルファ
ス材を充填したことを特徴とする上水原水の高度処理装
置。
3. Consisting of a nitrification tank, a denitrification tank, a sedimentation filtration tank, and an ozone treatment device, the nitrification tank and the denitrification tank are provided with saddle-shaped ceramics as a carrier for immobilizing microorganisms, and the nitrification tank and the denitrification tank are provided with an ORP control device. Equipped with
The ozone treatment device is configured to supply oxygen enriched air from the oxygen enriched air production device to the nitrification tank and the ozone generator of the ozone treatment device, and supply nitrogen enriched air from the oxygen enriched air production device to the denitrification tank. An advanced treatment device for raw water, characterized in that an ozone contact tank is filled with an Fe-based amorphous material.
【請求項4】  サドル型セラミックスとして高炉水砕
スラグを主原料としたサドル型セラミックスを用いるこ
とを特徴とする請求項3記載の上水原水の高度処理装置
4. The advanced treatment system for raw water according to claim 3, wherein the saddle-shaped ceramic is made of granulated blast furnace slag as a main raw material.
JP3103933A 1991-04-09 1991-04-09 Advanced treatment methods and equipment for tap water raw water Withdrawn JPH04310299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3103933A JPH04310299A (en) 1991-04-09 1991-04-09 Advanced treatment methods and equipment for tap water raw water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3103933A JPH04310299A (en) 1991-04-09 1991-04-09 Advanced treatment methods and equipment for tap water raw water

Publications (1)

Publication Number Publication Date
JPH04310299A true JPH04310299A (en) 1992-11-02

Family

ID=14367240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3103933A Withdrawn JPH04310299A (en) 1991-04-09 1991-04-09 Advanced treatment methods and equipment for tap water raw water

Country Status (1)

Country Link
JP (1) JPH04310299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076031A (en) * 2010-10-04 2012-04-19 Panasonic Corp Method and system for treating wastewater
CN105858983A (en) * 2016-04-19 2016-08-17 成都瑞扬环保设备工程有限公司 Treatment method for petroleum drilling waste water
CN108658350A (en) * 2018-05-31 2018-10-16 武汉钢铁有限公司 Dry method dust blast furnace gas system ammonia nitrogen waste water treatment method and its system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076031A (en) * 2010-10-04 2012-04-19 Panasonic Corp Method and system for treating wastewater
CN105858983A (en) * 2016-04-19 2016-08-17 成都瑞扬环保设备工程有限公司 Treatment method for petroleum drilling waste water
CN108658350A (en) * 2018-05-31 2018-10-16 武汉钢铁有限公司 Dry method dust blast furnace gas system ammonia nitrogen waste water treatment method and its system

Similar Documents

Publication Publication Date Title
JP3531481B2 (en) Wastewater treatment method and apparatus
JP5100091B2 (en) Water treatment method
JP4613474B2 (en) Method for treating ammonia-containing water
JP2010000480A (en) Effective denitrification method for organic raw water
JP3721871B2 (en) Production method of ultra pure water
HK1076618A1 (en) Process and assembly for the treatment of waste water on ships
JP5259311B2 (en) Water treatment method and water treatment system used therefor
US20230322595A1 (en) Wastewater Ozone Treatment
JP4113759B2 (en) Waste water treatment method and waste water treatment equipment
JPH09314156A (en) Ozone treatment apparatus in which biological filter device is incorporated
JPH04310299A (en) Advanced treatment methods and equipment for tap water raw water
JP2946163B2 (en) Wastewater treatment method
CN104496077A (en) Deep scrap iron catalytic ozonation wastewater treatment method
JPH02164500A (en) Water purifying treatment apparatus
JP3552754B2 (en) Advanced treatment method of organic sewage and its apparatus
JPH0631297A (en) Advanced treatment method for wastewater containing high concentration nitrogen
JPH04310297A (en) Method for highly treating raw water of clean water and apparatus therefor
JP5126926B2 (en) Ultra-high water treatment method and water treatment system used therefor
JP2007007620A (en) Method for treating nitrogen-containing liquid waste
JP3495318B2 (en) Advanced treatment method for landfill leachate
JPS586558B2 (en) Sewage treatment method
JPH0141115B2 (en)
JP2001058196A (en) Method and apparatus for treating organic waste
JPH06254577A (en) Persistent material treatment equipment
JPH05285497A (en) Treatment method of wastewater containing high concentration nitrogen

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711