JPH04308616A - Manufacture of transparent conductive film - Google Patents
Manufacture of transparent conductive filmInfo
- Publication number
- JPH04308616A JPH04308616A JP10319491A JP10319491A JPH04308616A JP H04308616 A JPH04308616 A JP H04308616A JP 10319491 A JP10319491 A JP 10319491A JP 10319491 A JP10319491 A JP 10319491A JP H04308616 A JPH04308616 A JP H04308616A
- Authority
- JP
- Japan
- Prior art keywords
- film
- transparent conductive
- substrate
- conductive film
- plastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000009832 plasma treatment Methods 0.000 claims description 13
- 239000011261 inert gas Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 21
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract description 11
- 239000004033 plastic Substances 0.000 abstract description 11
- 229920003023 plastic Polymers 0.000 abstract description 11
- 229910002651 NO3 Inorganic materials 0.000 abstract description 10
- 239000007789 gas Substances 0.000 abstract description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 229910052718 tin Inorganic materials 0.000 abstract description 6
- 229910052738 indium Inorganic materials 0.000 abstract description 5
- 239000011521 glass Substances 0.000 abstract description 4
- 229910052793 cadmium Inorganic materials 0.000 abstract description 2
- 229910001510 metal chloride Inorganic materials 0.000 abstract description 2
- 239000002985 plastic film Substances 0.000 abstract description 2
- 229920006255 plastic film Polymers 0.000 abstract description 2
- 239000010453 quartz Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- 229910052725 zinc Inorganic materials 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 2
- 238000009413 insulation Methods 0.000 abstract 2
- 239000002131 composite material Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 17
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- -1 and after refluxing Chemical compound 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 3
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002471 indium Chemical class 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
【0001】0001
【技術分野】本発明は、絶縁基板上に透明導電膜を形成
する方法に関する。TECHNICAL FIELD The present invention relates to a method for forming a transparent conductive film on an insulating substrate.
【0002】0002
【従来技術】近年、OA機器や携帯用小形テレビ等の普
及に伴い、これまでの電子ディスプレイ装置としてのブ
ラウン管(CRT)に代わって、液晶(LCD)、エレ
クトロルミネセンス(EL)、プラズマディスプレイ(
PDP)、発光ダイオード(LED)、蛍光表示管(V
FD)等の研究が盛んに行われており、一部実用化され
ている。これらのディスプレイ素子のほとんどは基本構
成として、透明電極膜を備えている。表示素子用透明電
極膜に要求される物性は、高可視光透過率、低抵抗性で
ある。このような特性を得るには結晶性を良くし、グレ
インサイズを大きくし(移動度の増大)、ストイキオメ
トリからずらす(キャリア濃度の増大)ことが重要とい
われている。また、これらの物性を備えた透明導電膜を
大面積化することおよび低温下で作製することが極めて
重要視されるようになった。現在、透明電極材料として
は、ZnO,CdO,ZnS,SnO2,In2O3,
CdSnO4,ITO系等が知られているが、これらの
作製方法としては以下の方法が知られている。
(i)気相合成法
気相合成法としては真空蒸着法、スパッタリング法、イ
オンプレーティング法等があるが、高透過率でかつ、低
抵抗な膜を得るには350℃程度の基板温度が必要であ
り、また、大面積で均一性のよい膜を得ることが難しい
。なお、個々の方法について以下に概説する。
(a) 真空蒸着法(EB蒸着法)。In2O3−Sn
O2(5〜10wt%)のようなペレットをEB照射に
よって加熱蒸発させる。基板温度(Ts)は約300〜
400℃、製膜速度は18〜180Å/minである。
(b) イオンプレーティング(イオン化蒸着法)。前
記と同様のペレットを蒸発せしめ、かつ、ArまたはO
2プラズマ中を通過させイオン化し、基板に印加した電
界により加速する。Ts約300℃、製膜速度約300
Å/minである。
(c) スパッタ法。In2O3−SnO2(9〜15
mol%)等のターゲットにArまたはOイオンを混入
しスパッタする。Ts約180〜300℃、製膜速度1
20〜300Å/minである。
(ii) 化学的合成法
化学的合成法としては、以下のような方法がある。
(d) スプレー法。SnCl4,InCl3等の水溶
液を400〜800℃に加熱した焼成炉にスプレーして
、加水分解させる。
(e) 浸漬・熱分解法。上記同様のSn化合物、In
化合物等の溶液に基板を浸漬し、Ts約500℃で加熱
分解する。
ところが、これらの方法には以下のような問題点が存在
する。しかしながら、これらのいずれの方法を使用して
も、■大面積でかつ均一性の高い膜を得られること、■
低抵抗かつ高透過率の膜が得られること、■製膜速度が
高いこと、■プラスチック基板の融点、望ましくはガラ
ス転位点以下で製膜すること、という条件を満足させる
ことはできない。[Prior Art] In recent years, with the spread of office automation equipment and small portable televisions, etc., cathode ray tubes (CRTs) have been replaced by liquid crystal displays (LCDs), electroluminescence (EL) displays, and plasma displays (
PDP), light emitting diode (LED), fluorescent display tube (V
