JPH04309754A - Multiple chamber air conditioner - Google Patents
Multiple chamber air conditionerInfo
- Publication number
- JPH04309754A JPH04309754A JP7624391A JP7624391A JPH04309754A JP H04309754 A JPH04309754 A JP H04309754A JP 7624391 A JP7624391 A JP 7624391A JP 7624391 A JP7624391 A JP 7624391A JP H04309754 A JPH04309754 A JP H04309754A
- Authority
- JP
- Japan
- Prior art keywords
- connection pipe
- valve
- connecting pipe
- heat exchanger
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 abstract description 31
- 238000001816 cooling Methods 0.000 abstract description 24
- 238000010438 heat treatment Methods 0.000 abstract description 24
- 238000005057 refrigeration Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は多室型空気調和機に係わ
り、特に各室内機毎に自由に冷暖房が選択可能な多室型
空気調和機の冷凍サイクルに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner, and more particularly to a refrigeration cycle for a multi-room air conditioner in which heating and cooling can be freely selected for each indoor unit.
【0002】0002
【従来の技術】従来、この種の多室型空気調和機として
、例えば、特開平2−97857号公報に掲載されたも
のがある。2. Description of the Related Art Conventionally, this type of multi-room air conditioner has been disclosed, for example, in Japanese Patent Application Laid-Open No. 2-97857.
【0003】以下、図面を参照しながら上述した公報の
従来の多室型空気調和機について説明する。[0003] The conventional multi-room air conditioner disclosed in the above-mentioned publication will be described below with reference to the drawings.
【0004】図5において、1は多室型空気調和機の室
外機であり、圧縮機2、四方弁3、室外側熱交換器4か
ら成っている。5は室内機であり、室内側熱交換器6、
膨張弁7、第1電磁弁8、第2電磁弁9から成っている
。In FIG. 5, reference numeral 1 denotes an outdoor unit of a multi-room air conditioner, which is composed of a compressor 2, a four-way valve 3, and an outdoor heat exchanger 4. 5 is an indoor unit, an indoor heat exchanger 6,
It consists of an expansion valve 7, a first solenoid valve 8, and a second solenoid valve 9.
【0005】そして室内側熱交換器6の一方は、第1電
磁弁8を介して室外機1と室内機5を接続する第1の接
続配管10と連通するとともに、第2電磁弁9を介して
室外機1と室内機5を接続する第2の接続配管11と連
通しており、第1電磁弁8と第2電磁弁9の開閉により
、室内側熱交換器6の一方は、第1の接続配管10また
は第2の接続配管11と切替可能に接続されている。One side of the indoor heat exchanger 6 communicates with a first connecting pipe 10 that connects the outdoor unit 1 and the indoor unit 5 via a first solenoid valve 8, and communicates with a first connection pipe 10 that connects the outdoor unit 1 and the indoor unit 5 via a second solenoid valve 9. and communicates with a second connection pipe 11 that connects the outdoor unit 1 and the indoor unit 5, and by opening and closing the first solenoid valve 8 and the second solenoid valve 9, one of the indoor heat exchangers 6 is connected to the first It is switchably connected to the connecting pipe 10 or the second connecting pipe 11.
【0006】また室内側熱交換器6の他方は、膨張弁7
を介して第3の接続配管12と接続しており、この第3
の接続配管12は流量制御装置13を介して第1の接続
配管10と接続されている。尚、室内機5は本従来例で
は3台接続されており、区別する場合は添字a、b、c
を付けることにする。The other side of the indoor heat exchanger 6 is connected to an expansion valve 7.
It is connected to the third connecting pipe 12 through the
The connecting pipe 12 is connected to the first connecting pipe 10 via a flow rate control device 13. In addition, three indoor units 5 are connected in this conventional example, and the subscripts a, b, and c are used to distinguish them.
I will add .
【0007】次に上記構成の多室型空気調和機の動作に
ついて説明する。まず冷房運転のみの場合について説明
する。この場合の冷媒の流れは実線矢印で表わし、各弁
の開閉状態は次の通りである。即ち、第1電磁弁8は閉
、第2電磁弁9は開、流量制御装置13は開、各膨張弁
7は各室内負荷に応じた開度である。Next, the operation of the multi-room air conditioner having the above configuration will be explained. First, the case of only cooling operation will be explained. The flow of refrigerant in this case is represented by solid arrows, and the open/close states of each valve are as follows. That is, the first electromagnetic valve 8 is closed, the second electromagnetic valve 9 is open, the flow rate control device 13 is open, and each expansion valve 7 is opened according to each indoor load.
