[go: up one dir, main page]

JPH04308616A - Manufacture of transparent conductive film - Google Patents

Manufacture of transparent conductive film

Info

Publication number
JPH04308616A
JPH04308616A JP10319491A JP10319491A JPH04308616A JP H04308616 A JPH04308616 A JP H04308616A JP 10319491 A JP10319491 A JP 10319491A JP 10319491 A JP10319491 A JP 10319491A JP H04308616 A JPH04308616 A JP H04308616A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
substrate
conductive film
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10319491A
Other languages
Japanese (ja)
Inventor
Hidekazu Ota
英一 太田
Katsuyuki Yamada
勝幸 山田
Hitoshi Kondo
均 近藤
Yuji Kimura
裕治 木村
Masayoshi Takahashi
高橋 正悦
Kenji Kameyama
健司 亀山
Makoto Tanabe
誠 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10319491A priority Critical patent/JPH04308616A/en
Publication of JPH04308616A publication Critical patent/JPH04308616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To manufacture a film of a large surface having a high uniformity, a low resistance, and a high transmission ratio, achieve a high film producing speed, and enable film formation on a plastic substrate by forming a transparent conductive film on the insulation substrate, and applying a plasma process to it. CONSTITUTION:After a transparent conductive film is formed on an insulation substrate, and a plasma process is applied to the film, where at least one of inactive gas, oxygen and hydrogen is included in a plasma atmosphere. For the substrate, glass, quartz, plastic, etc., can be used. For forming the transparent conductive film on the substrate, a composite for forming the translpoarent conductive film in the form of chloride or nitrate is applied on the substrate for applied solution, and it is dried at a low temperature of 70-80 deg.C. In addition, the applied solution on the transparent conductive film can be sorted to ones maily comprising metal chloride of Sn, In, Zn, Cd, Ti, etc., and ones mainly comprising nitrate. A film of a large surface having a high uniformity, a low resistance and a high transmission ratio can thus be provided, a high manufacturing speed can be achieved, and film formation on the plastic film can be enabled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明は、絶縁基板上に透明導電膜を形成
する方法に関する。
TECHNICAL FIELD The present invention relates to a method for forming a transparent conductive film on an insulating substrate.