FD), etc., are being actively researched, and some of them have been put into practical use. Most of these display elements have a transparent electrode film as a basic structure. The physical properties required of a transparent electrode film for display devices are high visible light transmittance and low resistance. In order to obtain such properties, it is said to be important to improve crystallinity, increase grain size (increase in mobility), and deviate from stoichiometry (increase in carrier concentration). In addition, it has become extremely important to increase the area of transparent conductive films having these physical properties and to manufacture them at low temperatures. Currently, transparent electrode materials include ZnO, CdO, ZnS, SnO2, In2O3,
CdSnO4, ITO, etc. are known, and the following methods are known as methods for producing these. (i) Vapor phase synthesis method Vapor phase synthesis methods include vacuum evaporation, sputtering, and ion plating, but in order to obtain a film with high transmittance and low resistance, a substrate temperature of about 350°C is required. Moreover, it is difficult to obtain a film with good uniformity over a large area. The individual methods will be outlined below. (a) Vacuum deposition method (EB deposition method). In2O3-Sn
Pellets such as O2 (5-10 wt%) are heated and evaporated by EB irradiation. Substrate temperature (Ts) is approximately 300~
The temperature is 400° C., and the film forming rate is 18 to 180 Å/min. (b) Ion plating (ionization vapor deposition method). The same pellets as above were evaporated and Ar or O
2 to be ionized by passing through plasma, and accelerated by an electric field applied to the substrate. Ts approx. 300℃, film forming speed approx. 300
Å/min. (c) Sputtering method. In2O3-SnO2 (9-15
Sputtering is performed by mixing Ar or O ions into a target such as (mol%). Ts about 180-300℃, film forming rate 1
The rate is 20 to 300 Å/min. (ii) Chemical synthesis method Chemical synthesis methods include the following methods. (d) Spray method. An aqueous solution of SnCl4, InCl3, etc. is sprayed into a firing furnace heated to 400 to 800°C to cause hydrolysis. (e) Immersion/pyrolysis method. Sn compound similar to the above, In
The substrate is immersed in a solution of a compound or the like and thermally decomposed at Ts of about 500°C. However, these methods have the following problems. However, no matter which method is used, it is impossible to obtain a film with a large area and high uniformity;
It is not possible to satisfy the following conditions: (1) a film with low resistance and high transmittance can be obtained; (2) the film forming rate is high; and (2) the film is formed at the melting point of the plastic substrate, preferably below the glass transition point.
【0003】0003
【目的】本発明の目的は、前記■〜■の条件を満足する
透明導電膜の製法を提供する点にある。[Object] The object of the present invention is to provide a method for producing a transparent conductive film that satisfies the conditions (1) to (4) above.
【0004】0004
【構成】本発明は、絶縁基板上に透明導電膜を形成後、
該膜をプラズマ処理することを特徴とする透明導電膜の
製法に関する。前記プラズマ処理におけるプラズマ雰囲
気が不活性ガス、酸素あるいは水素の少なくとも1種を
含むものであり、前記基板としては、ガラス、石英、プ
ラスチックスなどが使用できる。本発明において、絶縁
基板上に透明導電膜を形成する方法としては、塩化物や
硝酸塩の形にした透明導電膜形成用組成物を塗布溶液と
して基板上に塗布し、70〜80℃といった低温で乾燥
する方法により行うことが好ましい。[Structure] In the present invention, after forming a transparent conductive film on an insulating substrate,
The present invention relates to a method for producing a transparent conductive film, which is characterized by subjecting the film to plasma treatment. The plasma atmosphere in the plasma treatment includes at least one of an inert gas, oxygen, and hydrogen, and the substrate may be made of glass, quartz, plastic, or the like. In the present invention, the method for forming a transparent conductive film on an insulating substrate is to apply a composition for forming a transparent conductive film in the form of chloride or nitrate onto the substrate as a coating solution, and to apply the composition at a low temperature of 70 to 80°C. It is preferable to use a drying method.