【0008】圧縮機2より吐出された高温高圧ガスは、
室外側熱交換器4で凝縮液化され、第1の接続配管10
、流量制御装置13を通って第3の接続配管12に導か
れる。そして膨張弁7を通って各室内側熱交換器6に流
入し、それぞれ蒸発気化したあと、第2電磁弁9を経て
四方弁3を介して圧縮機2に戻り、冷房運転を行なう。The high temperature and high pressure gas discharged from the compressor 2 is
It is condensed and liquefied in the outdoor heat exchanger 4, and then transferred to the first connection pipe 10.
, and is led to the third connection pipe 12 through the flow rate control device 13. The air then flows into each indoor heat exchanger 6 through the expansion valve 7, where it is evaporated and vaporized, and then returns to the compressor 2 via the second electromagnetic valve 9 and the four-way valve 3, where it performs cooling operation.
【0009】次に暖房運転のみの場合について説明する
。この場合の冷媒の流れは破線矢印で表わし、各弁の開
閉状態は次の通りである。即ち、第1電磁弁8は閉、第
2電磁弁9は開、流量制御装置13は開、各膨張弁7は
各室内負荷に応じた開度である。Next, the case of only heating operation will be explained. The flow of refrigerant in this case is represented by a broken line arrow, and the open/close states of each valve are as follows. That is, the first electromagnetic valve 8 is closed, the second electromagnetic valve 9 is open, the flow rate control device 13 is open, and each expansion valve 7 is opened according to each indoor load.
【0010】圧縮機2より吐出された高温高圧ガスは、
四方弁3、第2電磁弁9を介して各室内側熱交換器6に
導かれ、ここで凝縮液化して膨張弁7を介して第3の接
続配管12に流入し、流量制御装置13で低圧二相状態
まで減圧され、第1の接続配管10を通って室外側熱交
換器4に入り蒸発気化して圧縮機2に戻り、暖房運転を
行なう。[0010] The high temperature and high pressure gas discharged from the compressor 2 is
It is guided to each indoor heat exchanger 6 via the four-way valve 3 and the second electromagnetic valve 9, where it is condensed and liquefied, flows into the third connection pipe 12 via the expansion valve 7, and is controlled by the flow rate control device 13. It is depressurized to a low-pressure two-phase state, passes through the first connection pipe 10, enters the outdoor heat exchanger 4, is evaporated, and returns to the compressor 2, where heating operation is performed.
【0011】次に冷房主体運転の場合について図6を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…冷房、室内機5c…暖房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
閉、第1電磁弁8cは開、第2電磁弁9a、9bは開、
第2電磁弁9cは閉、流量制御装置13は開、各膨張弁
7は各室内負荷に応じた開度である。Next, the case of cooling-based operation will be explained with reference to FIG. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...cooling, indoor unit 5c...heating, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are closed, the first solenoid valve 8c is open, and the second solenoid valves 9a and 9b are open.
The second electromagnetic valve 9c is closed, the flow rate control device 13 is open, and each expansion valve 7 has an opening degree according to each indoor load.
【0012】圧縮機2より吐出された冷媒は、室外側熱
交換器4で或る程度凝縮液化され、第1の接続配管10
を通って、一部は第1電磁弁8cを介して室内側熱交換
器6cに導かれここで凝縮液化して膨張弁7cを通って
第3の接続配管12に流入する。また残りの冷媒は流量
制御装置13を通って第3の接続配管12に流入し、膨
張弁7cからの冷媒と合流したあと膨張弁7a、7bを
介して室内側熱交換器6a、6bで蒸発気化し、第2の
接続配管11を通って圧縮機2に戻る。The refrigerant discharged from the compressor 2 is condensed and liquefied to some extent in the outdoor heat exchanger 4, and then transferred to the first connecting pipe 10.
A part of it is guided to the indoor heat exchanger 6c via the first electromagnetic valve 8c, where it is condensed and liquefied, and flows into the third connection pipe 12 through the expansion valve 7c. The remaining refrigerant flows into the third connection pipe 12 through the flow rate control device 13, joins with the refrigerant from the expansion valve 7c, and then evaporates in the indoor heat exchangers 6a, 6b via the expansion valves 7a, 7b. It is vaporized and returns to the compressor 2 through the second connection pipe 11.
【0013】次に暖房主体運転の場合について図7を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…暖房、室内機5c…冷房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
閉、第1電磁弁8cは開、第2電磁弁9a、9bは開、
第2電磁弁9cは閉、流量制御装置13は開、各膨張弁
7は各室内負荷に応じた開度である。Next, the case of heating-based operation will be explained with reference to FIG. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...heating, indoor unit 5c...cooling, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are closed, the first solenoid valve 8c is open, and the second solenoid valves 9a and 9b are open.