【0002】0002

【従来技術】近年、OA機器や携帯用小形テレビ等の普
及に伴い、これまでの電子ディスプレイ装置としてのブ
ラウン管(CRT)に代わって、液晶(LCD)、エレ
クトロルミネセンス(EL)、プラズマディスプレイ(
PDP)、発光ダイオード(LED)、蛍光表示管(V
FD)等の研究が盛んに行われており、一部実用化され
ている。これらのディスプレイ素子のほとんどは基本構
成として、透明電極膜を備えている。表示素子用透明電
極膜に要求される物性は、高可視光透過率、低抵抗性で
ある。このような特性を得るには結晶性を良くし、グレ
インサイズを大きくし(移動度の増大)、ストイキオメ
トリからずらす(キャリア濃度の増大)ことが重要とい
われている。また、これらの物性を備えた透明導電膜を
大面積化することおよび低温下で作製することが極めて
重要視されるようになった。現在、透明電極材料として
は、ZnO,CdO,ZnS,SnO2,In2O3,
CdSnO4,ITO系等が知られているが、これらの
作製方法としては以下の方法が知られている。 (i)気相合成法 気相合成法としては真空蒸着法、スパッタリング法、イ
オンプレーティング法等があるが、高透過率でかつ、低
抵抗な膜を得るには350℃程度の基板温度が必要であ
り、また、大面積で均一性のよい膜を得ることが難しい
。なお、個々の方法について以下に概説する。 (a) 真空蒸着法(EB蒸着法)。In2O3−Sn
O2(5〜10wt%)のようなペレットをEB照射に
よって加熱蒸発させる。基板温度(Ts)は約300〜
400℃、製膜速度は18〜180Å/minである。 (b) イオンプレーティング(イオン化蒸着法)。前
記と同様のペレットを蒸発せしめ、かつ、ArまたはO
2プラズマ中を通過させイオン化し、基板に印加した電
界により加速する。Ts約300℃、製膜速度約300
Å/minである。 (c) スパッタ法。In2O3−SnO2(9〜15
mol%)等のターゲットにArまたはOイオンを混入
しスパッタする。Ts約180〜300℃、製膜速度1
20〜300Å/minである。 (ii) 化学的合成法 化学的合成法としては、以下のような方法がある。 (d) スプレー法。SnCl4,InCl3等の水溶
液を400〜800℃に加熱した焼成炉にスプレーして
、加水分解させる。 (e) 浸漬・熱分解法。上記同様のSn化合物、In
化合物等の溶液に基板を浸漬し、Ts約500℃で加熱
分解する。 ところが、これらの方法には以下のような問題点が存在
する。しかしながら、これらのいずれの方法を使用して
も、■大面積でかつ均一性の高い膜を得られること、■
低抵抗かつ高透過率の膜が得られること、■製膜速度が
高いこと、■プラスチック基板の融点、望ましくはガラ
ス転位点以下で製膜すること、という条件を満足させる
ことはできない。
[Prior Art] In recent years, with the spread of office automation equipment and small portable televisions, etc., cathode ray tubes (CRTs) have been replaced by liquid crystal displays (LCDs), electroluminescence (EL) displays, and plasma displays (
PDP), light emitting diode (LED), fluorescent display tube (V
FD), etc., are being actively researched, and some of them have been put into practical use. Most of these display elements have a transparent electrode film as a basic structure. The physical properties required of a transparent electrode film for display devices are high visible light transmittance and low resistance. In order to obtain such properties, it is said to be important to improve crystallinity, increase grain size (increase in mobility), and deviate from stoichiometry (increase in carrier concentration). In addition, it has become extremely important to increase the area of transparent conductive films having these physical properties and to manufacture them at low temperatures. Currently, transparent electrode materials include ZnO, CdO, ZnS, SnO2, In2O3,
CdSnO4, ITO, etc. are known, and the following methods are known as methods for producing these. (i) Vapor phase synthesis method Vapor phase synthesis methods include vacuum evaporation, sputtering, and ion plating, but in order to obtain a film with high transmittance and low resistance, a substrate temperature of about 350°C is required. Moreover, it is difficult to obtain a film with good uniformity over a large area. The individual methods will be outlined below. (a) Vacuum deposition method (EB deposition method). In2O3-Sn
Pellets such as O2 (5-10 wt%) are heated and evaporated by EB irradiation. Substrate temperature (Ts) is approximately 300~
The temperature is 400° C., and the film forming rate is 18 to 180 Å/min. (b) Ion plating (ionization vapor deposition method). The same pellets as above were evaporated and Ar or O
2 to be ionized by passing through plasma, and accelerated by an electric field applied to the substrate. Ts approx. 300℃, film forming speed approx. 300
Å/min. (c) Sputtering method. In2O3-SnO2 (9-15
Sputtering is performed by mixing Ar or O ions into a target such as (mol%). Ts about 180-300℃, film forming rate 1
The rate is 20 to 300 Å/min. (ii) Chemical synthesis method Chemical synthesis methods include the following methods. (d) Spray method. An aqueous solution of SnCl4, InCl3, etc. is sprayed into a firing furnace heated to 400 to 800°C to cause hydrolysis. (e) Immersion/pyrolysis method. Sn compound similar to the above, In
The substrate is immersed in a solution of a compound or the like and thermally decomposed at Ts of about 500°C. However, these methods have the following problems. However, no matter which method is used, it is impossible to obtain a film with a large area and high uniformity;
It is not possible to satisfy the following conditions: (1) a film with low resistance and high transmittance can be obtained; (2) the film forming rate is high; and (2) the film is formed at the melting point of the plastic substrate, preferably below the glass transition point.

【0003】0003

【目的】本発明の目的は、前記■〜■の条件を満足する
透明導電膜の製法を提供する点にある。
[Object] The object of the present invention is to provide a method for producing a transparent conductive film that satisfies the conditions (1) to (4) above.

