[go: up one dir, main page]

JPH04308072A - Aluminum diffusion coating agent and treatment using the same - Google Patents

Aluminum diffusion coating agent and treatment using the same

Info

Publication number
JPH04308072A
JPH04308072A JP9950091A JP9950091A JPH04308072A JP H04308072 A JPH04308072 A JP H04308072A JP 9950091 A JP9950091 A JP 9950091A JP 9950091 A JP9950091 A JP 9950091A JP H04308072 A JPH04308072 A JP H04308072A
Authority
JP
Japan
Prior art keywords
powder
aluminum
diffusion coating
weight
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9950091A
Other languages
Japanese (ja)
Inventor
Rihei Yoshikawa
吉川 利平
Masayasu Yoshikawa
雅康 吉川
Hironobu Murata
村田 裕信
Hidetaka Nakao
中尾 英高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Karoraizu Kogyo KK
Original Assignee
Nihon Karoraizu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Karoraizu Kogyo KK filed Critical Nihon Karoraizu Kogyo KK
Priority to JP9950091A priority Critical patent/JPH04308072A/en
Publication of JPH04308072A publication Critical patent/JPH04308072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a fine aluminide layer at a low cost by diffusion coating with Al powder. CONSTITUTION:An Al diffusion coating agent is composed of 5-15wt.% Al powder, Cr powder in 1-2 weight ratio to the Al powder, 0.1-5wt.% ammonium chloride and the balance sintering inhibitor. A body to be treated is embedded in above coating agent and heated in a non-oxidizing atmosphere.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は金属部材に耐熱性、耐食
性、耐硫化性及び耐浸炭性を付与し、部品の寿命を延長
することを目的として広く採用されている粉末法による
アルミニウム拡散被覆処理剤及びこれを用いた処理方法
に関するものである。
[Industrial Application Field] The present invention is an aluminum diffusion coating using a powder method, which is widely adopted for the purpose of imparting heat resistance, corrosion resistance, sulfidation resistance, and carburization resistance to metal parts and extending the life of the parts. This invention relates to a processing agent and a processing method using the same.

【0002】0002

【従来の技術】一般に粉末パック法によるアルミニウム
拡散被覆処理法は耐熱部材の耐酸化性及び耐高温腐食性
を向上させ、部材の寿命を延長することを目的として広
く採用されている。
2. Description of the Related Art In general, an aluminum diffusion coating treatment method using a powder pack method is widely employed for the purpose of improving the oxidation resistance and high temperature corrosion resistance of heat-resistant members and extending the life of the members.

【0003】中でも石油工業におけるエチレン製造装置
に使用されるクラッキングチューブなどナフサ等の炭化
水素類を高温に加熱し熱分解する反応管材料として、従
来よりNi−Cr系耐熱鋼、代表的にはJIS  NC
F800H鋼あるいはNiやCrを含む耐熱鋳鋼、代表
的にはASTM  HP材(JIS  SCH24相当
)などが反応管材料として用いられ更に耐浸炭性を強化
し反応管の寿命を延ばすためにアルミニウム拡散被覆を
施された鋼管が実用に供せられている。
Among them, Ni-Cr heat-resistant steel, typically JIS steel, has been used as a reaction tube material for heating and thermally decomposing hydrocarbons such as naphtha to high temperatures, such as cracking tubes used in ethylene production equipment in the petroleum industry. N.C.
F800H steel or heat-resistant cast steel containing Ni and Cr, typically ASTM HP material (equivalent to JIS SCH24), is used as the reaction tube material, and aluminum diffusion coating is used to further strengthen carburization resistance and extend the life of the reaction tube. The treated steel pipes are now in practical use.

【0004】近年、熱分解の効率を上げエチレンの収率
を向上させるため操業条件は過酷となり反応管温度は1
100℃にも達しているが、炭化水素類の熱分解により
生成した炭素が反応管表面に付着しコーキングを発生さ
せるため、反応管表面の温度が低下し熱分解の効率を悪
くしている。
In recent years, in order to increase the efficiency of thermal decomposition and improve the yield of ethylene, operating conditions have become harsher, and the reaction tube temperature has decreased to 1.
Although the temperature reaches as high as 100°C, carbon produced by thermal decomposition of hydrocarbons adheres to the surface of the reaction tube and causes coking, which lowers the temperature of the surface of the reaction tube and impairs the efficiency of thermal decomposition.