【0005】透明導電塗布膜の塗布溶液は、Sn,In
,Zn,Cd,Ti等の金属の塩化物主体の系と硝酸塩
主体の系に大別される。得ようとする透明導電膜がSn
O2の場合、塗布溶液はSnの塩化物または硝酸塩のみ
で構成され、In2O3の場合はInの塩化物または硝
酸塩のみで構成されるが、ITO膜の場合はSnとIn
の塩化物または硝酸塩の混合物を用いる。塗布方法によ
り本発明を実施するときは、(イ)塗布膜の形成、(ロ
)予備乾燥、(ハ)反応温度までの加熱、(ニ)プラズ
マ処理の工程よりなるが、(ハ)と(ニ)の工程は同時
に行うことが好ましい。同時の方が−OH,−R等の脱
離、金属−酸素の結合形成および再配列がおこりやすい
。[0005] The coating solution for the transparent conductive coating film is Sn, In
, Zn, Cd, Ti and other metal chlorides and nitrate-based systems. The transparent conductive film to be obtained is Sn.
In the case of O2, the coating solution consists only of Sn chloride or nitrate, and in the case of In2O3, it consists only of In chloride or nitrate, but in the case of ITO film, it consists of Sn and In.
using a mixture of chlorides or nitrates. When carrying out the present invention using the coating method, the steps include (a) formation of a coating film, (b) preliminary drying, (c) heating to reaction temperature, and (d) plasma treatment, and (c) and ( It is preferable to carry out the step (d) at the same time. At the same time, elimination of -OH, -R, etc., metal-oxygen bond formation, and rearrangement are more likely to occur.
【0006】(塩化物系を使用する例)図1に、フロー
チャートを示す。先ず塩化インジウムにアセチルアセト
ン等の溶媒を混合し、還流後、粘度調整のためにグリセ
リンを加えて、溶液Aを作った。次に塩化スズにアセチ
ルアセトン等の溶媒を混合し、溶液Bを作り、溶液Aと
適当量混合し、塗布溶液とした。この段階で、さらに塗
布方法に合わせて、粘度を調整するためにアセトン等で
希釈することもある。また溶媒としてはアセチルアセト
ンに限定されるものではなく、CH3OH,C2H5O
H等のアルコール類、アセトン等のケトン類などの有機
溶剤も使用しうる。次にスピン・オン、ロールコート、
浸漬等の方法で基板上に塗布膜を形成した(塗布膜の膜
厚は塗布方法と粘度に依存するが、約数100Å〜数μ
mの範囲でコントロールできる。多くの場合600Å〜
1μmが使用範囲である。)。プラズマ処理に先だって
、主に真空中での溶媒の急激な揮発を防ぐために空気中
でプリ乾燥(約70〜80℃)で数分間行う。この段階
での塗付膜中には金属と結合した−OH基、−R基(ア
ルキル基)、−OR基(アルコキシ基)が多数存在し、
緻密性は極めて低い。これらの状態から脱水縮合あるい
は−OR、−R基が抜けて縮合する結果、良質なITO
となるが、プラズマ処理は塗付膜中のこれら官能基を活
性化させて、比較的低温でも、脱離・縮合反応を促進せ
しめる効果がある。効果の本質は必ずしも明確ではない
が、二通り考えられる。
(1) 物理的効果:プラズマ中イオンのボンバードメ
ントによって、官能基の伸縮運動が活性化され、脱離が
促進する。
(2) 化学的効果:プラズマ中の酸素または水素、ラ
ジカルまたはイオンが官能基と化学結合をして気体(H
2O、炭化水素として)脱離する。
プラズマガスが希ガス(N2,Ar,He,Ne等)で
ある場合は主に(1)が作用し、酸素、水素等の場合に
は主に(2)〔(1)も入っている〕が作用する。プラ
ズマガスとしては酸素、水素ガスに限定されるものでは
なくこれらの元素が含まれるものであればよい。例えば
、O2,CO,CO2,H2,H2O,H2O2,CH
4,C2H6などの炭化水素、CH3OH,C2H5O
H等のアルコール類、あるいはケトン類、エーテル類等
である。プラズマ処理装置としては、図3、図4に示し
たごとく、容量結合型プラズマ装置あるいは誘導結合型
プラズマ装置が使用され、イオン照射の効果を促進する
ためには、図3のごとく、負のセルフ・バイアスが印加
されているRFの給電側に基板3をセットするのがよい
。さらにDCバイアス電源5によって、積極的にバイア
スを数十〜数百V印加するのが一層効果的である。典型
的な処理条件を表1に示す。(Example using a chloride system) FIG. 1 shows a flowchart. First, indium chloride was mixed with a solvent such as acetylacetone, and after refluxing, glycerin was added to adjust the viscosity to prepare solution A. Next, tin chloride was mixed with a solvent such as acetylacetone to prepare solution B, and an appropriate amount of solution B was mixed with solution A to obtain a coating solution. At this stage, it may be further diluted with acetone or the like to adjust the viscosity depending on the application method. In addition, the solvent is not limited to acetylacetone, but also CH3OH, C2H5O