【0004】0004

【構成】本発明は、絶縁基板上に透明導電膜を形成後、
該膜をプラズマ処理することを特徴とする透明導電膜の
製法に関する。前記プラズマ処理におけるプラズマ雰囲
気が不活性ガス、酸素あるいは水素の少なくとも1種を
含むものであり、前記基板としては、ガラス、石英、プ
ラスチックスなどが使用できる。本発明において、絶縁
基板上に透明導電膜を形成する方法としては、塩化物や
硝酸塩の形にした透明導電膜形成用組成物を塗布溶液と
して基板上に塗布し、70〜80℃といった低温で乾燥
する方法により行うことが好ましい。
[Structure] In the present invention, after forming a transparent conductive film on an insulating substrate,
The present invention relates to a method for producing a transparent conductive film, which is characterized by subjecting the film to plasma treatment. The plasma atmosphere in the plasma treatment includes at least one of an inert gas, oxygen, and hydrogen, and the substrate may be made of glass, quartz, plastic, or the like. In the present invention, the method for forming a transparent conductive film on an insulating substrate is to apply a composition for forming a transparent conductive film in the form of chloride or nitrate onto the substrate as a coating solution, and to apply the composition at a low temperature of 70 to 80°C. It is preferable to use a drying method.

【0005】透明導電塗布膜の塗布溶液は、Sn,In
,Zn,Cd,Ti等の金属の塩化物主体の系と硝酸塩
主体の系に大別される。得ようとする透明導電膜がSn
O2の場合、塗布溶液はSnの塩化物または硝酸塩のみ
で構成され、In2O3の場合はInの塩化物または硝
酸塩のみで構成されるが、ITO膜の場合はSnとIn
の塩化物または硝酸塩の混合物を用いる。塗布方法によ
り本発明を実施するときは、(イ)塗布膜の形成、(ロ
)予備乾燥、(ハ)反応温度までの加熱、(ニ)プラズ
マ処理の工程よりなるが、(ハ)と(ニ)の工程は同時
に行うことが好ましい。同時の方が−OH,−R等の脱
離、金属−酸素の結合形成および再配列がおこりやすい
[0005] The coating solution for the transparent conductive coating film is Sn, In
, Zn, Cd, Ti and other metal chlorides and nitrate-based systems. The transparent conductive film to be obtained is Sn.
In the case of O2, the coating solution consists only of Sn chloride or nitrate, and in the case of In2O3, it consists only of In chloride or nitrate, but in the case of ITO film, it consists of Sn and In.
using a mixture of chlorides or nitrates. When carrying out the present invention using the coating method, the steps include (a) formation of a coating film, (b) preliminary drying, (c) heating to reaction temperature, and (d) plasma treatment, and (c) and ( It is preferable to carry out the step (d) at the same time. At the same time, elimination of -OH, -R, etc., metal-oxygen bond formation, and rearrangement are more likely to occur.