The second electromagnetic valve 9c is closed, the flow rate control device 13 is open, and each expansion valve 7 has an opening degree according to each indoor load.
【0014】圧縮機2より吐出された冷媒は、第2の接
続配管11を通り第2電磁弁9a、9bを介して室内側
熱交換器6a、6bに導かれここで凝縮液化して膨張弁
7a、7bを通って第3の接続配管12に流入する。そ
して一部の冷媒は膨張弁7cを介して室内側熱交換器6
cで蒸発気化して第1電磁弁8cを通って第1の接続配
管10に流入する。また残りの冷媒は流量制御装置13
で減圧され第1の接続配管10に流入し、第1電磁弁8
cからの冷媒と合流して室外側熱交換器4で蒸発気化し
て圧縮機2に戻る。The refrigerant discharged from the compressor 2 passes through the second connecting pipe 11 and is guided to the indoor heat exchangers 6a and 6b via the second electromagnetic valves 9a and 9b, where it is condensed and liquefied to the expansion valve. It flows into the third connecting pipe 12 through 7a and 7b. A part of the refrigerant passes through the expansion valve 7c to the indoor heat exchanger 6.
It is evaporated at step c and flows into the first connection pipe 10 through the first electromagnetic valve 8c. In addition, the remaining refrigerant is transferred to the flow control device 13.
The pressure is reduced and flows into the first connection pipe 10, and the first solenoid valve 8
It joins with the refrigerant from c, evaporates in the outdoor heat exchanger 4, and returns to the compressor 2.
【0015】[0015]
【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、室外機が冷房運転する場合と暖房運転す
る場合によって、第1電磁弁及び第2電磁弁の冷媒の流
れ方向が逆転するため、電磁弁に逆圧が作用し、閉状態
の電磁弁からリークが生じ、正常な運転ができないとい
う問題点を有していた。そこでこのような問題を解決す
るためには、逆圧が作用してもリークしない電磁弁を用
いればよいが、この種の電磁弁は非常に高価であったり
、大容量のものがないといった問題点があった。However, in the above configuration, the flow direction of the refrigerant in the first solenoid valve and the second solenoid valve is reversed depending on whether the outdoor unit is in cooling operation or heating operation. This has had the problem that back pressure acts on the solenoid valve, causing leakage from the closed solenoid valve, making normal operation impossible. In order to solve this problem, it would be possible to use a solenoid valve that does not leak even when reverse pressure is applied, but this type of solenoid valve is very expensive, and there are problems such as there is no large capacity available. There was a point.
【0016】本発明は上記問題点に鑑みなされたもので
、接続配管が従来の2本と工事性に優れ、かつ安価な仕
様で電磁弁からのリークをなくして正常な運転が可能な
、各室内機毎に自由に冷暖房ができる多室型空気調和機
を提供するものである。The present invention has been developed in view of the above-mentioned problems, and has superior workability compared to the conventional two connecting pipes, is inexpensive, eliminates leakage from the solenoid valve, and allows normal operation. To provide a multi-room air conditioner that can freely perform heating and cooling for each indoor unit.
【0017】[0017]
【課題を解決するための手段】上記課題を解決するため
に本発明は、圧縮機、四方弁、室外側熱交換器から成る
室外機と、膨張弁、室内側熱交換器から成る複数の室内
機とを第1の接続配管及び第2の接続配管を介して並列
に接続し、前記室内側熱交換器の一方は冷房または暖房
運転において冷媒の流路を切り替える流路切替機構と第
1、第2の電磁弁を介して前記第1の接続配管及び第2
の接続配管に切替可能に接続し、前記室内側熱交換器の
他の一方は膨張弁を介して第3の接続配管と接続し、更
に前記第3の接続配管を流量制御装置を介して前記第1
の接続配管または前記第2の接続配管のどちらか前記室
外側熱交換器に接続している方に接続した構成とするも
のである。[Means for Solving the Problems] In order to solve the above problems, the present invention provides an outdoor unit consisting of a compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units consisting of an expansion valve and an indoor heat exchanger. are connected in parallel through a first connection pipe and a second connection pipe, and one of the indoor heat exchangers has a flow path switching mechanism that switches a refrigerant flow path during cooling or heating operation; The first connection pipe and the second connection pipe are connected to each other via a second solenoid valve.
