[go: up one dir, main page]

JPH04307918A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH04307918A
JPH04307918A JP7286991A JP7286991A JPH04307918A JP H04307918 A JPH04307918 A JP H04307918A JP 7286991 A JP7286991 A JP 7286991A JP 7286991 A JP7286991 A JP 7286991A JP H04307918 A JPH04307918 A JP H04307918A
Authority
JP
Japan
Prior art keywords
dielectric film
valve metal
conductive
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7286991A
Other languages
Japanese (ja)
Other versions
JP2924253B2 (en
Inventor
Yasuo Kudo
康夫 工藤
Masao Fukuyama
正雄 福山
Toshikuni Kojima
小島 利邦
Satonari Nanai
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7286991A priority Critical patent/JP2924253B2/en
Publication of JPH04307918A publication Critical patent/JPH04307918A/en
Application granted granted Critical
Publication of JP2924253B2 publication Critical patent/JP2924253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To provide a manufacturing method to get a capacitor excellent in frequency characteristics, temperature characteristics, etc., by forming a conductive base layer on the surface of the valve metal which has a dielectric film where a dielectric nonformation part is provided at one part of the surface or by such a like method thereby forming an electrolytically polymerized high polymer film surely and easily on the surface of the valve metal being insulated by a dielectric film. CONSTITUTION:Using a valve metal which has a dielectric film where a dielectric film nonformation part is provided at one part of the surface, a conductive base layer is made on the surface of the valve metal. Next, with the dielectric film nonformation part provided at one part as the starting point of polymerization, a conductive electrically polymerized polymer film is made through the conductive base layer, and then the section which includes the starting part of polymerization is removed. For example, the shape of the valve metal is made the one which has at least one place of projection 2, and a dielectric film nonformation part is provided inside the projection 2. Moreover, the conductive base layer is made a manganese oxide layer, and the conductive electrolytically polymerized polymer is one which includes a pyrrole ring or a thiophene ring as a repeating unit.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、コンデンサ特性とりわ
け周波数特性ならびに高温・高湿下における信頼性特性
の優れた固体電解コンデンサ、とりわけ固体電解質とし
て導電性高分子を用いる固体電解コンデンサの製造方法
に関するものである。
[Field of Industrial Application] The present invention relates to a solid electrolytic capacitor with excellent capacitor characteristics, particularly frequency characteristics, and reliability characteristics under high temperature and high humidity conditions, and more particularly to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte. It is something.

【0002】0002

【従来の技術】近年、電気機器のデジタル化に伴って、
コンデンサも小型大容量で高周波領域でのインピーダン
スの低いものが要求されている。従来、高周波領域で使
用されるコンデンサにはプラスチックコンデンサ、マイ
カコンデンサ、積層セラミックコンデンサがあるが、こ
れらのコンデンサでは形状が大きくなり大容量化が難し
い。
[Background Art] In recent years, with the digitalization of electrical equipment,
Capacitors are also required to be small, large in capacity, and have low impedance in the high frequency range. Conventionally, capacitors used in the high frequency range include plastic capacitors, mica capacitors, and multilayer ceramic capacitors, but these capacitors have large shapes and are difficult to increase in capacity.

【0003】一方、大容量コンデンサとしてはアルミニ
ウム乾式電解コンデンサあるいはアルミニウムまたはタ
ンタル固体電解コンデンサ等の電解コンデンサがある。 これらのコンデンサでは誘電体となる酸化皮膜は極めて
薄いために大容量が実現できるのであるが、一方酸化皮
膜の損傷が起こり易いためにそれを修復するための電解
質を陰極との間に設ける必要がある。
On the other hand, examples of large capacity capacitors include electrolytic capacitors such as aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. In these capacitors, the oxide film that serves as the dielectric material is extremely thin, making it possible to achieve large capacitance, but the oxide film is easily damaged, so it is necessary to provide an electrolyte between the cathode and the cathode to repair it. be.

【0004】アルミニウム乾式コンデンサでは、エッチ
ングを施した陽、陰極アルミニウム箔をセパレータを介
して巻取り、液状の電解質をセパレータに含浸して用い
ている。この液状電解質はイオン伝導性で比抵抗が大き
いため、損失が大きくインピーダンスの周波数特性、温
度特性が著しく劣る、さらに加えて液漏れ、蒸発等が避
けられず、時間経過と共に容量の減少及び損失の増加が
起こるといった問題を抱えていた。
[0004] In an aluminum dry capacitor, etched anode and cathode aluminum foils are wound up with a separator in between, and the separator is impregnated with a liquid electrolyte. This liquid electrolyte has ionic conductivity and high specific resistance, so it has large losses and extremely poor impedance frequency characteristics and temperature characteristics.Furthermore, leakage and evaporation are unavoidable, resulting in a decrease in capacity and loss over time. There was a problem with the increase.

【0005】またタンタル固体電解コンデンサでは二酸
化マンガンを電解質として用いているため、温度特性お
よび容量、損失等の経時変化の問題は改善されるが、二
酸化マンガンの比抵抗が比較的高いため損失、インピー
ダンスの周波数特性が積層セラミックコンデンサあるい
はフィルムコンデンサと比較して劣っている。
Furthermore, tantalum solid electrolytic capacitors use manganese dioxide as an electrolyte, which improves the problems of temperature characteristics, capacitance, loss, and other changes over time; however, since manganese dioxide has a relatively high resistivity, losses and impedance The frequency characteristics of capacitors are inferior to those of multilayer ceramic capacitors or film capacitors.