【0005】対策として一般には、表面の平滑な反応管
材料を使用し、生成した炭素の反応管表面への付着を防
止する。さらに一定期間毎に反応管内へ空気等の酸化性
ガスを流し付着した炭素を燃焼し除去するデコーキング
操作を行い、熱分解効率の低下を防止している。
As a countermeasure, generally a reaction tube material with a smooth surface is used to prevent the generated carbon from adhering to the surface of the reaction tube. Furthermore, a decoking operation is carried out at regular intervals to flush oxidizing gas such as air into the reaction tube and burn and remove attached carbon, thereby preventing a decrease in thermal decomposition efficiency.

【0006】アルミニウム拡散被覆処理を施した反応管
については従来方法では平滑化した反応管表面の表面粗
さを著しく大きくし、炭素の付着しやすい表面状態とし
ているため耐コーキング性が十分ではなく熱分解効率が
十分でないという欠点を有していた。
Regarding reaction tubes that have been treated with aluminum diffusion coating, the conventional method significantly increases the surface roughness of the smoothed surface of the reaction tube, creating a surface condition that is easy for carbon to adhere to, resulting in insufficient coking resistance and heat resistance. It had the disadvantage that the decomposition efficiency was not sufficient.

【0007】代表的な粉末法によるアルミニウム拡散被
覆処理法は、処理剤に適量のアルミニウムまたはアルミ
ニウム合金などのアルミニウム源、活性化剤としてハロ
ゲン化物例えば塩化アンモニウム及び焼結防止粉末、例
えばアルミナの混合粉末中に被処理物を埋め込み非酸化
性雰囲気中で700℃ないし1100℃の高温に適当な
時間加熱し、被処理物表面にアルミニウムを析出・拡散
させ基材とのアルミナイド層を形成させるものである。 現在工業的に実施されている方法を処理剤により大別す
ると次に示す三種の方法が代表的なものである。
[0007] A typical aluminum diffusion coating treatment method using a powder method uses an appropriate amount of an aluminum source such as aluminum or an aluminum alloy as a treatment agent, a mixed powder of a halide such as ammonium chloride as an activator, and a sintering prevention powder such as alumina. The object to be treated is embedded inside and heated to a high temperature of 700°C to 1100°C in a non-oxidizing atmosphere for an appropriate period of time to precipitate and diffuse aluminum on the surface of the object to form an aluminide layer with the base material. . The methods currently being used industrially can be roughly classified based on the processing agent, and the following three methods are representative.

【0008】1)Al−Al2 O3 粉末法Al2 
O3 に金属アルミニウム粉末を混合し、さらにハロゲ
ン化物を添加した混合処理剤中に被処理物を埋め込みア
ルミニウム拡散被覆処理を行う方法。
1) Al-Al2 O3 powder method Al2
A method of performing aluminum diffusion coating by embedding the object to be treated in a mixed treatment agent in which metal aluminum powder is mixed with O3 and a halide is added.

【0009】2)Fe−Al合金粉末法約30重量%の
アルミニウム濃度を有する繰り返し使用のFe−Al合
金粉末に約50重量%のアルミニウム濃度を有する新し
いFe−Al合金粉末を混合し、さらに数%のハロゲン
化物を添加した混合処理剤中に被処理物母材を埋め込み
アルミニウム拡散被覆処理を行う方法。
2) Fe-Al alloy powder method New Fe-Al alloy powder having an aluminum concentration of about 50% by weight is mixed with repeatedly used Fe-Al alloy powder having an aluminum concentration of about 30% by weight, and then several A method of performing aluminum diffusion coating treatment by embedding the base material of the object to be treated in a mixed treatment agent to which % of halide has been added.