The other side of the indoor heat exchanger is connected to a third connecting pipe via an expansion valve, and the third connecting pipe is connected to the third connecting pipe via a flow rate control device. 1st
or the second connection pipe, whichever is connected to the outdoor heat exchanger.
【0018】[0018]
【作用】本発明は上記した構成によって、室内機1台に
つき2つ設けられた電磁弁における冷媒の流れ方向を、
冷房、暖房運転に拘らず常に一定方向として、電磁弁に
逆圧が作用しないようにして、電磁弁でのリークをなく
し、常に正常な運転を可能とするものである。[Operation] With the above-described configuration, the present invention controls the flow direction of the refrigerant in the two solenoid valves provided per indoor unit.
Regardless of cooling or heating operation, the direction is always constant so that no back pressure acts on the solenoid valve, eliminating leaks in the solenoid valve and always allowing normal operation.
【0019】[0019]
【実施例】以下本発明の第1の実施例について図面を参
照しながら説明する。尚、従来と同一部分については同
一符号を付しその詳細な説明を省略する。DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In addition, the same reference numerals are given to the same parts as in the conventional art, and detailed explanation thereof will be omitted.
【0020】図1において、14は流路切替機構であり
、室内側熱交換器6の一方と第2の接続配管11を第1
電磁弁8と第1逆止弁15を介して接続する第4の接続
配管16及び第2電磁弁9と第2逆止弁17を介して接
続する第5の接続配管18と接続しており、第1逆止弁
15と第2逆止弁17の方向を逆にすることにより、冷
媒の流路を第4の接続配管16または第5の接続配管1
8に切替可能である。In FIG. 1, reference numeral 14 denotes a flow path switching mechanism, which connects one of the indoor heat exchangers 6 and the second connecting pipe 11 to the first
It is connected to a fourth connecting pipe 16 that connects the solenoid valve 8 through the first check valve 15 and a fifth connecting pipe 18 that connects the second solenoid valve 9 through the second check valve 17. By reversing the directions of the first check valve 15 and the second check valve 17, the refrigerant flow path is connected to the fourth connection pipe 16 or the fifth connection pipe 1.
It is possible to switch to 8.
【0021】また第1の接続配管10の一方と第4の接
続配管16を第3逆止弁19を介して第6の接続配管2
0と接続し、第1の接続配管10の他方と第5の接続配
管18を第4逆止弁21を介して第7の接続配管22と
接続しており、第3逆止弁19と第4逆止弁21の方向
を逆にすることにより、冷媒の流路を第6の接続配管2
0または第5の接続配管22に切替可能である。Furthermore, one of the first connecting pipes 10 and the fourth connecting pipe 16 are connected to the sixth connecting pipe 2 via the third check valve 19.
0, the other of the first connecting pipe 10 and the fifth connecting pipe 18 are connected to the seventh connecting pipe 22 via the fourth check valve 21, and the third check valve 19 and the fifth connecting pipe 18 are connected to the seventh connecting pipe 22 via the fourth check valve 21. By reversing the direction of the four check valves 21, the refrigerant flow path is connected to the sixth connection pipe 2.
It is possible to switch to the zero or fifth connection pipe 22.
【0022】第1電磁弁8は、第4の接続配管16と第
6の接続配管20の合流点23より室内側に位置し、第
2電磁弁9は、第5の接続配管18と第7の接続配管2
2の合流点24より室内側に位置し、第1逆止弁15は
、合流点23より第2の接続配管11側に位置し、第2
逆止弁17は、合流点24より第2の接続配管11側に
位置し、第3逆止弁19は、合流点23より第1の接続
配管10側に位置し、第4逆止弁21は、合流点24よ
り第1の接続配管10側に位置し、各逆止弁の流れ方向
は、第1逆止弁15は第2の接続配管11から室内機5
への方向、第2逆止弁17は室内機5から第2の接続配
管11への方向、第3逆止弁19は第1の接続配管10
から室内機5への方向、第4逆止弁21は室内機5から
第1の接続配管10への方向である。The first solenoid valve 8 is located indoors from the confluence 23 of the fourth connection pipe 16 and the sixth connection pipe 20, and the second solenoid valve 9 is located between the fifth connection pipe 18 and the seventh connection pipe 20. Connection piping 2
The first check valve 15 is located on the indoor side from the confluence point 24 of the second connection pipe 11, and the first check valve 15 is located on the second connection pipe 11 side from the confluence point 23.