【0006】(塩化物系を使用する例)図1に、フロー
チャートを示す。先ず塩化インジウムにアセチルアセト
ン等の溶媒を混合し、還流後、粘度調整のためにグリセ
リンを加えて、溶液Aを作った。次に塩化スズにアセチ
ルアセトン等の溶媒を混合し、溶液Bを作り、溶液Aと
適当量混合し、塗布溶液とした。この段階で、さらに塗
布方法に合わせて、粘度を調整するためにアセトン等で
希釈することもある。また溶媒としてはアセチルアセト
ンに限定されるものではなく、CH3OH,C2H5O
H等のアルコール類、アセトン等のケトン類などの有機
溶剤も使用しうる。次にスピン・オン、ロールコート、
浸漬等の方法で基板上に塗布膜を形成した(塗布膜の膜
厚は塗布方法と粘度に依存するが、約数100Å〜数μ
mの範囲でコントロールできる。多くの場合600Å〜
1μmが使用範囲である。)。プラズマ処理に先だって
、主に真空中での溶媒の急激な揮発を防ぐために空気中
でプリ乾燥(約70〜80℃)で数分間行う。この段階
での塗付膜中には金属と結合した−OH基、−R基(ア
ルキル基)、−OR基(アルコキシ基)が多数存在し、
緻密性は極めて低い。これらの状態から脱水縮合あるい
は−OR、−R基が抜けて縮合する結果、良質なITO
となるが、プラズマ処理は塗付膜中のこれら官能基を活
性化させて、比較的低温でも、脱離・縮合反応を促進せ
しめる効果がある。効果の本質は必ずしも明確ではない
が、二通り考えられる。 (1) 物理的効果:プラズマ中イオンのボンバードメ
ントによって、官能基の伸縮運動が活性化され、脱離が
促進する。 (2) 化学的効果:プラズマ中の酸素または水素、ラ
ジカルまたはイオンが官能基と化学結合をして気体(H
2O、炭化水素として)脱離する。 プラズマガスが希ガス(N2,Ar,He,Ne等)で
ある場合は主に(1)が作用し、酸素、水素等の場合に
は主に(2)〔(1)も入っている〕が作用する。プラ
ズマガスとしては酸素、水素ガスに限定されるものでは
なくこれらの元素が含まれるものであればよい。例えば
、O2,CO,CO2,H2,H2O,H2O2,CH
4,C2H6などの炭化水素、CH3OH,C2H5O
H等のアルコール類、あるいはケトン類、エーテル類等
である。プラズマ処理装置としては、図3、図4に示し
たごとく、容量結合型プラズマ装置あるいは誘導結合型
プラズマ装置が使用され、イオン照射の効果を促進する
ためには、図3のごとく、負のセルフ・バイアスが印加
されているRFの給電側に基板3をセットするのがよい
。さらにDCバイアス電源5によって、積極的にバイア
スを数十〜数百V印加するのが一層効果的である。典型
的な処理条件を表1に示す。
(Example using a chloride system) FIG. 1 shows a flowchart. First, indium chloride was mixed with a solvent such as acetylacetone, and after refluxing, glycerin was added to adjust the viscosity to prepare solution A. Next, tin chloride was mixed with a solvent such as acetylacetone to prepare solution B, and an appropriate amount of solution B was mixed with solution A to obtain a coating solution. At this stage, it may be further diluted with acetone or the like to adjust the viscosity depending on the application method. In addition, the solvent is not limited to acetylacetone, but also CH3OH, C2H5O
Organic solvents such as alcohols such as H and ketones such as acetone may also be used. Next, spin on, roll coat,
A coating film was formed on the substrate by a method such as dipping (the thickness of the coating film depends on the coating method and viscosity, but it is about several hundred Å to several microns).
It can be controlled within a range of m. In most cases 600Å~
The usable range is 1 μm. ). Prior to plasma treatment, pre-drying (about 70 to 80° C.) is performed in air for several minutes, mainly to prevent rapid volatilization of the solvent in vacuum. There are many -OH groups, -R groups (alkyl groups), and -OR groups (alkoxy groups) bonded to metals in the coating film at this stage.
Denseness is extremely low. As a result of dehydration condensation or condensation with removal of -OR and -R groups from these states, high quality ITO is produced.
However, plasma treatment has the effect of activating these functional groups in the coating film and promoting elimination and condensation reactions even at relatively low temperatures. Although the nature of the effect is not necessarily clear, there are two possibilities. (1) Physical effect: Bombardment of ions in the plasma activates the stretching movement of functional groups, promoting desorption. (2) Chemical effect: Oxygen, hydrogen, radicals, or ions in the plasma chemically bond with functional groups to form a gas (H
2O, as a hydrocarbon). When the plasma gas is a rare gas (N2, Ar, He, Ne, etc.), (1) mainly acts, and when it is oxygen, hydrogen, etc., mainly (2) [(1) is also included] acts. The plasma gas is not limited to oxygen or hydrogen gas, but any gas containing these elements may be used. For example, O2, CO, CO2, H2, H2O, H2O2, CH
4, Hydrocarbons such as C2H6, CH3OH, C2H5O
Alcohols such as H, ketones, ethers, etc. As shown in FIGS. 3 and 4, a capacitively coupled plasma device or an inductively coupled plasma device is used as a plasma processing device. In order to promote the effect of ion irradiation, negative self- - It is better to set the substrate 3 on the RF power supply side where a bias is applied. Furthermore, it is more effective to actively apply a bias of several tens to several hundreds of volts using the DC bias power supply 5. Typical processing conditions are shown in Table 1.