【0010】3)Fe以外のAl合金粉末を用いる方法
。 Al2 O3 等にアルミニウム源としてFe以外のA
l合金粉末、例えばCr−Al合金粉末、Ni3 Al
合金粉末、Co2Al5 合金粉末などを混合し、さら
にハロゲン化物を添加した混合処理剤中に被処理物を埋
め込みアルミニウム拡散被覆を用いる方法。
3) A method using Al alloy powder other than Fe. A other than Fe as an aluminum source in Al2 O3 etc.
l alloy powder, e.g. Cr-Al alloy powder, Ni3Al
A method that uses aluminum diffusion coating by embedding the object to be treated in a mixed treatment agent containing alloy powder, Co2Al5 alloy powder, etc., and further adding a halide.

【0011】これら上述の従来法については以下に示す
欠点を有している。 (1)Al−Al2 O3 粉末法による欠点(イ)ア
ルミニウム拡散被覆処理中に処理剤中のアルミニウム粉
末が被処理物表面に溶融付着し仕上がり表面がざらつき
表面粗さが悪化する。 (ロ)アルミニウム粉末溶融付着部と他の部分でアルミ
ナイド層の厚さ及びアルミニウム濃度のばらつきが発生
する。
The above-mentioned conventional methods have the following drawbacks. (1) Disadvantages of the Al-Al2 O3 powder method (a) During the aluminum diffusion coating treatment, the aluminum powder in the treatment agent melts and adheres to the surface of the object to be treated, resulting in a rough finished surface and poor surface roughness. (b) Variations in the thickness and aluminum concentration of the aluminide layer occur between the aluminum powder melt-adhered area and other areas.

【0012】(2)Fe−Al合金粉末法による欠点(
イ)Co基、Ni基超合金等Fe含有量の低い基材にア
ルミニウム拡散被覆処理を施す場合、アルミナイド層内
にFeの拡散によるFeの濃化及びFe−Al合金粉末
の侵入が発生し、基材の高温強度の低下及び耐食性に悪
影響を与える。 (ロ)新しいFe−Al粉末と被処理物表面が焼結し易
くざらつきが発生し、処理後の表面粗さが悪化する。
(2) Disadvantages of the Fe-Al alloy powder method (
b) When aluminum diffusion coating is applied to a base material with low Fe content such as Co-based or Ni-based superalloys, concentration of Fe due to Fe diffusion and intrusion of Fe-Al alloy powder occur in the aluminide layer. Decreases high temperature strength and adversely affects corrosion resistance of the base material. (b) The new Fe-Al powder and the surface of the object to be treated are likely to sinter, resulting in roughness and worsening of the surface roughness after treatment.

【0013】(3)Fe以外のAl合金粉末を用いる方
法による欠点 (イ)Alとの合金元素はアルミニウム拡散被覆処理中
には、不活性あるいは極低活性であり、繰り返し使用時
において処理剤は、Alのみの濃度低下が発生し、新し
いAl合金の添加による処理剤の適正配合組成への再生
が困難であり、処理剤の使用が数回の繰り返し使用に限
られること、及びAl合金粉末が高価なことより処理コ
ストが高くなる。
(3) Disadvantages of the method using Al alloy powder other than Fe (a) Alloying elements with Al are inactive or have very low activity during the aluminum diffusion coating treatment, and the treatment agent is not active during repeated use. , a decrease in the concentration of only Al occurs, and it is difficult to restore the treatment agent to an appropriate composition by adding new Al alloy, and the use of the treatment agent is limited to repeated use several times. The processing cost is higher than the high price.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は上述の
従来法の欠点を解決し、金属被処理物に平滑で美麗なア
ルミナイド層を安価に形成するアルミニウム拡散被覆処
理方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an aluminum diffusion coating treatment method that solves the above-mentioned drawbacks of the conventional method and forms a smooth and beautiful aluminide layer on a metal workpiece at low cost. be.

【0015】[0015]

【課題を解決するための手段】上記目的は次の組成より
なるアルミニウム拡散被覆処理剤中に金属被処理物を埋
設して非酸化性雰囲気中で加熱することによって達成さ
れる。以下に前者の被覆処理剤を特定発明とし、これを
用いたアルミニウム拡散被覆処理方法を関連発明として
説明する。
The above object is achieved by embedding a metal workpiece in an aluminum diffusion coating treatment agent having the following composition and heating it in a non-oxidizing atmosphere. Below, the former coating treatment agent will be treated as a specific invention, and an aluminum diffusion coating treatment method using the same will be explained as a related invention.

【0016】特定発明は5〜15重量%のアルミニウム
粉末と、アルミニウム粉末に対し重量比にて1〜2のク
ロム粉末と、0.1〜5重量%の塩化アンモニウム及び
残部焼結防止粉末とからなるアルミニウム拡散被覆処理
剤であり、
The specified invention comprises 5 to 15% by weight of aluminum powder, chromium powder in a weight ratio of 1 to 2 to the aluminum powder, 0.1 to 5% by weight of ammonium chloride, and the balance anti-sintering powder. It is an aluminum diffusion coating treatment agent,

【0017】関連発明は5〜15重量%のアルミニウム
粉末と、アルミニウム粉末に対し重量比にて1〜2のク
ロム粉末と、0.1〜5重量%の塩化アンモニウム及び
残部焼結防止粉末とからなる処理剤中に金属被処理物を
埋設し非酸化性雰囲気中で加熱することを特徴とするア
ルミニウム拡散被覆処理方法である。
The related invention comprises 5 to 15% by weight of aluminum powder, chromium powder in a weight ratio of 1 to 2 to the aluminum powder, 0.1 to 5% by weight of ammonium chloride, and the balance anti-sintering powder. This is an aluminum diffusion coating treatment method characterized by embedding a metal workpiece in a treatment agent and heating it in a non-oxidizing atmosphere.

【0018】[0018]

【作用】特定発明の処理剤はアルミニウム拡散被覆処理
剤にアルミニウム粉末とアルミニウム粉末に対し重量比
にて1〜2のクロム粉末を含有しているので、このクロ
ムによりアルミニウム拡散被覆処理中の高温加熱時にお
いて、アルミニウム粉末の一部または全部がアルミニウ
ムより高融点のCr−Al合金を作り、溶融したアルミ
ニウムが被処理物に付着することを防止する。アルミニ
ウム粉末及びクロム粉末の含有量の限定理由については
後記する。
[Function] The treatment agent of the specified invention contains aluminum powder and chromium powder in a weight ratio of 1 to 2 to the aluminum powder, so this chromium causes high temperature heating during aluminum diffusion coating treatment. In some cases, part or all of the aluminum powder forms a Cr-Al alloy having a higher melting point than aluminum to prevent molten aluminum from adhering to the workpiece. The reasons for limiting the contents of aluminum powder and chromium powder will be described later.

【0019】塩化アンモニウムは全粉末重量に対して0
.1〜5重量%の含有が必要である。塩化アンモニウム
の含有量が0.1重量%未満の場合は充分なAl濃度及
び均一なアルミナイド層のアルミニウム拡散被覆が行え
ず、5重量%を超える場合は加熱時に塩化アンモニウム
が昇華し、粉末剤体積が減少するため被処理物の処理剤
中の保持が困難となる。工業的に使用する場合、前記塩
化アンモニウムの添加量は0.2〜1重量%が最も適当
である。
Ammonium chloride is 0 based on the total powder weight.
.. It is necessary to contain 1 to 5% by weight. If the ammonium chloride content is less than 0.1% by weight, sufficient Al concentration and uniform aluminum diffusion coating of the aluminide layer cannot be achieved, and if it exceeds 5% by weight, ammonium chloride sublimes during heating and the volume of the powder agent decreases. Because of this decrease, it becomes difficult to retain the processed material in the processing agent. For industrial use, the most suitable amount of ammonium chloride is 0.2 to 1% by weight.

【0020】本発明に使用する焼結防止粉末としては、
アルミナ及びカオリンなどの安定な酸化物を使用するこ
とができる。その含有範囲は通常範囲の50〜90重量
%である。
The anti-sintering powder used in the present invention is as follows:
Stable oxides such as alumina and kaolin can be used. Its content ranges from 50 to 90% by weight of the normal range.

【0021】本発明において被処理物材料としては、ス
テンレス鋼、耐熱鋳鋼、Fe基超合金、Ni基超合金及
びCo基超合金が挙げられる。
In the present invention, materials to be treated include stainless steel, heat-resistant cast steel, Fe-based superalloys, Ni-based superalloys, and Co-based superalloys.

【0022】本発明における加熱は、処理剤中に被処理
物を埋設し、非酸化性雰囲気、例えばH2 またはAr
雰囲気中、700℃ないし1100℃で1ないし20時
間拡散処理を行えばよい。
Heating in the present invention involves embedding the object to be processed in a processing agent and placing it in a non-oxidizing atmosphere, such as H2 or Ar.
Diffusion treatment may be performed in an atmosphere at 700° C. to 1100° C. for 1 to 20 hours.

【0023】次に実施例により本発明を更に詳しく説明
する。実施例において焼結防止粉末にはアルミナを用い
た。またパーセントは重量%を示す。
Next, the present invention will be explained in more detail with reference to Examples. In the examples, alumina was used as the sintering prevention powder. Further, percentages indicate weight %.

【0024】[0024]

【実施例】(実施例1)本発明の粉末剤構成成分である
アルミニウム粉末、クロム粉末、1%の塩化アンモニウ
ム及び残部アルミナの混合処理剤においてアルミニウム
粉末の全粉末中の重量%として2.5%、5%、10%
、15%、20%、30%とし、それぞれのアルミニウ
ム粉末に対してクロム粉末含有量をクロム粉末重量/ア
ルミニウム粉末重量の比率(以下Cr/Al比と記す)
にて0.5、1、2、3と変化させて添加し、混合後処
理剤とした。
[Example] (Example 1) In the mixed treatment agent of aluminum powder, chromium powder, 1% ammonium chloride, and the balance alumina, which are the powder components of the present invention, the weight % of the aluminum powder in the total powder is 2.5%. %, 5%, 10%
, 15%, 20%, and 30%, and the chromium powder content for each aluminum powder is the ratio of chromium powder weight/aluminum powder weight (hereinafter referred to as Cr/Al ratio).
The mixture was added in varying amounts of 0.5, 1, 2, and 3 to form a post-mixing treatment agent.

【0025】供試材としては、幅20mm長さ20mm
厚さ3mmのJIS規格NCF800H材を用い表面を
エメリー紙#1500にて研摩後バフ研磨仕上げしJI
S表面粗さ試験方法、最大高さ(Rmax)にて0.5
μmに調整した試料を用いた(以下表面粗さとはJIS
規格最大高さを意味する)。
[0025] The sample material has a width of 20 mm and a length of 20 mm.
Using JIS standard NCF800H material with a thickness of 3 mm, the surface is polished with #1500 emery paper and then buffed to finish JI.
S surface roughness test method, 0.5 at maximum height (Rmax)
A sample adjusted to μm was used (hereinafter referred to as surface roughness according to JIS
(means the standard maximum height).

【0026】アルミニウム拡散被覆処理は、軟鋼製容器
に上記各処理剤を入れ、粉末剤中に供試材を埋め込み、
Arガス雰囲気中にて900℃、10時間加熱した。前
述のアルミニウム拡散被覆処理を施した供試材について
表面粗さを測定した。この結果から図1に示した各表面
粗さ限界を得た。
[0026] In the aluminum diffusion coating treatment, the above treatment agents are placed in a mild steel container, the test material is embedded in the powder agent, and
It was heated at 900° C. for 10 hours in an Ar gas atmosphere. The surface roughness of the sample material subjected to the aluminum diffusion coating treatment described above was measured. From this result, each surface roughness limit shown in FIG. 1 was obtained.

【0027】図1の曲線1は、安定なアルミニウム拡散
被覆の限界を示し、曲線2は表面粗さ3μm以下の範囲
を、曲線3は表面粗さ6μmの限界を示し、曲線4は表
面粗さ12μmの限界を示している。
Curve 1 in FIG. 1 shows the limit of stable aluminum diffusion coating, curve 2 shows the range of surface roughness of 3 μm or less, curve 3 shows the limit of surface roughness of 6 μm, and curve 4 shows the limit of surface roughness of 6 μm. It shows a limit of 12 μm.

【0028】図1及び表面・断面アルミナイズ層の観察
結果より、以下の知見が得られた。
The following findings were obtained from FIG. 1 and the observation results of the surface and cross-section of the aluminized layer.

【0029】1)アルミニウム粉末量が15%を超える
場合には、粉末剤中のアルミニウム粒の供試材表面への
溶融付着が激しくなり表面粗さが大きくなる。
1) If the amount of aluminum powder exceeds 15%, the aluminum grains in the powder will melt and adhere to the surface of the specimen material, resulting in increased surface roughness.

【0030】2)Cr/Al比1未満でも1)項と同様
粉末剤中のアルミニウム粒の供試材表面への溶融付着が
激しくなり表面粗さが大きくなる。
2) Even if the Cr/Al ratio is less than 1, the aluminum grains in the powder agent will strongly melt and adhere to the surface of the specimen, resulting in increased surface roughness, similar to the case in item 1).

【0031】3)Cr/Al比が2を超える場合には、
クロム粉末の供試材表面への焼結が激しくなり表面粗さ
を大きくする。
3) When the Cr/Al ratio exceeds 2,
Sintering of the chromium powder on the surface of the test material becomes intense, increasing the surface roughness.

【0032】4)Cr/Al比0.5以上で粉末剤中の
アルミニウム粉末量5%未満では均一な厚さのアルミナ
イド層が形成されない。
4) If the Cr/Al ratio is 0.5 or more and the amount of aluminum powder in the powder is less than 5%, an aluminide layer with a uniform thickness cannot be formed.

【0033】上記1)から4)の知見より、表面平滑で
美麗なアルミナイド層を形成させるアルミニウム拡散被
覆処理粉末剤の必要組成は、アルミニウム粉末量5〜1
5%、クロム粉末含有量はCr/Al比にて1〜2の範
囲である。
Based on the findings from 1) to 4) above, the required composition of the aluminum diffusion coating powder to form a beautiful aluminide layer with a smooth surface is that the amount of aluminum powder is 5 to 1.
5%, and the chromium powder content ranges from 1 to 2 in Cr/Al ratio.

【0034】表1に本発明法である上記最適範囲の処理
剤にて作成したアルミナイド層及び比較例として従来法
により作成したアルミナイド層の性質を比較した。表中
のアルミナイド層の濃度は、EPMAによる最表面アル
ミニウム濃度を示している。
Table 1 compares the properties of an aluminide layer prepared using the treatment agent in the above-mentioned optimum range according to the method of the present invention and an aluminide layer prepared according to the conventional method as a comparative example. The concentration of the aluminide layer in the table indicates the outermost surface aluminum concentration determined by EPMA.

【0035】[0035]

【表1】[Table 1]

【0036】表1に示すごとく本発明例では同一加熱条
件において比較例に比べアルミナイド層厚さは若干薄く
なるが、アルミナイド層表面Al濃度は同一であり、表
面粗さは著しい改善が認められた。
As shown in Table 1, the aluminide layer thickness of the inventive example was slightly thinner than that of the comparative example under the same heating conditions, but the Al concentration on the surface of the aluminide layer was the same, and a significant improvement in surface roughness was observed. .

【0037】(実施例2)幅25mm、長さ25mm、
厚さ3mmのJIS規格NCF600  Ni基超合金
の試料表面をエメリー紙#1500にて研磨後バフ研磨
仕上げし表面粗さ0.5μmに調整した試料を供試材と
し、表2に示す本発明の粉末組成の処理剤及び比較例処
理剤を用いアルミニウム拡散被覆を行った。アルミニウ
ム拡散被覆処理は、軟鋼製容器に上記各処理剤を入れ、
処理剤中に供試材を埋め込み、Arガス雰囲気中にて9
50℃、10時間加熱した。
(Example 2) Width 25 mm, length 25 mm,
The sample surface of a JIS standard NCF600 Ni-based superalloy with a thickness of 3 mm was polished with #1500 emery paper and then buffed to a surface roughness of 0.5 μm. Aluminum diffusion coating was performed using a powder composition treatment agent and a comparative example treatment agent. For aluminum diffusion coating treatment, put each of the above treatment agents into a mild steel container,
The test material was embedded in the treatment agent and heated at 9°C in an Ar gas atmosphere.
It was heated at 50°C for 10 hours.

【0038】表2に実施例2の処理剤にて作成したアル
ミナイド層及び比較例として従来法により作成したアル
ミナイド層の性質を比較した。表2中のアルミナイド層
濃度は、EPMAによる最表面アルミニウム濃度を示し
ている。
Table 2 compares the properties of an aluminide layer prepared using the treatment agent of Example 2 and an aluminide layer prepared by a conventional method as a comparative example. The aluminide layer concentration in Table 2 indicates the outermost surface aluminum concentration determined by EPMA.

【0039】[0039]

【表2】[Table 2]

【0040】表2に示すごとく本発明例では、同一加熱
条件において比較例に比べアルミナイド層の表面Al濃
度は同一であり、表面粗さは著しい改善が認められた。
As shown in Table 2, in the inventive example, the surface Al concentration of the aluminide layer was the same as in the comparative example under the same heating conditions, and a significant improvement in surface roughness was observed.

【0041】図外であるが、実施例2によるアルミナイ
ド層表面性状を示す走査型電子顕微鏡(SEM)による
表面写真(×100)及び表2中の比較例によるアルミ
ナイド層表面性状を示すSEMによる表面写真(×10
0)を比較すると、処理剤中のAl粉末の融着による顕
著な盛り上がりが比較例では認められたのに対し、実施
例2では所見されずCr粉末添加による表面状態の改善
が認められた。
Although not shown, a surface photograph (×100) taken by a scanning electron microscope (SEM) showing the surface properties of the aluminide layer according to Example 2, and a surface photograph taken by SEM showing the surface properties of the aluminide layer according to the comparative example in Table 2. Photo (×10
0), remarkable swelling due to fusion of Al powder in the treatment agent was observed in the comparative example, whereas no such swelling was observed in Example 2, and an improvement in the surface condition due to the addition of Cr powder was observed.

【0042】[0042]

【発明の効果】本発明は叙述説明より明らかなように、
アルミニウム粉末及び塩化アンモニウムを含む処理剤に
対してクロム粉末を混合することにより、アルミニウム
粉末の一部もしくは全部が、アルミニウムより高融点の
Cr−Al合金を形成し、溶融アルミニウムが被処理物
に付着することを防止する結果、表面が平滑で美麗なア
ルミナイド層を安価に形成し得る効果がある。
[Effects of the Invention] As is clear from the descriptive description, the present invention has the following advantages:
By mixing chromium powder with a processing agent containing aluminum powder and ammonium chloride, part or all of the aluminum powder forms a Cr-Al alloy with a higher melting point than aluminum, and molten aluminum adheres to the object to be treated. As a result, an aluminide layer with a smooth and beautiful surface can be formed at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】アルミニウム拡散被覆処理粉末剤中のアルミニ
ウム粉末、クロム粉末、塩化アンモニウム及びアルミナ
の合計の含有重量百分率と、アルミニウム拡散被覆処理
後の表面研磨NCF800H材の安定被覆限界及び表面
粗さ範囲を示す図である。
[Fig. 1] Total weight percentage of aluminum powder, chromium powder, ammonium chloride, and alumina in the aluminum diffusion coating powder, stable coating limit and surface roughness range of the surface-polished NCF800H material after the aluminum diffusion coating treatment. FIG.

【符号の説明】[Explanation of symbols]

1  安定なアルミニウム拡散被覆の限界を示す曲線。 2  表面粗さ3μm以下の範囲を示す曲線。 3  表面粗さ6μmの限界を示す曲線。 4  表面粗さ12μmの限界を示す曲線。 1. Curve showing the limit of stable aluminum diffusion coating. 2. Curve showing the range of surface roughness of 3 μm or less. 3. Curve showing the limit of surface roughness of 6 μm. 4. Curve showing the limit of surface roughness of 12 μm.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  5〜15重量%のアルミニウム粉末と
、アルミニウム粉末に対し重量比にて1〜2のクロム粉
末と、0.1〜5重量%の塩化アンモニウム及び残部焼
結防止粉末とからなるアルミニウム拡散被覆処理剤。
Claim 1: Consisting of 5 to 15% by weight of aluminum powder, chromium powder in a weight ratio of 1 to 2 to the aluminum powder, 0.1 to 5% by weight of ammonium chloride, and the balance being anti-sintering powder. Aluminum diffusion coating treatment agent.
【請求項2】  5〜15重量%のアルミニウム粉末と
、アルミニウム粉末に対し重量比にて1〜2のクロム粉
末と、0.1〜5重量%の塩化アンモニウム及び残部焼
結防止粉末とからなる処理剤中に金属被処理物を埋設し
非酸化性雰囲気中で加熱することを特徴とするアルミニ
ウム拡散被覆処理方法。
2. Consisting of 5 to 15% by weight of aluminum powder, chromium powder in a weight ratio of 1 to 2 to the aluminum powder, 0.1 to 5% by weight of ammonium chloride, and the balance being anti-sintering powder. An aluminum diffusion coating treatment method characterized by embedding a metal workpiece in a treatment agent and heating it in a non-oxidizing atmosphere.
JP9950091A 1991-04-03 1991-04-03 Aluminum diffusion coating agent and treatment using the same Pending JPH04308072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9950091A JPH04308072A (en) 1991-04-03 1991-04-03 Aluminum diffusion coating agent and treatment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9950091A JPH04308072A (en) 1991-04-03 1991-04-03 Aluminum diffusion coating agent and treatment using the same

Publications (1)

Publication Number Publication Date
JPH04308072A true JPH04308072A (en) 1992-10-30

Family

ID=14249002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9950091A Pending JPH04308072A (en) 1991-04-03 1991-04-03 Aluminum diffusion coating agent and treatment using the same

Country Status (1)

Country Link
JP (1) JPH04308072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028566A (en) * 2004-07-14 2006-02-02 Mitsubishi Kakoki Kaisha Ltd Components for hydrocarbon reformers
CN113699436A (en) * 2021-08-26 2021-11-26 浙江振兴石化机械有限公司 Processing technology of wear-resistant and corrosion-resistant ball

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535255A (en) * 1976-07-05 1978-01-18 Hitachi Ltd Mold for molding resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535255A (en) * 1976-07-05 1978-01-18 Hitachi Ltd Mold for molding resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028566A (en) * 2004-07-14 2006-02-02 Mitsubishi Kakoki Kaisha Ltd Components for hydrocarbon reformers
CN113699436A (en) * 2021-08-26 2021-11-26 浙江振兴石化机械有限公司 Processing technology of wear-resistant and corrosion-resistant ball

Similar Documents

Publication Publication Date Title
JP4805523B2 (en) Coating system for high temperature stainless steel
US5217757A (en) Method for applying aluminide coatings to superalloys
US6475647B1 (en) Protective coating system for high temperature stainless steel
JP2001020052A (en) Transition metal boride coating
JPH02122049A (en) Surface-coated tungsten carbide-based cemented carbide cutting tool and its manufacturing method
Taghipour et al. High temperature oxidation behavior of aluminide coatings applied on HP-MA heat resistant steel using a gas-phase aluminizing process
JP2528336B2 (en) Method for forming high yttrium content diffusion aluminide coatings
JPS60251274A (en) Nitride coating method
US5226977A (en) Method of hardfacing an engine valve of a titanium material
US4150178A (en) Aluminum diffusion layer forming method
JP2592571B2 (en) Heat-resistant stainless steel coated with aluminum diffusion coating and coating method thereof
EP0298309A1 (en) Metallic coating of improved life
CA2612881C (en) Coating system for high temperature stainless steel
US4561892A (en) Silicon-rich alloy coatings
EP0336612B1 (en) Oxidation resistant alloy
EP2392685A1 (en) Method for manufacturing an oxidation resistant component and corresponding oxidation resistant component
JPH04308072A (en) Aluminum diffusion coating agent and treatment using the same
US4929473A (en) Corrosion resistance of low carbon steels in a vanadium, sulfur and sodium environment at high temperatures
US3647517A (en) Impact resistant coatings for cobalt-base superalloys and the like
EP0605175A2 (en) A coated article and a method of coating said article
Bahadur Structural studies of calorized coatings on mild steel
EP2927345B1 (en) Coated articles and method of making the same.
US3941569A (en) Method for making ferrous metal having improved resistances to corrosion at elevated temperatures and to oxidization
US5015535A (en) Article formed from a low carbon iron alloy having a corrosion resistant diffusion coating thereon
Zagula-Yavorska Aluminizing as a method of improvement of Mar-M247 alloy lifetime