【0006】さらに近年、ピロール、チオフェンなどの
複素環式のモノマーを支持電解質を用いて電解酸化重合
することにより、支持電解質のアニオンをドーパントと
して含む高導電性の高分子を電解質として用いる周波数
特性及び温度特性に優れた固体電解コンデンサが提案さ
れている(特開昭60−37114号公報、特開昭60
−244017号公報)。
Furthermore, in recent years, electrolytic oxidation polymerization of heterocyclic monomers such as pyrrole and thiophene using a supporting electrolyte has improved the frequency characteristics and frequency characteristics of a highly conductive polymer containing the anion of the supporting electrolyte as a dopant. Solid electrolytic capacitors with excellent temperature characteristics have been proposed (JP-A-60-37114, JP-A-60
-244017).

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記の従
来の技術では、コンデンサの陽極となる弁金属表面が誘
電体皮膜で覆われているため、そのままの状態では電解
質となる電解重合高分子の形成の開始点を、不確実な頻
度で発生する誘電体皮膜の欠陥部に頼るしか方法がなか
った。またその方法では、その開始点から絶縁化されて
いるコンデンサ陽極表面全面に電解重合高分子膜を確実
に成長させることは極めて困難であった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, since the surface of the valve metal, which becomes the anode of the capacitor, is covered with a dielectric film, it is difficult to form electrolytically polymerized polymers, which become the electrolyte, in that state. The only way to find a starting point was to rely on defects in the dielectric film that occur with uncertain frequency. Furthermore, with this method, it is extremely difficult to reliably grow an electrolytically polymerized polymer film over the entire surface of the capacitor anode, which is insulated from its starting point.

【0008】さらに、電解質となる導電性高分子皮膜形
成後、弁金属表面に誘電体皮膜を陽極化成により形成す
ることも考えられるが、この方法では導電性高分子皮膜
の劣化あるいはその剥離といったような問題が生じる。 上記にような理由により、電解重合導電性高分子を電解
質として用いた周波数特性及び温度特性の優れた固体電
解コンデンサを安定して得ることが困難であるという課
題を有していた。
Furthermore, it may be possible to form a dielectric film on the valve metal surface by anodization after forming the conductive polymer film that will serve as the electrolyte, but this method may cause problems such as deterioration or peeling of the conductive polymer film. A problem arises. For the reasons mentioned above, it has been difficult to stably obtain a solid electrolytic capacitor with excellent frequency characteristics and temperature characteristics using an electrolytically polymerized conductive polymer as an electrolyte.

【0009】本発明は上記従来技術の課題を解決するも
ので、誘電体皮膜皮膜により絶縁化された弁金属表面に
電解重合高分子皮膜を確実かつ容易に形成し、もって周
波数特性及び温度特性等の優れた固体電解コンデンサを
実現する固体電解コンデンサの製造方法の提供を目的と
する。
The present invention solves the above-mentioned problems of the prior art by reliably and easily forming an electropolymerized polymer film on the surface of a valve metal insulated by a dielectric film, thereby improving frequency characteristics, temperature characteristics, etc. The purpose of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that realizes an excellent solid electrolytic capacitor.

【0010】0010

【課題を解決するための手段】この目的を達成するため
に本発明は、表面の一部に誘電体皮膜無形成部を設けた
誘電体皮膜を有する弁金属を用い、前記弁金属表面に導
電性下地層を形成し、前記一部に設けられた誘電体皮膜
無形成部を重合開始点として前記導電性下地層を介して
導電性電解重合高分子層を誘電体皮膜を有する弁金属表
面に形成し、しかる後前記重合開始点を含む部分を除去
することにより、固体電解コンデンサを得る。
[Means for Solving the Problems] In order to achieve this object, the present invention uses a valve metal having a dielectric film in which a part of the surface is not formed with the dielectric film, and provides a conductive surface on the surface of the valve metal. A conductive electropolymerized polymer layer is formed on the surface of the valve metal having a dielectric film through the conductive base layer, using the portion without a dielectric film formed on the part as a polymerization initiation point. A solid electrolytic capacitor is obtained by forming and then removing the portion containing the polymerization initiation point.

【0011】重合開始点となる誘電体皮膜無形成部はど
の部分に設けてもよいが、好適には少なくとも一箇所の
突起部を有する形状の弁金属を用い、その突起部内に誘
電体皮膜無形成部を設けることが、重合開始点を除去す
る時の利便性の観点から望まれる。重合開始点は少なく
とも一箇所あればよく、重合膜被覆時間を短縮するため
複数箇所に設けることもできる。突起部に関してもまた
同様である。誘電体皮膜無形成部は、化成時に当該部分
を被覆しておいて形成する他全面に誘電体皮膜形成後、
適当な手段でそれを除去することにより形成することも
できる。
[0011] Although the part without a dielectric film, which serves as a polymerization initiation point, may be provided at any part, it is preferable to use a valve metal having a shape having at least one protrusion, and to provide a part without a dielectric film in the protrusion. Providing a forming part is desirable from the viewpoint of convenience in removing the polymerization initiation site. The polymerization initiation point only needs to be at least one location, and can be provided at multiple locations in order to shorten the polymer film coating time. The same applies to the protrusions. A part without a dielectric film is formed by covering the part during chemical formation, or after forming a dielectric film on the entire surface.
It can also be formed by removing it by suitable means.