Organic solvents such as alcohols such as H and ketones such as acetone may also be used. Next, spin on, roll coat,
A coating film was formed on the substrate by a method such as dipping (the thickness of the coating film depends on the coating method and viscosity, but it is about several hundred Å to several microns).
It can be controlled within a range of m. In most cases 600Å~
The usable range is 1 μm. ). Prior to plasma treatment, pre-drying (about 70 to 80° C.) is performed in air for several minutes, mainly to prevent rapid volatilization of the solvent in vacuum. There are many -OH groups, -R groups (alkyl groups), and -OR groups (alkoxy groups) bonded to metals in the coating film at this stage.
Denseness is extremely low. As a result of dehydration condensation or condensation with removal of -OR and -R groups from these states, high quality ITO is produced.
However, plasma treatment has the effect of activating these functional groups in the coating film and promoting elimination and condensation reactions even at relatively low temperatures. Although the nature of the effect is not necessarily clear, there are two possibilities. (1) Physical effect: Bombardment of ions in the plasma activates the stretching movement of functional groups, promoting desorption. (2) Chemical effect: Oxygen, hydrogen, radicals, or ions in the plasma chemically bond with functional groups to form a gas (H
2O, as a hydrocarbon). When the plasma gas is a rare gas (N2, Ar, He, Ne, etc.), (1) mainly acts, and when it is oxygen, hydrogen, etc., mainly (2) [(1) is also included] acts. The plasma gas is not limited to oxygen or hydrogen gas, but any gas containing these elements may be used. For example, O2, CO, CO2, H2, H2O, H2O2, CH
4, Hydrocarbons such as C2H6, CH3OH, C2H5O
Alcohols such as H, ketones, ethers, etc. As shown in FIGS. 3 and 4, a capacitively coupled plasma device or an inductively coupled plasma device is used as a plasma processing device. In order to promote the effect of ion irradiation, negative self- - It is better to set the substrate 3 on the RF power supply side where a bias is applied. Furthermore, it is more effective to actively apply a bias of several tens to several hundreds of volts using the DC bias power supply 5. Typical processing conditions are shown in Table 1.
【表1】
プラズマ処理の効果は、膜のIRスペクトルの結果
より、以下のように要約される。図5に示すように、プ
ラズマ処理をしない場合は、焼成温度(実線のもの)が
高くなるにしたがって、金属錯体あるいは溶媒に起因す
る吸収ピークが小さくなり、ほぼ450℃で見られなく
なり、これに伴って、In−O,Sn−O結合による吸
収ピークがほぼ完全な形となる。これに対して,プラズ
マ処理を行なった場合には一点破線、約150℃であっ
ても、実線の450℃に相当するIRスペクトルとなっ
ており、約−300℃の低温化効果があったと言える。
なお、図5の結果は、塩化物系(アセチルアセトンを溶
媒とした。)からなる塗付膜に対して、プラズマ処理(
ガス流量:O2/Ar=10/5SCCM、圧力:0.