【表1】   プラズマ処理の効果は、膜のIRスペクトルの結果
より、以下のように要約される。図5に示すように、プ
ラズマ処理をしない場合は、焼成温度(実線のもの)が
高くなるにしたがって、金属錯体あるいは溶媒に起因す
る吸収ピークが小さくなり、ほぼ450℃で見られなく
なり、これに伴って、In−O,Sn−O結合による吸
収ピークがほぼ完全な形となる。これに対して,プラズ
マ処理を行なった場合には一点破線、約150℃であっ
ても、実線の450℃に相当するIRスペクトルとなっ
ており、約−300℃の低温化効果があったと言える。 なお、図5の結果は、塩化物系(アセチルアセトンを溶
媒とした。)からなる塗付膜に対して、プラズマ処理(
ガス流量:O2/Ar=10/5SCCM、圧力:0.
15torr、RFパワー:0.3W/cm2、基板温
度:室温〜200℃)を行なった時の結果である。
[Table 1] The effects of plasma treatment can be summarized as follows based on the results of the IR spectrum of the film. As shown in Figure 5, when plasma treatment is not performed, as the firing temperature (solid line) increases, the absorption peak due to the metal complex or solvent becomes smaller and disappears at approximately 450°C. Accordingly, the absorption peaks due to In-O and Sn-O bonds have almost perfect shapes. On the other hand, when plasma treatment was performed, the IR spectrum corresponded to the solid line of 450°C, even if the temperature was approximately 150°C (dotted line), and it can be said that there was a temperature reduction effect of approximately -300°C. . The results shown in Figure 5 are based on plasma treatment (
Gas flow rate: O2/Ar=10/5SCCM, pressure: 0.
15 torr, RF power: 0.3 W/cm 2 , and substrate temperature: room temperature to 200° C.).

【0007】(硝酸塩系を使用する例)図2に硝酸塩系
のフローチャートを示すが、出発材料が硝酸塩である以
外は、概ね図1の塩化物系と同じである。また、硝酸塩
系と塩化物系とを混合することも可能である。次に、基
板材料をプラスチックフィルム、またはプラスチック板
とした場合を説明する。一般に透明ポリマーのTgは概
ね150℃以下であって、良質な透明導電膜を、平坦性
、均一性よくプラスチック上に作製することは、従来知
られている方法では困難であった。従って、本発明は、
プラスチック基板上に透明導電膜を作製するために最適
といえる。さらに本発明には、従来法(主に気相合成法
)と比較して、プラスチック基板との組み合せを考慮し
た時、次の利点を生じる。■プラスチックスの表面平坦
性は一般にガラス表面に劣る。気相合成で透明導電膜を
作製した場合、その表面はプラスチック表面の凸凹をほ
ぼ再現してしまう。しかし、本発明によれば、塗布膜は
半溶液状態であるので、リフローして基板表面の凸凹を
カバーし、膜表面は平滑になる。■気相合成よりも、ポ
リマーとの密着力に優れる(塗布膜は有機官能基を有し
ているため、有機的(ポリマー)表面とのぬれ性に優れ
ているためと考えられる。これに比して、気相合成法は
、無機−有機の接合界となる。)。以上の点からもポリ
マー基板上に本方法を用いた透明導電膜の有用性は高い
(Example using a nitrate system) FIG. 2 shows a flowchart for a nitrate system, which is generally the same as the chloride system shown in FIG. 1 except that the starting material is a nitrate. It is also possible to mix nitrates and chlorides. Next, a case will be described in which a plastic film or a plastic plate is used as the substrate material. In general, the Tg of transparent polymers is approximately 150° C. or less, and it has been difficult to produce a high-quality transparent conductive film on plastic with good flatness and uniformity using conventionally known methods. Therefore, the present invention
It can be said to be optimal for producing transparent conductive films on plastic substrates. Furthermore, compared to conventional methods (mainly vapor phase synthesis), the present invention has the following advantages when the combination with a plastic substrate is considered. ■The surface flatness of plastics is generally inferior to glass surfaces. When a transparent conductive film is produced by vapor phase synthesis, its surface almost reproduces the unevenness of the plastic surface. However, according to the present invention, since the coating film is in a semi-solution state, it is reflowed to cover the irregularities on the substrate surface and the film surface becomes smooth. ■It has superior adhesion to the polymer compared to gas phase synthesis (this is thought to be because the coating film has organic functional groups, so it has excellent wettability with the organic (polymer) surface. Therefore, the gas phase synthesis method becomes an inorganic-organic junction field.) From the above points as well, a transparent conductive film formed using this method on a polymer substrate is highly useful.