【0012】弁金属として、アルミニウム、タンタル、
ニオブ、チタン等が使用できるが、好ましくはアルミニ
ウムもしくはタンタルが用いられる。
[0012] As the valve metal, aluminum, tantalum,
Niobium, titanium, etc. can be used, but aluminum or tantalum is preferably used.

【0013】導電性の下地層としては酸化マンガンが望
ましく、その形成はどの様な方法でもよいが、好適には
二価イオンのマンガンを含む塩を溶解した溶液に上記誘
電体皮膜を形成した弁金属を含浸後、熱分解により形成
される。マンガン塩は溶媒に可溶のものでものであれば
、どのようなものでも使用でき、そのようなマンガン塩
の一例としては、硝酸マンガン、酢酸マンガン、オクチ
ル酸マンガン、ナフテン酸マンガン等が挙げられる。
Manganese oxide is preferable as the conductive underlayer, and it can be formed by any method, but preferably the dielectric film is formed in a solution containing a divalent ion of manganese. It is formed by pyrolysis after impregnation with metal. Any manganese salt can be used as long as it is soluble in a solvent, and examples of such manganese salts include manganese nitrate, manganese acetate, manganese octylate, manganese naphthenate, and the like.

【0014】電解重合高分子は、所望の電気伝導度を有
するものであればどのようなものでも使用できるが、ピ
ロール若しくはその誘導体モノマーまたはチオフェン若
しくはその誘導体モノマーから選ばれる少なくとも一種
を繰り返し単位として含むものが望まれる。上述のよう
な電解重合高分子は上述のようなモノマーと支持電解質
を少なくとも含む溶液中で陽・陰極を設けて電圧印加す
ることにより、容易に得られる。
[0014] The electrolytically polymerized polymer can be of any type as long as it has a desired electrical conductivity, but it contains at least one type selected from pyrrole or its derivative monomer or thiophene or its derivative monomer as a repeating unit. Something is desired. The electrolytically polymerized polymer as described above can be easily obtained by providing an anode and a cathode in a solution containing at least the monomer and supporting electrolyte as described above and applying a voltage.

【0015】支持電解質としては、重合可能でアニオン
が所望の電気伝導度を与えるドーパントとなるものであ
ればどのようなものでも使用できるが、好ましくはスル
フォネート、より好適にはアリルスルフォネートが使用
される。なお、一分子当りスルフォン基は少なくとも一
個含まれていればよく、またスルフォン基の他、アルキ
ル基等他の置換基を有するものも使用できる。
As the supporting electrolyte, any material can be used as long as it is polymerizable and the anion acts as a dopant that provides the desired electrical conductivity, but sulfonate is preferably used, and allyl sulfonate is more preferably used. be done. It is sufficient that at least one sulfone group is contained per molecule, and in addition to the sulfone group, those having other substituents such as an alkyl group can also be used.

【0016】重合開始点の除去は、その断面において陽
極弁金属層と導電性高分子電解質層が誘電体層の間隙を
越えて接触しないような方法であれば、どのような方法
を用いてもよく、カッターを用いた切断による他、例え
ば折裂きのような手段を用いることもできる。
Any method can be used to remove the polymerization initiation point as long as the anode valve metal layer and the conductive polymer electrolyte layer do not come into contact across the gap between the dielectric layers in the cross section. In addition to cutting with a cutter, other methods such as tearing may also be used.

【0017】[0017]

【作用】本発明の製造方法、は表面の一部に誘電体皮膜
無形成部を設けた誘電体皮膜を有する弁金属を用い、前
記弁金属表面に導電性下地層を形成することにより、一
部に設けられた誘電体皮膜無形成部において弁金属生地
と導電性下地層とが電気的導通部分を形成しているため
、弁金属を陽極としてその導通部分から電解重合高分子
を表面全体に成長被覆させることができる。その後重合
開始点となった誘電体皮膜無形成部を除去しているため
、漏れ電流の小さい固体電解コンデンサが得られる。
[Function] The manufacturing method of the present invention uses a valve metal having a dielectric film in which a part of the surface is not formed with a dielectric film, and forms a conductive base layer on the surface of the valve metal. Since the valve metal material and the conductive base layer form an electrically conductive part in the part without a dielectric film formed on the part, the electropolymerized polymer is applied to the entire surface from the conductive part using the valve metal as an anode. It can be grown and coated. Since the portion without the dielectric film, which was the starting point of polymerization, is then removed, a solid electrolytic capacitor with low leakage current can be obtained.

【0018】なお、誘電体皮膜無形成部の除去は、電解
重合膜形成後任意の段階で行うことができる。例えば誘
電体皮膜無形成部の除去を電解重合高分子形成直後に行
うことができるが、この場合はコロイダルグラファイト
あるいは銀ペイント層等の陰極構成材料はその除去断面
を除いて設置する必要があり、また例えば上記のような
陰極構成配置後において除去した場合はそのままの状態
で適当な手段で外装封止してコンデンサを完成すること
ができる。
[0018] Note that the portion without the dielectric film can be removed at any stage after the electrolytically polymerized film is formed. For example, the portion without a dielectric film can be removed immediately after forming the electropolymerized polymer, but in this case, the cathode constituent material such as colloidal graphite or silver paint layer must be installed excluding the removed cross section. For example, if it is removed after arranging the cathode structure as described above, the capacitor can be completed by sealing the exterior with an appropriate means in that state.