The check valve 17 is located on the second connection pipe 11 side from the confluence point 24 , the third check valve 19 is located on the first connection pipe 10 side from the confluence point 23 , and the fourth check valve 19 is located on the first connection pipe 10 side from the confluence point 23 are located on the side of the first connection pipe 10 from the confluence point 24, and the flow direction of each check valve is such that the first check valve 15 is located from the second connection pipe 11 to the indoor unit 5.
The second check valve 17 is from the indoor unit 5 to the second connecting pipe 11, and the third check valve 19 is from the first connecting pipe 10.
The fourth check valve 21 is the direction from the indoor unit 5 to the first connection pipe 10.
【0023】次に、このような構成においての動作につ
いて説明する。まず冷房運転のみの場合について説明す
る。この場合の冷媒の流れは実線矢印で表わし、各弁の
開閉状態は次の通りである。即ち、第1電磁弁8は閉、
第2電磁弁9は開、流量制御装置13は全開、各膨張弁
7は各室内負荷に応じた開度である。Next, the operation in such a configuration will be explained. First, the case of only cooling operation will be explained. The flow of refrigerant in this case is represented by solid arrows, and the open/close states of each valve are as follows. That is, the first solenoid valve 8 is closed,
The second electromagnetic valve 9 is open, the flow rate control device 13 is fully open, and each expansion valve 7 has an opening degree that corresponds to each indoor load.
【0024】圧縮機2より吐出された高温高圧ガスは、
室外側熱交換器4で凝縮液化され、第1の接続配管10
、流量制御装置14を通って第3の接続配管12に導か
れる。そして膨張弁7を通って各室内側熱交換器6に流
入し、それぞれ蒸発気化したあと、第2電磁弁9、第2
逆止弁17を経て四方弁3を介して圧縮機2に戻り、冷
房運転を行なう。The high temperature and high pressure gas discharged from the compressor 2 is
It is condensed and liquefied in the outdoor heat exchanger 4, and then transferred to the first connection pipe 10.
, and is led to the third connecting pipe 12 through the flow control device 14. Then, it flows into each indoor heat exchanger 6 through the expansion valve 7, and after being evaporated and vaporized, the second solenoid valve 9 and the second
It returns to the compressor 2 via the check valve 17 and the four-way valve 3, and performs cooling operation.
【0025】次に暖房運転のみの場合について説明する
。この場合の冷媒の流れは破線矢印で表わし、各弁の開
閉状態は次の通りである。即ち、第1電磁弁8は開、第
2電磁弁9は閉、流量制御装置13は全開、各膨張弁7
は各室内負荷に応じた開度である。Next, the case of only heating operation will be explained. The flow of refrigerant in this case is represented by a broken line arrow, and the open/close states of each valve are as follows. That is, the first solenoid valve 8 is open, the second solenoid valve 9 is closed, the flow rate control device 13 is fully open, and each expansion valve 7 is closed.
is the opening degree according to each indoor load.
【0026】圧縮機2より吐出された高温高圧ガスは、
四方弁3から第2の接続配管11を通り、第1電磁弁8
を介して各室内側熱交換器6に導かれ、ここで凝縮液化
して膨張弁7により低圧二相状態まで減圧されて第3の
接続配管12に流入し、流量制御装置13、第1の接続
配管10を通って室外側熱交換器4に入り蒸発気化して
圧縮機2に戻り、暖房運転を行なう。The high temperature and high pressure gas discharged from the compressor 2 is
Passing from the four-way valve 3 through the second connection pipe 11 to the first solenoid valve 8
It is guided to each indoor heat exchanger 6 via the heat exchanger 6, where it is condensed and liquefied, the pressure is reduced to a low-pressure two-phase state by the expansion valve 7, and it flows into the third connection pipe 12, and flows into the flow rate control device 13 and the first It passes through the connection pipe 10, enters the outdoor heat exchanger 4, is evaporated, and returns to the compressor 2, where heating operation is performed.
【0027】次に冷房主体運転の場合について図2を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…冷房、室内機5c…暖房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
閉、第1電磁弁8cは開、第2電磁弁9a、9bは開、
第2電磁弁9cは閉、流量制御装置13は、暖房室内機
の馬力数に応じた冷媒循環量が確保できる開度に開き、
各膨張弁7は各室内負荷に応じた開度である。Next, the case of cooling-based operation will be explained using FIG. 2. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...cooling, indoor unit 5c...heating, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are closed, the first solenoid valve 8c is open, and the second solenoid valves 9a and 9b are open.
The second electromagnetic valve 9c is closed, and the flow rate control device 13 is opened to an opening that can ensure a refrigerant circulation amount according to the horsepower number of the heating indoor unit.
Each expansion valve 7 has an opening degree according to each indoor load.