【0008】[0008]

【実施例】実施例1 無水塩化インジウムにアセチルアセトンを混合し、還流
後、グリセリンを加えて、インジウム溶液を作った。次
に金属Snに硝酸を加えSn(NO3)4を作り、これ
にアセチルアセトンを溶解せしめ、スズ溶液とした。こ
のインジウム溶液(A)とスズ溶液(B)とを〔(B)
〕/〔(A)+(B)〕=2〜10mol%、好ましく
は4〜8mol%に混合して塗布溶液とした。次にこれ
をアセトンで希釈し、粘度を約30cpsに調整し、ロ
ールコーターを用いてパイレックスガラス上に4000
Å程度で塗布した。この塗布膜を70℃で約1分間プリ
乾燥した後に、O2/Ar=5/5、圧力0.1tor
r、RFパワー0.5W/cm2、基板温度200℃の
条件によって60minのプラズマ処理を行なった。得
られたITOの特性は、比抵抗7×1/105Ω・cm
、透過率90%と良好であった。また、平坦性、均一性
の評価結果は表2の通り従来法よりすぐれていた。
[Examples] Example 1 Acetylacetone was mixed with anhydrous indium chloride, and after refluxing, glycerin was added to prepare an indium solution. Next, nitric acid was added to Sn metal to form Sn(NO3)4, and acetylacetone was dissolved in this to form a tin solution. This indium solution (A) and tin solution (B) [(B)
]/[(A)+(B)]=2 to 10 mol%, preferably 4 to 8 mol% to prepare a coating solution. Next, this was diluted with acetone, adjusted to a viscosity of about 30 cps, and coated with 4000 cps on Pyrex glass using a roll coater.
It was applied at a thickness of about . After pre-drying this coating film at 70°C for about 1 minute, O2/Ar=5/5, pressure 0.1 torr
Plasma treatment was performed for 60 minutes under the following conditions: r, RF power of 0.5 W/cm 2 , and substrate temperature of 200° C. The properties of the obtained ITO are as follows: specific resistance: 7×1/105Ω・cm
, the transmittance was as good as 90%. Furthermore, the evaluation results of flatness and uniformity were superior to the conventional method as shown in Table 2.

【表2】 実施例2 下記の点をのぞき、実施例1の方法を適用した。 ・スズ溶液     出発物質:SnCl4     
               溶媒    :C2H
5OH・粘度:10cps ・塗布:スピナーで行う ・基板:ポリエチレンテレフタレート、ポリアリレート
フィルムまたはポリエーテルサルホン ・膜厚:2000Å ・プラズマ条件:基板温度140℃ ・特性:比抵抗2×1/104Ω・cm、透過率88%
・平坦性、均一性:表3のとおり
[Table 2] Example 2 The method of Example 1 was applied, except for the following points.・Tin solution Starting material: SnCl4
Solvent: C2H
5OH・Viscosity: 10cps・Coating: Performed with a spinner・Substrate: Polyethylene terephthalate, polyarylate film or polyethersulfone・Film thickness: 2000Å・Plasma conditions: Substrate temperature 140℃・Characteristics: Specific resistance 2×1/104Ω・cm , transmittance 88%
・Flatness and uniformity: As shown in Table 3

【表3】[Table 3]

【0008】[0008]

【効果】■大面積で、かつ均一性のよい膜が得られる。 ■プラズマ雰囲気による改質を行うので比較的低温(室
温〜200℃、140℃でも良質の膜)でも透明導電膜
の作製が可能である。このため低抵抗、高透過率の膜が
得られる。■塗布法によれば、比較的厚い膜も、短時間
にできる(気相と比して)。■プラスチック基板上への
製膜が可能である。
[Effect] ■ A film with a large area and good uniformity can be obtained. (2) Since modification is carried out in a plasma atmosphere, it is possible to produce a transparent conductive film even at relatively low temperatures (room temperature to 200°C, with good quality films even at 140°C). Therefore, a film with low resistance and high transmittance can be obtained. ■With the coating method, relatively thick films can be formed in a short time (compared to the gas phase). ■It is possible to form a film on a plastic substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】塗布溶液として塩化物系を用いたときのフロー
チャートである。
FIG. 1 is a flow chart when a chloride-based coating solution is used.

【図2】塗布溶液として硝酸塩系を用いたときのフロー
チャートである。
FIG. 2 is a flowchart when a nitrate-based coating solution is used.

【図3】本発明に使用できる容量結合型プラズマ装置の
概略図である。
FIG. 3 is a schematic diagram of a capacitively coupled plasma device that can be used in the present invention.

【図4】本発明に使用できる誘導結合型プラズマ装置の
概略図である。
FIG. 4 is a schematic diagram of an inductively coupled plasma device that can be used in the present invention.