【0019】[0019]

【実施例】(実施例1)以下、本発明の第1の実施例に
ついて、図面を参照しながら説明する。
Embodiments (Embodiment 1) A first embodiment of the present invention will be described below with reference to the drawings.

【0020】図1は本発明の一実施例における固体電解
コンデンサのコンデンサ電極箔部分の平面図である。図
1において、1はコンデンサ電極箔本体部分、2はコン
デンサ電極箔突起部、3は誘電体皮膜を除去するために
設けた貫通孔、4は陽極リードである。
FIG. 1 is a plan view of a capacitor electrode foil portion of a solid electrolytic capacitor according to an embodiment of the present invention. In FIG. 1, 1 is a capacitor electrode foil main body portion, 2 is a capacitor electrode foil protrusion, 3 is a through hole provided for removing a dielectric film, and 4 is an anode lead.

【0021】図2は本発明の一実施例における固体電解
コンデンサの製造方法である電解重合の一部断面模式図
である。図2において、6はコンデンサ電極箔、7は電
解重合用陽極、8は電解重合用陰極、9は重合用電解液
、10は電解重合槽である。
FIG. 2 is a schematic partial cross-sectional view of electrolytic polymerization, which is a method of manufacturing a solid electrolytic capacitor in one embodiment of the present invention. In FIG. 2, 6 is a capacitor electrode foil, 7 is an anode for electrolytic polymerization, 8 is a cathode for electrolytic polymerization, 9 is an electrolytic solution for polymerization, and 10 is an electrolytic polymerization tank.

【0022】図1に示すような、幅1mm長さ1.5m
mの突起部2を有する本体部分寸法4×6mmのアルミ
ニウムエッチド箔からなるコンデンサ電極箔本体部分1
にアルミニウム陽極リード4をカシメにより取り付け、
表面に、3%アジピン酸アンモニウム水溶液を用い約7
0℃で50V印加して陽極酸化により誘電体被膜を形成
させた後、突起部2に0.5mmの貫通孔3を設けて誘
電体皮膜を除去した。その後硝酸マンガン30%水溶液
に浸しさらに250℃で10分加熱し熱分解マンガン酸
化物を表面に付着させてコンデンサ電極箔6を作製した
[0022] As shown in Fig. 1, the width is 1 mm and the length is 1.5 m.
Capacitor electrode foil body part 1 made of aluminum etched foil with body part dimensions of 4 x 6 mm and having projections 2 of m.
Attach the aluminum anode lead 4 to the
The surface was coated with a 3% ammonium adipate aqueous solution for approx.
After a dielectric film was formed by anodic oxidation by applying 50 V at 0° C., a 0.5 mm through hole 3 was provided in the protrusion 2 and the dielectric film was removed. Thereafter, it was immersed in a 30% manganese nitrate aqueous solution and further heated at 250° C. for 10 minutes to adhere pyrolyzed manganese oxide to the surface, thereby producing a capacitor electrode foil 6.

【0023】このコンデンサ電極箔6に電解重合用陽極
7を接続し、ピロールモノマー(0.2M)、nーブチ
ルナフタレンスルフォン酸ナトリウム(0.05M)、
水からなる重合用電解液9に浸し、上記陽極7と離隔し
て設けた電解重合用陰極8間に3Vの電圧を印加したと
ころ45分後ポリピロールからなる電解重合膜(記載せ
ず)が全面に形成された。この電解重合膜で被覆された
アルミニウム電極箔を水を用いて洗浄し乾燥後、電解重
合膜上にコロイダルグラファイトと銀ペイントを塗布し
た後、突起部2を折裂き除去してさらに陰極リードを取
り付け、エポキシ樹脂で外装封止してコンデンサを10
個完成させた。
An anode 7 for electrolytic polymerization was connected to this capacitor electrode foil 6, and pyrrole monomer (0.2M), sodium n-butylnaphthalenesulfonate (0.05M),
When immersed in an electrolytic solution 9 for polymerization consisting of water and applying a voltage of 3V between the anode 7 and the cathode 8 for electrolytic polymerization provided apart from each other, an electrolytic polymer membrane (not shown) consisting of polypyrrole was completely covered after 45 minutes. was formed. After washing the aluminum electrode foil covered with this electrolytic polymer film with water and drying it, colloidal graphite and silver paint are applied to the electrolytic polymer film, the protrusion 2 is broken off, and a cathode lead is attached. , 10 capacitors are sealed with epoxy resin.
Completed.

【0024】かかるコンデンサについて、16.2Vで
エージングを行った後の、漏れ電流(13V2分印加時
)及び120Hzにおける容量、損失の平均値はそれぞ
れ0.055μA、4.56μF、1.1%であった。
For this capacitor, after aging at 16.2V, the leakage current (when 13V is applied for 2 minutes) and the average values of capacitance and loss at 120Hz are 0.055 μA, 4.56 μF, and 1.1%, respectively. there were.