15torr、RFパワー:0.3W/cm2、基板温
度:室温〜200℃)を行なった時の結果である。[Table 1] The effects of plasma treatment can be summarized as follows based on the results of the IR spectrum of the film. As shown in Figure 5, when plasma treatment is not performed, as the firing temperature (solid line) increases, the absorption peak due to the metal complex or solvent becomes smaller and disappears at approximately 450°C. Accordingly, the absorption peaks due to In-O and Sn-O bonds have almost perfect shapes. On the other hand, when plasma treatment was performed, the IR spectrum corresponded to the solid line of 450°C, even if the temperature was approximately 150°C (dotted line), and it can be said that there was a temperature reduction effect of approximately -300°C. . The results shown in Figure 5 are based on plasma treatment (
Gas flow rate: O2/Ar=10/5SCCM, pressure: 0.
15 torr, RF power: 0.3 W/cm 2 , and substrate temperature: room temperature to 200° C.).
【0007】(硝酸塩系を使用する例)図2に硝酸塩系
のフローチャートを示すが、出発材料が硝酸塩である以
外は、概ね図1の塩化物系と同じである。また、硝酸塩
系と塩化物系とを混合することも可能である。次に、基
板材料をプラスチックフィルム、またはプラスチック板
とした場合を説明する。一般に透明ポリマーのTgは概
ね150℃以下であって、良質な透明導電膜を、平坦性
、均一性よくプラスチック上に作製することは、従来知
られている方法では困難であった。従って、本発明は、
プラスチック基板上に透明導電膜を作製するために最適
といえる。さらに本発明には、従来法(主に気相合成法
)と比較して、プラスチック基板との組み合せを考慮し
た時、次の利点を生じる。■プラスチックスの表面平坦
性は一般にガラス表面に劣る。気相合成で透明導電膜を
作製した場合、その表面はプラスチック表面の凸凹をほ
ぼ再現してしまう。しかし、本発明によれば、塗布膜は
半溶液状態であるので、リフローして基板表面の凸凹を
カバーし、膜表面は平滑になる。■気相合成よりも、ポ
リマーとの密着力に優れる(塗布膜は有機官能基を有し
ているため、有機的(ポリマー)表面とのぬれ性に優れ
ているためと考えられる。これに比して、気相合成法は
、無機−有機の接合界となる。)。以上の点からもポリ
マー基板上に本方法を用いた透明導電膜の有用性は高い
。(Example using a nitrate system) FIG. 2 shows a flowchart for a nitrate system, which is generally the same as the chloride system shown in FIG. 1 except that the starting material is a nitrate. It is also possible to mix nitrates and chlorides. Next, a case will be described in which a plastic film or a plastic plate is used as the substrate material. In general, the Tg of transparent polymers is approximately 150° C. or less, and it has been difficult to produce a high-quality transparent conductive film on plastic with good flatness and uniformity using conventionally known methods. Therefore, the present invention
It can be said to be optimal for producing transparent conductive films on plastic substrates. Furthermore, compared to conventional methods (mainly vapor phase synthesis), the present invention has the following advantages when the combination with a plastic substrate is considered. ■The surface flatness of plastics is generally inferior to glass surfaces. When a transparent conductive film is produced by vapor phase synthesis, its surface almost reproduces the unevenness of the plastic surface. However, according to the present invention, since the coating film is in a semi-solution state, it is reflowed to cover the irregularities on the substrate surface and the film surface becomes smooth. ■It has superior adhesion to the polymer compared to gas phase synthesis (this is thought to be because the coating film has organic functional groups, so it has excellent wettability with the organic (polymer) surface. Therefore, the gas phase synthesis method becomes an inorganic-organic junction field.) From the above points as well, a transparent conductive film formed using this method on a polymer substrate is highly useful.