【0028】圧縮機2より吐出された冷媒は、室外側熱
交換器4で或る程度凝縮液化され、第1の接続配管10
に入り、一部の冷媒は第3逆止弁19を通って、第1電
磁弁8cを介して室内側熱交換器6cに導かれここで凝
縮液化して膨張弁7cを通って第3の接続配管12に流
入する。また、残りの冷媒は流量制御装置13を通って
第3の接続配管12に流入し、膨張弁7cからの冷媒と
合流したあと膨張弁7a、7bで減圧され室内側熱交換
器6a、6bで蒸発気化し、第2電磁弁9a、9b、第
2逆止弁17a、17b、第2の接続配管11を経て四
方弁3を介して圧縮機2に戻り、冷房運転を行なう。The refrigerant discharged from the compressor 2 is condensed and liquefied to some extent in the outdoor heat exchanger 4, and then transferred to the first connecting pipe 10.
A part of the refrigerant passes through the third check valve 19 and is led to the indoor heat exchanger 6c via the first electromagnetic valve 8c, where it is condensed and liquefied, and passes through the expansion valve 7c to the third refrigerant. It flows into the connecting pipe 12. In addition, the remaining refrigerant flows into the third connection pipe 12 through the flow rate control device 13, and after joining with the refrigerant from the expansion valve 7c, the pressure is reduced by the expansion valves 7a and 7b, and the pressure is reduced by the indoor heat exchangers 6a and 6b. It is evaporated and returned to the compressor 2 via the four-way valve 3 via the second electromagnetic valves 9a and 9b, the second check valves 17a and 17b, and the second connection pipe 11, and performs cooling operation.
【0029】次に暖房主体運転の場合について図3を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…暖房、室内機5c…冷房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
開、第1電磁弁8cは閉、第2電磁弁9a、9bは閉、
第2電磁弁9cは開、流量制御装置13は、冷房室内機
の馬力数に応じた冷媒循環量が確保できる開度に開き、
各膨張弁7は各室内負荷に応じた開度である。Next, the case of heating-based operation will be explained using FIG. 3. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...heating, indoor unit 5c...cooling, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are open, the first solenoid valve 8c is closed, and the second solenoid valves 9a and 9b are closed.
The second electromagnetic valve 9c is opened, the flow rate control device 13 is opened to an opening degree that can ensure a refrigerant circulation amount according to the horsepower number of the cooling indoor unit,
Each expansion valve 7 has an opening degree according to each indoor load.
【0030】圧縮機2より吐出された冷媒は、四方弁3
から第2の接続配管11を通り、第1逆止弁15a、1
5b、第2電磁弁9a、9bを介して室内側熱交換器6
a、6bに導かれここで凝縮液化して膨張弁7a、7b
を通って第3の接続配管12に流入する。そして一部の
冷媒は膨張弁7cで減圧され室内側熱交換器6cである
程度蒸発気化して第1電磁弁9c、第4逆止弁21を通
って第1の接続配管10に流入する。また、残りの冷媒
は流量制御装置13を通って第3の接続配管12に流入
し、第4逆止弁21からの冷媒と合流したあと、第1の
接続配管10を通って室外側熱交換器4に入り蒸発気化
して圧縮機2に戻り、暖房運転を行なう。The refrigerant discharged from the compressor 2 passes through the four-way valve 3
from the second connecting pipe 11 to the first check valves 15a, 1
5b, the indoor heat exchanger 6 via the second solenoid valves 9a, 9b
a, 6b, where it is condensed and liquefied to the expansion valves 7a, 7b.
It flows into the third connection pipe 12 through the. Then, a part of the refrigerant is depressurized by the expansion valve 7c, evaporated to some extent by the indoor heat exchanger 6c, and flows into the first connection pipe 10 through the first electromagnetic valve 9c and the fourth check valve 21. In addition, the remaining refrigerant flows into the third connection pipe 12 through the flow rate control device 13, joins with the refrigerant from the fourth check valve 21, and then passes through the first connection pipe 10 for outdoor heat exchange. The air enters the compressor 4, evaporates, and returns to the compressor 2 for heating operation.
【0031】また、図4に示す第2の実施例のように第
4の接続配管及び第5の接続配管にそれぞれ1個の逆止
弁を接続した構成としても何等問題はない。Furthermore, there is no problem in a configuration in which one check valve is connected to each of the fourth connection pipe and the fifth connection pipe, as in the second embodiment shown in FIG.