【0025】比較のため、突起部に貫通孔を設けて誘電
体皮膜を除去しなかった以外実施例1と同様にしてコン
デンサの作製を試みたが、120分後においても電解重
合膜が成長せず、コンデンサを得ることはできなかった
For comparison, an attempt was made to fabricate a capacitor in the same manner as in Example 1 except that a through hole was formed in the protrusion and the dielectric film was not removed, but the electropolymerized film did not grow even after 120 minutes. However, I was unable to obtain a capacitor.

【0026】これから明らかなように、本実施例による
製造方法によれば電解重合高分子を電解質とした、漏れ
電流特性及び損失特性の極めて優れた固体電解コンデン
サを容易に得ることができるという点で優れた効果が得
られる。
As is clear from this, the manufacturing method according to the present example has the advantage that it is possible to easily obtain a solid electrolytic capacitor with extremely excellent leakage current characteristics and loss characteristics using an electrolytically polymerized polymer as an electrolyte. Excellent effects can be obtained.

【0027】以上のように本実施例によれば、表面の一
部に誘電体皮膜無形成部を設けた誘電体皮膜を有する弁
金属を用い、前記弁金属表面にマンガン酸化物からなる
導電性下地層を形成し、一部に設けられた誘電体皮膜無
形成部を重合開始点として前記マンガン酸化物層を介し
て導電性電解重合高分子層を形成し、しかる後前記重合
開始点を含む部分を除去することにより、漏れ電流特性
及び損失特性の極めて優れた固体電解コンデンサを得る
ことができる。
As described above, according to this embodiment, a valve metal having a dielectric film with a portion without a dielectric film formed on a part of the surface is used, and a conductive material made of manganese oxide is provided on the surface of the valve metal. A base layer is formed, and a conductive electrolytically polymerized polymer layer is formed via the manganese oxide layer using the portion without a dielectric film formed thereon as a polymerization initiation point, and then the conductive electrolytically polymerized polymer layer is formed including the polymerization initiation point. By removing the portion, a solid electrolytic capacitor with extremely excellent leakage current characteristics and loss characteristics can be obtained.

【0028】なお突起部はその中の一部に設けた重合開
始点から実質的に重合膜が成長できるものであれば、ど
のような形状のものでも使用できる。また実質的に重合
開始点を含む部分を除去可能であれば、必ずしも突起部
を設けず、本体部分に重合開始点を設けることもできる
Note that any shape of the protrusion can be used as long as a polymer film can substantially grow from a polymerization initiation point provided in a part of the protrusion. Further, as long as the portion substantially including the polymerization initiation point can be removed, the polymerization initiation point may be provided in the main body portion without necessarily providing the protrusion.

【0029】(実施例2)以下、本発明の第2の実施例
について説明する。
(Embodiment 2) A second embodiment of the present invention will be described below.

【0030】重合開始点を含む突起部の除去を電解重合
膜形成後に行い、その後その断面を除いてコロイダルグ
ラファイト層と銀ペイント層を順次形成した以外実施例
1と同様にしてコンデンサを10個完成させた。
Ten capacitors were completed in the same manner as in Example 1, except that the protrusions including the polymerization initiation point were removed after the electropolymerized film was formed, and then the cross section was removed and a colloidal graphite layer and a silver paint layer were sequentially formed. I let it happen.

【0031】かかるコンデンサについて16.2Vでエ
ージングを行った後の、漏れ電流(13V2分印加時)
及び120Hzにおける容量、損失の平均値はそれぞれ
0.046μA、4.51μF、1.2%であった。
Leakage current (when 13V is applied for 2 minutes) after aging the capacitor at 16.2V
The average values of capacitance and loss at 120 Hz were 0.046 μA, 4.51 μF, and 1.2%, respectively.

【0032】これから明らかなように、本実施例の製造
方法によれば、電解重合高分子を電解質とした、漏れ電
流特性及び損失特性の極めて優れた固体電解コンデンサ
を容易に得ることができるという点で優れた効果が得ら
れる。
As is clear from this, according to the manufacturing method of this example, it is possible to easily obtain a solid electrolytic capacitor with extremely excellent leakage current characteristics and loss characteristics using an electrolytically polymerized polymer as an electrolyte. Excellent effects can be obtained.

【0033】以上のように本実施例によれば、表面の一
部に誘電体皮膜無形成部を設けた誘電体皮膜を有する弁
金属を用い、前記弁金属表面にマンガン酸化物からなる
導電性下地層を形成し、一部に設けられた誘電体皮膜無
形成部を重合開始点として前記マンガン酸化物層を介し
て導電性電解重合高分子層を形成し、しかる後前記重合
開始点を含む部分を除去することにより、漏れ電流特性
及び損失特性の極めて優れた固体電解コンデンサを得る
ことができる。
As described above, according to this embodiment, a valve metal having a dielectric film with a portion without a dielectric film formed on a part of the surface is used, and a conductive material made of manganese oxide is provided on the surface of the valve metal. A base layer is formed, and a conductive electrolytically polymerized polymer layer is formed via the manganese oxide layer using the portion without a dielectric film formed thereon as a polymerization initiation point, and then the conductive electrolytically polymerized polymer layer is formed including the polymerization initiation point. By removing the portion, a solid electrolytic capacitor with extremely excellent leakage current characteristics and loss characteristics can be obtained.