【0008】[0008]
【実施例】実施例1
無水塩化インジウムにアセチルアセトンを混合し、還流
後、グリセリンを加えて、インジウム溶液を作った。次
に金属Snに硝酸を加えSn(NO3)4を作り、これ
にアセチルアセトンを溶解せしめ、スズ溶液とした。こ
のインジウム溶液(A)とスズ溶液(B)とを〔(B)
〕/〔(A)+(B)〕=2〜10mol%、好ましく
は4〜8mol%に混合して塗布溶液とした。次にこれ
をアセトンで希釈し、粘度を約30cpsに調整し、ロ
ールコーターを用いてパイレックスガラス上に4000
Å程度で塗布した。この塗布膜を70℃で約1分間プリ
乾燥した後に、O2/Ar=5/5、圧力0.1tor
r、RFパワー0.5W/cm2、基板温度200℃の
条件によって60minのプラズマ処理を行なった。得
られたITOの特性は、比抵抗7×1/105Ω・cm
、透過率90%と良好であった。また、平坦性、均一性
の評価結果は表2の通り従来法よりすぐれていた。[Examples] Example 1 Acetylacetone was mixed with anhydrous indium chloride, and after refluxing, glycerin was added to prepare an indium solution. Next, nitric acid was added to Sn metal to form Sn(NO3)4, and acetylacetone was dissolved in this to form a tin solution. This indium solution (A) and tin solution (B) [(B)
]/[(A)+(B)]=2 to 10 mol%, preferably 4 to 8 mol% to prepare a coating solution. Next, this was diluted with acetone, adjusted to a viscosity of about 30 cps, and coated with 4000 cps on Pyrex glass using a roll coater.
It was applied at a thickness of about . After pre-drying this coating film at 70°C for about 1 minute, O2/Ar=5/5, pressure 0.1 torr
Plasma treatment was performed for 60 minutes under the following conditions: r, RF power of 0.5 W/cm 2 , and substrate temperature of 200° C. The properties of the obtained ITO are as follows: specific resistance: 7×1/105Ω・cm
, the transmittance was as good as 90%. Furthermore, the evaluation results of flatness and uniformity were superior to the conventional method as shown in Table 2.
【表2】
実施例2
下記の点をのぞき、実施例1の方法を適用した。
・スズ溶液 出発物質:SnCl4
溶媒 :C2H
5OH・粘度:10cps
・塗布:スピナーで行う
・基板:ポリエチレンテレフタレート、ポリアリレート
フィルムまたはポリエーテルサルホン
・膜厚:2000Å
・プラズマ条件:基板温度140℃
・特性:比抵抗2×1/104Ω・cm、透過率88%
・平坦性、均一性:表3のとおり[Table 2] Example 2 The method of Example 1 was applied, except for the following points.・Tin solution Starting material: SnCl4
Solvent: C2H
5OH・Viscosity: 10cps・Coating: Performed with a spinner・Substrate: Polyethylene terephthalate, polyarylate film or polyethersulfone・Film thickness: 2000Å・Plasma conditions: Substrate temperature 140℃・Characteristics: Specific resistance 2×1/104Ω・cm , transmittance 88%
・Flatness and uniformity: As shown in Table 3
【表3】[Table 3]
【0008】[0008]
【効果】■大面積で、かつ均一性のよい膜が得られる。
■プラズマ雰囲気による改質を行うので比較的低温(室
温〜200℃、140℃でも良質の膜)でも透明導電膜
の作製が可能である。このため低抵抗、高透過率の膜が
得られる。■塗布法によれば、比較的厚い膜も、短時間
にできる(気相と比して)。■プラスチック基板上への
製膜が可能である。[Effect] ■ A film with a large area and good uniformity can be obtained. (2) Since modification is carried out in a plasma atmosphere, it is possible to produce a transparent conductive film even at relatively low temperatures (room temperature to 200°C, with good quality films even at 140°C). Therefore, a film with low resistance and high transmittance can be obtained. ■With the coating method, relatively thick films can be formed in a short time (compared to the gas phase). ■It is possible to form a film on a plastic substrate.
【図1】塗布溶液として塩化物系を用いたときのフロー
チャートである。FIG. 1 is a flow chart when a chloride-based coating solution is used.
【図2】塗布溶液として硝酸塩系を用いたときのフロー
チャートである。FIG. 2 is a flowchart when a nitrate-based coating solution is used.
【図3】本発明に使用できる容量結合型プラズマ装置の
概略図である。FIG. 3 is a schematic diagram of a capacitively coupled plasma device that can be used in the present invention.
【図4】本発明に使用できる誘導結合型プラズマ装置の
概略図である。FIG. 4 is a schematic diagram of an inductively coupled plasma device that can be used in the present invention.
【図5】本発明のプラズマ処理を行った場合(一点破線
)と行わなかった場合(実線)とのIRスペクトルの対
比図である。FIG. 5 is a comparison diagram of IR spectra when the plasma treatment of the present invention is performed (dotted line) and when it is not performed (solid line).
1 アース電極 2 RF電極 3 基板 4 RF電源 5 バイアス電源 6 マッチング回路 7 誘導コイル 1 Earth electrode 2 RF electrode 3 Board 4 RF power supply 5 Bias power supply 6 Matching circuit 7 Induction coil
Claims (2)
膜をプラズマ処理することを特徴とする透明導電膜の製
法。1. A method for producing a transparent conductive film, which comprises forming a transparent conductive film on an insulating substrate and then subjecting the film to plasma treatment.
囲気が不活性ガス、酸素および水素よりなる群から選ら
ばれた少なくとも1種を含むものである請求項1記載の
透明導電膜の製法。2. The method for producing a transparent conductive film according to claim 1, wherein the plasma atmosphere in the plasma treatment contains at least one selected from the group consisting of an inert gas, oxygen, and hydrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10319491A JPH04308616A (en) | 1991-04-08 | 1991-04-08 | Manufacture of transparent conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10319491A JPH04308616A (en) | 1991-04-08 | 1991-04-08 | Manufacture of transparent conductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04308616A true JPH04308616A (en) | 1992-10-30 |
Family
ID=14347710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10319491A Pending JPH04308616A (en) | 1991-04-08 | 1991-04-08 | Manufacture of transparent conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04308616A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009074178A (en) * | 2001-10-02 | 2009-04-09 | National Institute Of Advanced Industrial & Technology | Method for producing metal oxide thin film |
-
1991
- 1991-04-08 JP JP10319491A patent/JPH04308616A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009074178A (en) * | 2001-10-02 | 2009-04-09 | National Institute Of Advanced Industrial & Technology | Method for producing metal oxide thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3944684A (en) | Process for depositing transparent, electrically conductive tin containing oxide coatings on a substrate | |
CN105951053B (en) | A kind of preparation method of titania-doped transparent conductive film of niobium and the titania-doped transparent conductive film of niobium | |
US20080057321A1 (en) | Method of making a low-resistivity, doped zinc oxide coated glass article and the coated glass article made thereby | |
CN104962865A (en) | Ion-source auxiliary ITO film thermal evaporation process | |
US3658568A (en) | Method of forming metal oxide coatings on refractory substrates | |
US5102691A (en) | Method of pretreatment for the high-deposition-rate production of fluorine-doped tin-oxide coatings having reduced bulk resistivities and emissivities | |
CN105951046A (en) | Preparation method of ITO thin film | |
JP6039402B2 (en) | Method for making zinc oxide coated article | |
JPH04308616A (en) | Manufacture of transparent conductive film | |
KR100804003B1 (en) | Method for preparing indium tin oxide film | |
JPH064497B2 (en) | Method for forming tin oxide film | |
JP4705340B2 (en) | Method for producing indium oxide film | |
GB2428689A (en) | Process for preparing transparent conducting metal oxides | |
CN107502871A (en) | The plasma gas phase deposition preparation method of zinc sulfide nano-material under a kind of low temperature | |
TW201947053A (en) | Method for enhancing adhesion of anti-fouling film | |
KR930005825B1 (en) | Process for producing a transparent polymer film having a electrical conductivity | |
JP4187315B2 (en) | Method for producing transparent conductive laminate for liquid crystal display | |
JPS62122133A (en) | Forming method for thin-film through solution coating | |
JPH03103341A (en) | Near-infrared ray-cutting glass and production thereof | |
KR100613405B1 (en) | Method for manufacturing a transparent conductive metal composite thin film by electric field coupled plasma chemical vapor deposition | |
CN113628808A (en) | Preparation method of tin oxide-based composite conductive film | |
JPH0221083B2 (en) | ||
KR960011171B1 (en) | Method of manufacturing tin oxide transparent conductive film containing antimony | |
JPS6013244B2 (en) | Method for manufacturing a molded product having a transparent conductive film | |
CN111293230A (en) | Thin film packaging layer and preparation method thereof, and preparation method of display panel |