【図5】本発明のプラズマ処理を行った場合(一点破線
)と行わなかった場合(実線)とのIRスペクトルの対
比図である。
FIG. 5 is a comparison diagram of IR spectra when the plasma treatment of the present invention is performed (dotted line) and when it is not performed (solid line).

【符号の説明】[Explanation of symbols]

1  アース電極 2  RF電極 3  基板 4  RF電源 5  バイアス電源 6  マッチング回路 7  誘導コイル 1 Earth electrode 2 RF electrode 3 Board 4 RF power supply 5 Bias power supply 6 Matching circuit 7 Induction coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  絶縁基板上に透明導電膜を形成後、該
膜をプラズマ処理することを特徴とする透明導電膜の製
法。
1. A method for producing a transparent conductive film, which comprises forming a transparent conductive film on an insulating substrate and then subjecting the film to plasma treatment.
【請求項2】  前記プラズマ処理におけるプラズマ雰
囲気が不活性ガス、酸素および水素よりなる群から選ら
ばれた少なくとも1種を含むものである請求項1記載の
透明導電膜の製法。
2. The method for producing a transparent conductive film according to claim 1, wherein the plasma atmosphere in the plasma treatment contains at least one selected from the group consisting of an inert gas, oxygen, and hydrogen.
JP10319491A 1991-04-08 1991-04-08 Manufacture of transparent conductive film Pending JPH04308616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10319491A JPH04308616A (en) 1991-04-08 1991-04-08 Manufacture of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319491A JPH04308616A (en) 1991-04-08 1991-04-08 Manufacture of transparent conductive film

Publications (1)

Publication Number Publication Date
JPH04308616A true JPH04308616A (en) 1992-10-30

Family

ID=14347710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319491A Pending JPH04308616A (en) 1991-04-08 1991-04-08 Manufacture of transparent conductive film

Country Status (1)

Country Link
JP (1) JPH04308616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074178A (en) * 2001-10-02 2009-04-09 National Institute Of Advanced Industrial & Technology Method for producing metal oxide thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074178A (en) * 2001-10-02 2009-04-09 National Institute Of Advanced Industrial & Technology Method for producing metal oxide thin film

Similar Documents

Publication Publication Date Title
US3944684A (en) Process for depositing transparent, electrically conductive tin containing oxide coatings on a substrate
CN105951053B (en) A kind of preparation method of titania-doped transparent conductive film of niobium and the titania-doped transparent conductive film of niobium
US20080057321A1 (en) Method of making a low-resistivity, doped zinc oxide coated glass article and the coated glass article made thereby
CN104962865A (en) Ion-source auxiliary ITO film thermal evaporation process
US3658568A (en) Method of forming metal oxide coatings on refractory substrates
US5102691A (en) Method of pretreatment for the high-deposition-rate production of fluorine-doped tin-oxide coatings having reduced bulk resistivities and emissivities
CN105951046A (en) Preparation method of ITO thin film
JP6039402B2 (en) Method for making zinc oxide coated article
JPH04308616A (en) Manufacture of transparent conductive film
KR100804003B1 (en) Method for preparing indium tin oxide film
JPH064497B2 (en) Method for forming tin oxide film
JP4705340B2 (en) Method for producing indium oxide film
GB2428689A (en) Process for preparing transparent conducting metal oxides
CN107502871A (en) The plasma gas phase deposition preparation method of zinc sulfide nano-material under a kind of low temperature
TW201947053A (en) Method for enhancing adhesion of anti-fouling film
KR930005825B1 (en) Process for producing a transparent polymer film having a electrical conductivity
JP4187315B2 (en) Method for producing transparent conductive laminate for liquid crystal display
JPS62122133A (en) Forming method for thin-film through solution coating
JPH03103341A (en) Near-infrared ray-cutting glass and production thereof
KR100613405B1 (en) Method for manufacturing a transparent conductive metal composite thin film by electric field coupled plasma chemical vapor deposition
CN113628808A (en) Preparation method of tin oxide-based composite conductive film
JPH0221083B2 (en)
KR960011171B1 (en) Method of manufacturing tin oxide transparent conductive film containing antimony
JPS6013244B2 (en) Method for manufacturing a molded product having a transparent conductive film
CN111293230A (en) Thin film packaging layer and preparation method thereof, and preparation method of display panel