【0034】(実施例3)以下、本発明の第3の実施例
について説明する。
(Embodiment 3) A third embodiment of the present invention will be described below.

【0035】アルミニウムエッジド箔に替えてエンボス
加工後、10%リン酸水溶液を用いて約90℃で陽極酸
化を行ったタンタル箔を用いた以外実施例1と同様にし
てコンデンサを10個作製した。16.2Vでエージン
グを行った後の、漏れ電流(13V2分印加時)及び1
20Hzにおける容量、損失の平均値はそれぞれ0.0
13μA、0.32μF、0.9%であった。
Ten capacitors were produced in the same manner as in Example 1, except that tantalum foil, which had been embossed and anodized at about 90° C. using a 10% phosphoric acid aqueous solution, was used in place of the aluminum edged foil. . Leakage current (when 13V is applied for 2 minutes) and 1 after aging at 16.2V
The average values of capacity and loss at 20Hz are each 0.0
It was 13 μA, 0.32 μF, and 0.9%.

【0036】比較のため、突起部に貫通孔を設けて誘電
体皮膜を除去しなかった以外実施例3と同様にしてコン
デンサの作製を試みたが、120分後においても電解重
合膜が成長せず、コンデンサをえることはできなかった
For comparison, an attempt was made to fabricate a capacitor in the same manner as in Example 3 except that a through hole was provided in the protrusion and the dielectric film was not removed, but the electrolytic polymer film did not grow even after 120 minutes. However, I was unable to purchase a capacitor.

【0037】これから明らかなように、本実施例による
製造方法によれば電解重合高分子を電解質とした、漏れ
電流特性及び損失特性の極めて優れた固体電解コンデン
サを容易に得ることができるという点で優れた効果が得
られる。
As is clear from this, the manufacturing method according to this example has the advantage that it is possible to easily obtain a solid electrolytic capacitor with extremely excellent leakage current characteristics and loss characteristics using an electrolytically polymerized polymer as an electrolyte. Excellent effects can be obtained.

【0038】以上のように本実施例によれば、表面の一
部に誘電体皮膜無形成部を設けた誘電体皮膜を形成した
弁金属を用い、前記弁金属表面にマンガン酸化物からな
る導電性下地層を形成し、一部に設けられた誘電体皮膜
無形成部を重合開始点として前記マンガン酸化物層を介
して導電性電解重合高分子層を形成し、しかる後前記重
合開始点を含む部分を除去することにより、漏れ電流特
性及び損失特性の極めて優れた固体電解コンデンサを得
ることができる。
As described above, according to this embodiment, a valve metal having a dielectric film formed on a part of the surface where no dielectric film is formed is used, and a conductive material made of manganese oxide is used on the valve metal surface. A conductive electropolymerized polymer layer is formed via the manganese oxide layer using a part of the non-dielectric film-formed part as a polymerization initiation point, and then the polymerization initiation point is formed. A solid electrolytic capacitor with extremely excellent leakage current characteristics and loss characteristics can be obtained by removing the portion containing the metal.

【0039】(実施例4)以下、本発明の第4の実施例
について説明する。
(Embodiment 4) A fourth embodiment of the present invention will be described below.

【0040】ピロールモノマーに替えてチオフェンモノ
マーを、nーブチルナフタレンスルフォン酸ナトリウム
に替えてテトラエチルアンモニウムp−トルエンスルフ
ォネートを、水に替えてアセトニトリルをそれぞれ用い
た以外実施例1と同様にしてコンデンサを作製した。1
6.2Vでエージングを行った後の、漏れ電流(13V
2分印加時)及び120Hzにおける容量、損失の平均
値はそれぞれ0.066μA、4.35μF、1.4%
であった。
A capacitor was prepared in the same manner as in Example 1 except that thiophene monomer was used instead of pyrrole monomer, tetraethylammonium p-toluenesulfonate was used instead of sodium n-butylnaphthalenesulfonate, and acetonitrile was used instead of water. was created. 1
Leakage current (13V) after aging at 6.2V
The average values of capacitance and loss at 2 minutes application) and 120 Hz are 0.066 μA, 4.35 μF, and 1.4%, respectively.
Met.

【0041】比較のため、突起部に貫通孔を設けて誘電
体皮膜を除去しなかった以外実施例4と同様にしてコン
デンサの作製を試みたが、120分後においても電解重
合膜が成長せず、コンデンサをえることはできなかった
For comparison, a capacitor was fabricated in the same manner as in Example 4 except that a through hole was formed in the protrusion and the dielectric film was not removed, but the electropolymerized film did not grow even after 120 minutes. However, I was unable to purchase a capacitor.

【0042】これから明らかなように、本実施例の製造
方法によれば電解重合高分子を電解質とした、漏れ電流
特性及び損失特性の極めて優れた固体電解コンデンサを
容易に得ることができるという点で優れた効果が得られ
る。
As is clear from this, the manufacturing method of this example is advantageous in that it is possible to easily obtain a solid electrolytic capacitor with extremely excellent leakage current characteristics and loss characteristics using an electrolytically polymerized polymer as an electrolyte. Excellent effects can be obtained.