【0032】以上のように、室内機5に設けられた各電
磁弁8、9を流れる冷媒の方向は、冷房、冷房主体、暖
房、暖房主体運転のいかんに拘らず常に一定方向にする
ことができるため、各電磁弁8、9に逆圧が作用するこ
とがなく、従来生じていた閉状態の電磁弁からのリーク
を解消することが出来る。As described above, the direction of the refrigerant flowing through each of the solenoid valves 8 and 9 provided in the indoor unit 5 can always be kept in the same direction regardless of whether the operation is cooling, mainly cooling, heating, or mainly heating. Therefore, no back pressure acts on each electromagnetic valve 8, 9, and leakage from the electromagnetic valve in the closed state, which conventionally occurs, can be eliminated.
【0033】[0033]
【発明の効果】以上の説明から明らかなように本発明は
、圧縮機、四方弁、室外側熱交換器から成る室外機と、
膨張弁、室内側熱交換器から成る複数の室内機とを第1
の接続配管及び第2の接続配管を介して並列に接続し、
前記室内側熱交換器の一方は冷房または暖房運転におい
て冷媒の流路を切り替える流路切替機構と第1、第2の
電磁弁を介して前記第1の接続配管及び第2の接続配管
に切替可能に接続し、前記室内側熱交換器の他の一方は
膨張弁を介して第3の接続配管と接続し、更に前記第3
の接続配管を流量制御装置を介して前記第1の接続配管
または前記第2の接続配管のどちらか前記室外側熱交換
器に接続している方に接続するものである。[Effects of the Invention] As is clear from the above description, the present invention provides an outdoor unit consisting of a compressor, a four-way valve, an outdoor heat exchanger,
a plurality of indoor units consisting of an expansion valve and an indoor heat exchanger;
connected in parallel via a connecting pipe and a second connecting pipe,
One of the indoor heat exchangers is switched to the first connecting pipe and the second connecting pipe via a flow path switching mechanism and first and second electromagnetic valves that switch the refrigerant flow path during cooling or heating operation. the other side of the indoor heat exchanger is connected to a third connection pipe via an expansion valve, and the third
The connecting pipe is connected to either the first connecting pipe or the second connecting pipe, whichever is connected to the outdoor heat exchanger, via a flow rate control device.
【0034】そのため本発明の多室型空気調和機は、安
価な仕様で冷房、冷房主体、暖房、暖房主体運転のいか
んに拘らず、室内機に設けられた各電磁弁を流れる冷媒
の方向を常に一定方向にでき、各電磁弁に逆圧が作用す
ることをなくして閉状態の電磁弁からのリークを解消し
て、正常な運転を行なうことが出来る。また室内機と室
外機を接続する配管も2本でよく、省工事性に優れたも
のである。Therefore, the multi-room air conditioner of the present invention has inexpensive specifications and can control the direction of refrigerant flowing through each solenoid valve provided in the indoor unit, regardless of whether the operation is cooling, mainly cooling, heating, or heating mainly. It is always possible to maintain a constant direction, eliminate back pressure from acting on each electromagnetic valve, eliminate leaks from closed electromagnetic valves, and perform normal operation. In addition, only two pipes are required to connect the indoor unit and the outdoor unit, resulting in excellent construction efficiency.
【図1】本発明の第1の実施例における多室型空気調和
機の冷凍サイクル図FIG. 1: Refrigeration cycle diagram of a multi-room air conditioner according to the first embodiment of the present invention.
【図2】第1の実施例の多室型空気調和機の冷房主体運
転状態を示す冷凍サイクル図[Fig. 2] A refrigeration cycle diagram showing the cooling-mainly operating state of the multi-room air conditioner of the first embodiment.
【図3】第1の実施例の多室型空気調和機の暖房主体運
転状態を示す冷凍サイクル図[Fig. 3] Refrigeration cycle diagram showing the heating-main operating state of the multi-room air conditioner of the first embodiment.
【図4】本発明の第2の実施例における多室型空気調和
機の冷凍サイクル図[Fig. 4] Refrigeration cycle diagram of a multi-room air conditioner according to a second embodiment of the present invention.
【図5】従来の多室型空気調和機の冷凍サイクル図[Figure 5] Refrigeration cycle diagram of a conventional multi-room air conditioner
【図
6】従来の多室型空気調和機の冷房主体運転状態を示す
冷凍サイクル図[Figure 6] Refrigeration cycle diagram showing the cooling-dominant operation state of a conventional multi-room air conditioner
【図7】従来の多室型空気調和機の暖房主体運転状態を
示す冷凍サイクル図[Figure 7] Refrigeration cycle diagram showing the heating-main operating state of a conventional multi-room air conditioner
1 室外機 2 圧縮機 3 四方弁 4 室外側熱交換器 5 室内機 6 室内側熱交換器 7 室内側膨張弁 8 第1電磁弁 9 第1電磁弁 10 第1の接続配管 11 第2の接続配管 12 第3の接続配管 13 流量制御装置 14 流路切替機構 1 Outdoor unit 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Indoor unit 6 Indoor heat exchanger 7 Indoor expansion valve 8 First solenoid valve 9 First solenoid valve 10 First connection piping 11 Second connection pipe 12 Third connection pipe 13 Flow rate control device 14 Flow path switching mechanism
Claims (2)
成る室外機と、膨張弁、室内側熱交換器から成る複数の
室内機とを第1の接続配管及び第2の接続配管を介して
並列に接続し、前記室内側熱交換器の一方は冷房または
暖房運転において冷媒の流路を切り替える流路切替機構
と第1、第2の電磁弁を介して前記第1の接続配管及び
第2の接続配管に切替可能に接続し、前記室内側熱交換
器の他の一方は膨張弁を介して第3の接続配管と接続し
、更に前記第3の接続配管を流量制御装置を介して前記
第1の接続配管または前記第2の接続配管のどちらか前
記室外側熱交換器に接続している方に接続した多室型空
気調和機。Claim 1: An outdoor unit consisting of a compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units consisting of an expansion valve and an indoor heat exchanger are connected to each other through a first connecting pipe and a second connecting pipe. one of the indoor heat exchangers connects the first connection pipe and The other side of the indoor heat exchanger is connected to a third connecting pipe via an expansion valve, and the third connecting pipe is connected to the third connecting pipe via a flow rate control device. The multi-room air conditioner is connected to either the first connecting pipe or the second connecting pipe, whichever is connected to the outdoor heat exchanger.
は第5の接続配管と切替可能に接続し、第1の接続配管
は第6の接続配管または第7の接続配管と切替可能に接
続し、前記第4の接続配管に前記第6の接続配管及び前
記第5の接続配管に前記第7の接続配管が合流する構成
をした前記流路切替機構を持つ請求項1記載の多室型空
気調和機。Claim 2: The second connection pipe is switchably connected to the fourth connection pipe or the fifth connection pipe, and the first connection pipe is switchably connected to the sixth connection pipe or the seventh connection pipe. The multi-chamber according to claim 1, further comprising the flow path switching mechanism configured such that the sixth connection pipe is connected to the fourth connection pipe and the seventh connection pipe is joined to the fifth connection pipe. type air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7624391A JPH04309754A (en) | 1991-04-09 | 1991-04-09 | Multiple chamber air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7624391A JPH04309754A (en) | 1991-04-09 | 1991-04-09 | Multiple chamber air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04309754A true JPH04309754A (en) | 1992-11-02 |
Family
ID=13599743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7624391A Pending JPH04309754A (en) | 1991-04-09 | 1991-04-09 | Multiple chamber air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04309754A (en) |
-
1991
- 1991-04-09 JP JP7624391A patent/JPH04309754A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5063752A (en) | Air conditioning apparatus | |
US20050086969A1 (en) | Dual economizer heat exchangers for heat pump | |
JPH0711366B2 (en) | Air conditioner | |
EP1978315A2 (en) | Outdoor Unit for Multi-Air Conditioner | |
JPH02118372A (en) | Air-conditioning device | |
JP2522361B2 (en) | Air conditioner | |
JP2001099510A (en) | Air conditioner | |
JPH04217759A (en) | Multiroom type air-conditioner | |
JP3655523B2 (en) | Multi-type air conditioner | |
JP2616525B2 (en) | Air conditioner | |
JP2817816B2 (en) | Multi-room air conditioner | |
JPH04309754A (en) | Multiple chamber air conditioner | |
JP2723774B2 (en) | Multi-room air conditioner | |
JPH06257874A (en) | Heat pump type air-conditioning machine | |
JPH0424364Y2 (en) | ||
JPH07293975A (en) | Air conditioner | |
JPH04278151A (en) | Multi-chamber type air conditioner | |
JP2002089996A (en) | Multi-chamber type air conditioner | |
JP2522360B2 (en) | Air conditioner | |
JPH0252964A (en) | Multiroom type refrigerating circuit | |
US11397015B2 (en) | Air conditioning apparatus | |
JP3791019B2 (en) | Air conditioner | |
JPH04254167A (en) | Multi-room type air-contiditioning machine | |
JP2005042980A (en) | Thermal storage air conditioner | |
JP2001336858A (en) | Air conditioning apparatus |