【0043】以上のように本実施例によれば、表面の一
部に誘電体皮膜が形成されていない部分を設けて誘電体
皮膜を形成した弁金属を用い、前記弁金属表面にマンガ
ン酸化物からなる導電性下地層を形成し、一部に設けら
れた誘電体皮膜無形成部を重合開始点として前記マンガ
ン酸化物層を介して導電性電解重合高分子層を形成し、
しかる後前記重合開始点を含む部分を除去することによ
り、漏れ電流特性及び損失特性の極めて優れた固体電解
コンデンサを得ることができる。
As described above, according to this embodiment, a valve metal having a dielectric film formed thereon with a portion on the surface where no dielectric film is formed is used, and a manganese oxide is applied to the surface of the valve metal. forming a conductive base layer consisting of a conductive base layer, and forming a conductive electrolytically polymerized polymer layer via the manganese oxide layer using a portion without a dielectric film as a polymerization initiation point;
Thereafter, by removing the portion containing the polymerization initiation point, a solid electrolytic capacitor with extremely excellent leakage current characteristics and loss characteristics can be obtained.

【0044】なお上記実施例では、誘電体皮膜を全面に
形成後、貫通孔を空けることにより一部分において誘電
体皮膜を除去する場合について述べたが、表面のみ削り
取って除去してもよく、また上述のように機械的手段で
除去する他、スパッタエッチングのような物理的手段に
よって除去することもでき、また誘電体皮膜溶解等化学
的手段により除去することも可能であるり、本発明はそ
の手段に限定されるものではない。さらに誘電体皮膜形
成時、レジスト等の手段により、一部誘電体皮膜の形成
されない部分を予め設けておくこともできる。
[0044] In the above embodiment, a case has been described in which the dielectric film is formed on the entire surface and then removed in a portion by making a through hole, but it may also be removed by scraping only the surface. In addition to removal by mechanical means such as, for example, physical means such as sputter etching, or chemical means such as dielectric film dissolution, the present invention provides a method for such removal. It is not limited to. Further, when forming the dielectric film, some portions where the dielectric film is not formed can be provided in advance by means such as resist.

【0045】また上記実施例では、突起部を一箇所設け
、その中に誘電体皮膜無形成部を設ける場合についての
み述べたが、重合時間を短縮するため重合開始点とすべ
き突起部を複数個設けることもでき、本発明はその数に
限定されない。また特に箔状電極を用いた場合、特に突
起部を設けることなく、任意の場所に重合開始点となる
誘電体皮膜が形成されない部分を設けて、電解重合膜形
成後その重合開始点部分を含む本体部分の一部を除去し
てコンデンサを作製することも可能である更に上記実施
例では、電解重合用導電性下地層の酸化マンガンを硝酸
マンガンの熱分解により形成した場合についてのみ述べ
たが、酢酸マンガン、オクチル酸マンガン等他のマンガ
ン塩を用いて形成することもできる。
Further, in the above embodiment, only the case where one protrusion is provided and a portion without a dielectric film formed therein is described, but in order to shorten the polymerization time, a plurality of protrusions to be used as polymerization starting points are provided. However, the present invention is not limited to this number. In addition, especially when a foil electrode is used, a part where a dielectric film is not formed, which becomes a polymerization initiation point, is provided at an arbitrary location without providing any protrusions, and after forming an electropolymerized film, the polymerization initiation point part is included. It is also possible to produce a capacitor by removing a part of the main body part.Furthermore, in the above example, only the case where the manganese oxide of the conductive underlayer for electrolytic polymerization was formed by thermal decomposition of manganese nitrate was described. It can also be formed using other manganese salts such as manganese acetate and manganese octylate.

【0046】加えて上記実施例では、ピロールモノマー
及びチオフェンモノマーを用いて電解重合を行った場合
についてのみ述べたが、所望の電気伝導度が得られるも
のであれば、これらの誘導体を用いることができ、また
これらを必要に応じて混合して用いることもできる。
In addition, in the above example, only the case where electrolytic polymerization was carried out using pyrrole monomer and thiophene monomer was described, but derivatives of these may be used as long as the desired electrical conductivity can be obtained. Alternatively, these can be mixed and used if necessary.

【0047】[0047]

【発明の効果】以上のように本発明の製造方法は、表面
の一部に誘電体皮膜無形成部を設けた誘電体皮膜を有す
る弁金属を用い、前記弁金属表面に導電性下地層を形成
し、一部に設けられた誘電体皮膜無形成部を重合開始点
として前記導電性下地層を介して導電性電解重合高分子
層を形成し、しかる後前記重合開始点を含む部分を除去
するものであり、かかる方法により導電性電解重合高分
子を電解質として用いた、漏れ電流特性及び損失特性の
優れた固体電解コンデンサを実現できるという利点を奏
する。
As described above, the manufacturing method of the present invention uses a valve metal having a dielectric film in which a part of the surface is not formed with a dielectric film, and forms a conductive base layer on the surface of the valve metal. A conductive electrolytically polymerized polymer layer is formed through the conductive underlayer using the portion without a dielectric film formed thereon as a polymerization initiation point, and then the portion including the polymerization initiation point is removed. This method has the advantage that it is possible to realize a solid electrolytic capacitor with excellent leakage current characteristics and loss characteristics using a conductive electrolytically polymerized polymer as an electrolyte.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の固体電解コンデンサの製造方法の一実
施例におけるにコンデンサ電極部分の平面図
[Fig. 1] A plan view of a capacitor electrode portion in an embodiment of the method for manufacturing a solid electrolytic capacitor of the present invention.

【図2】本
発明の固体電解コンデンサの製造方法の一実施例におけ
る電解重合法を示す一部断面模式図
[Fig. 2] A partial cross-sectional schematic diagram showing an electrolytic polymerization method in one embodiment of the method for producing a solid electrolytic capacitor of the present invention.

【符号の説明】[Explanation of symbols]

1  コンデンサ電極箔本体部分 2  コンデンサ電極箔突起部 3  貫通孔 4  陽極リード 6  コンデンサ電極箔 7  電解重合用陽極 8  電解重合用陰極 9  重合用電解液 10  電解重合槽 1 Capacitor electrode foil body part 2 Capacitor electrode foil protrusion 3 Through hole 4 Anode lead 6 Capacitor electrode foil 7 Anode for electrolytic polymerization 8 Cathode for electrolytic polymerization 9 Electrolyte for polymerization 10 Electrolytic polymerization tank

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】表面の一部に誘電体皮膜無形成部を設けた
誘電体皮膜を有する弁金属を用い、前記弁金属表面に導
電性下地層を形成し、一部に設けられた誘電体皮膜無形
成部を重合開始点として前記導電性下地層を介して導電
性電解重合高分子層を形成し、しかる後前記重合開始点
を含む部分を除去する固体電解コンデンサの製造方法。
[Claim 1] A valve metal having a dielectric film with a portion without the dielectric film formed on a part of the surface, a conductive base layer being formed on the valve metal surface, and a dielectric film provided on a part of the valve metal. A method for manufacturing a solid electrolytic capacitor, comprising forming a conductive electrolytically polymerized polymer layer through the conductive underlayer using the film-free portion as a polymerization initiation point, and then removing the portion containing the polymerization initiation point.
【請求項2】弁金属形状が少なくとも一箇所の突起部を
有するものであり、前記突起部内に誘電体皮膜無形成部
を設けた請求項1記載の固体電解コンデンサの製造方法
2. The method of manufacturing a solid electrolytic capacitor according to claim 1, wherein the valve metal shape has at least one protrusion, and a portion without a dielectric film is provided within the protrusion.
【請求項3】弁金属がアルミニウムまたはタンタルから
選ばれる一種である請求項1または2記載の固体電解コ
ンデンサの製造方法。
3. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the valve metal is one selected from aluminum and tantalum.
【請求項4】導電性下地層がマンガン酸化物層である請
求項1から3のいずれかに記載の固体電解コンデンサの
製造方法。
4. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the conductive underlayer is a manganese oxide layer.
【請求項5】マンガン酸化物層が熱分解により形成され
たものである請求項4記載の固体電解コンデンサの製造
方法。
5. The method for manufacturing a solid electrolytic capacitor according to claim 4, wherein the manganese oxide layer is formed by thermal decomposition.
【請求項6】導電性電解重合高分子がピロール環あるい
はチオフェン環を繰り返し単位として含むものである請
求項1から5のいずれかに記載の固体電解コンデンサの
製造方法。
6. The method for producing a solid electrolytic capacitor according to claim 1, wherein the conductive electrolytically polymerized polymer contains a pyrrole ring or a thiophene ring as a repeating unit.
JP7286991A 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2924253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7286991A JP2924253B2 (en) 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7286991A JP2924253B2 (en) 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH04307918A true JPH04307918A (en) 1992-10-30
JP2924253B2 JP2924253B2 (en) 1999-07-26

Family

ID=13501760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7286991A Expired - Fee Related JP2924253B2 (en) 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2924253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111319A1 (en) * 2011-02-18 2012-08-23 パナソニック株式会社 Electrolytic capacitor and method for manufacturing same
KR102403980B1 (en) 2022-04-11 2022-05-31 김백수 supporting equipment for car repair

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111319A1 (en) * 2011-02-18 2012-08-23 パナソニック株式会社 Electrolytic capacitor and method for manufacturing same
US9287051B2 (en) 2011-02-18 2016-03-15 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for manufacturing same
JP6060381B2 (en) * 2011-02-18 2017-01-18 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
KR102403980B1 (en) 2022-04-11 2022-05-31 김백수 supporting equipment for car repair

Also Published As

Publication number Publication date
JP2924253B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
JPH04307914A (en) Manufacture of solid electrolytic capacitor
US5189770A (en) Method of making solid electrolyte capacitor
JPH06124858A (en) Capacitor and its manufacture
JP2924253B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JPH01253226A (en) Solid electrolytic capacitor and manufacture thereof
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JP3548035B2 (en) Manufacturing method of electrolytic capacitor
JPH0521295A (en) Manufacture of laminated solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0453117A (en) Solid electrolytic capacitor and its manufacture
JP2730345B2 (en) Manufacturing method of capacitor
JP3184337B2 (en) Solid electrolytic capacitors
JP3851294B2 (en) Electrolytic capacitor
JPH0550125B2 (en)
JPH0274016A (en) Solid electrolytic condenser
JPH05234826A (en) Manufacture of capacitor
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor
JPH0393218A (en) Solid-state electrolytic capacitor and its manufacture
KR20020085539A (en) Solid Electrolyte Capacitor and Method for Producing the Same
JPH04239712A (en) Manufacture of capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees