JPH0430644B2 - - Google Patents
Info
- Publication number
- JPH0430644B2 JPH0430644B2 JP58251668A JP25166883A JPH0430644B2 JP H0430644 B2 JPH0430644 B2 JP H0430644B2 JP 58251668 A JP58251668 A JP 58251668A JP 25166883 A JP25166883 A JP 25166883A JP H0430644 B2 JPH0430644 B2 JP H0430644B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- recording medium
- substrate
- magnetic recording
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 description 78
- 239000000758 substrate Substances 0.000 description 36
- 239000007789 gas Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 31
- 239000000696 magnetic material Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000010409 thin film Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000007733 ion plating Methods 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
Description
【発明の詳細な説明】
発明の背景
技術分野
信号は磁性材料の飛翔による磁気記録媒体の製
造方法に関し、詳しくは、電磁変換特性、磁気特
性および物理、化学的特性を改良した磁気記録媒
体の製造方法に関する。
従来技術
磁性層の形成法から磁気記録媒体の製造方法を
区分すると、塗布法によるものと、飛翔またはメ
ツキ法によるものに大別できる。
塗布法よるもの(以下、この方法により得られ
た磁気記録媒体を塗布型磁気記録媒体という。)
は、γ−F2O3、Fe等の強磁性粉末を適当なバイ
ンダーと混合、分散して得られる磁性塗料を非磁
性基板上に塗布し、磁場配向、乾燥、スーパーカ
レンダー等の処理を行つて磁気記録媒体としての
特性を得ている。
この塗布型磁気記録媒体は高保磁力化、記録密
度の向上、磁性層の薄膜化等を指向している。し
かし、強磁性粉末をバインダーと混合して得られ
る磁性塗料を非磁性基板上に塗布する方法では、
本質的に強磁性粉末の実質充てん率に限界があ
り、高密度化、薄膜化を目指すには困難な要因を
有している。
このような理由から、高密度化、薄膜化を図る
ために、通常は、真空蒸着、スパツタリング、イ
オンプレーテイング等の方法により磁性材料を飛
翔させて非磁性基板上に磁性材料の連続した薄膜
を形成する方法および電解あるいは化学メツキ法
により形成する方法(以下、これらの方法により
得られた磁気記録媒体を薄膜型磁気記録媒体とい
う。)が採用されている。この薄膜型磁気記録媒
体では、高密度化、薄膜化等、前記塗布型磁気記
録媒体にない特性を有した磁気記録媒体が得られ
る。
しかし、薄膜型磁気記録媒体では一般に、耐蝕
性、耐摩耗性等の物理、化学的特性、残留磁束密
度、角型比、保磁力等の磁気特性、出力レベル、
出力変動、スチル耐久性等の電磁変換特性の改良
が必要とされている。
真空蒸着、スパツタリング、イオンプレーテイ
ング等で作成される磁性薄膜の物理、化学的特
性、磁気特性および電磁変換特性は、基板表面に
入射する飛翔磁性材料の入射角度、酸化度、磁性
層形成速度、入射粒子のエネルギー等に左右され
る。
耐蝕性、耐摩耗性等の物理、化学的特性の改良
においては、酸素等の反応性ガスを用いる反応性
蒸着の技術が公知であり、また、磁気特性および
電磁変換特性の改良においては、特公昭41−
19389号記載のいわゆる斜方蒸着等の技術が公知
である。
さらに、反応性蒸着において、特開昭57−
88531号には、基板の走行方向とおおむね逆向き
の流れをもつ酸素ガスを供給することが上記諸特
性の改良に効果のあることが示されている。さら
にまた、特開昭58−45625号には、入射角規制用
のマスクを用い、該マスクの磁性材料の飛翔蒸気
流に面する側から反応性ガスを噴出させて、薄膜
を形成し、耐蝕性、耐摩耗性等の物理、化学的特
性を改善すると共に保持力の制御等の磁気特性、
電磁変換特性を磁気記録媒体の幅方向、長手方向
に均一化する技術が示されている。そして、かか
る公報では、反応性ガスの噴出口として、小孔群
が開示されている。
しかしながら、小孔群を噴出口とし採用した場
合、反応性ガスの噴出時、小孔から噴出したガス
分子流の乱れが大きく、形成された磁気記録媒体
の幅方向の磁気特性等が不均一になるのは避けら
れなかつた。これは特に、反応性ガスの噴出口を
非磁性基板の表面に近づけけて設けるほど、ガス
分子流の乱れの影響が大きくなり、磁性特性等の
不均一性が顕著になる。一方、前述した如く薄膜
型磁気記録媒体の諸特性は飛翔磁性材料の入射角
度、酸化度、反応状態等に大きく左右されること
から、反応性ガスの噴出口を非磁性基板表面にで
きるだけ近づけ、定常流でかつ所定の入射角度に
なるよう前記噴出口を設置することが必要とな
り、反応性ガスの噴出口の形状、設置条件の改良
が望まれていた。
発明の目的
本発明は上記の如き諸問題を解消するために為
されたもので、本発明の第1の目的は、耐蝕性、
耐摩耗性等の物理、化学的特性に優れた磁気記録
媒体の製造方法を提供することである。
本発明の第2の目的は、磁気特性および電磁変
換特性に優れた磁気記録媒体の製造方法を提供す
ることである。
本発明の第3の目的は、幅方向および長手方向
に均一な電磁変換特性および磁気特性を有する磁
気記録媒体の製造方法を提供することである。
本発明の第4の目的は、品質の信頼性に優れ、
生産性の高い磁気記録媒体の製造方法を提供する
ことである。
本発明の上記目的は、非磁性基板上に磁性材料
を飛翔させて磁性層を形成する磁気記録媒体の製
造方法において、磁性材料の飛翔気流入射角規制
用マスクの入射角規制先端部に一体に形成された
前記基板幅方向に長辺を有するスリツト状噴出口
からガスを噴射させて前記基板上に磁性層を形成
する磁気記録媒体の製造方法であつて、前記スリ
ツト状噴出口からのガスが非磁性基板表面から3
mm〜15mmの距離から噴射され、且つ、噴射ガスが
前記飛翔気流入射角規制用マスク内に一体に形成
されたタンクからスリツト状噴出口を経て、非磁
性基板に立てた法線に対して140゜〜180゜で噴射さ
れることを特徴とする磁気記録媒体の製造方法に
よつて達成される。
発明の具体的説明
第1図に、本発明の磁気記録媒体の製造方法に
使用する装置の一実施例の要部断面図を示す。
この装置の内部は、全体を符号1で示すケーシ
ングにより外気から気密にシールされており、ケ
ーシング1内は分離隔壁2により非磁性基板3を
送出・巻取る室と蒸着室に分けられ、ケーシング
1の底部には排気管4が設けられ、排気管4は真
空排気装置5に接続している。
送出・巻取る室には、基板走行系として、送出
軸6、2個のフリーローラ7、基板支持体8、巻
取軸9を有している。蒸着室には蒸着系として電
子ビーム発生装置10、るつぼ11、るつぼ11
内に入れた被着用磁性材料12があり、さらに、
基板支持体8とるつぼ11との間に形成される飛
翔空間内に突出するマスク13が設けられ、基板
3に磁性材料12の飛翔気流が入射する角度を規
制する如くなつている。マスク13は、中空構造
であり、その入射角規制先端部近傍に、基板支持
体8にセツトされる基板3の幅方向に長辺を有す
るスリツト状噴出口14が設けられ、酸素ガス等
の反応性ガスの導入パイプ15よりガスGが導入
され、スリツト状噴出口14から基板3に向かい
所定の角度で噴出する如くなつている。
本発明にかかるマスク13の噴出口14は、第
2図a,bにその具体例を示すように、スリツト
形状である。このスリツト形状は全体としてスリ
ツト状になつていればよく、例えば、仕切板等が
スリツトの短辺に平行に複数設けられていてもよ
い。噴出口14の形成位置は、マスク13の入射
角規制先端部近傍であればよく、例えば、第2図
aに示す如く、マスク13の基板3の走行面側に
設けてもよく、第2図bの如く、マスク13の規
制部先端を形成する面に設けてもよい。ここで、
好ましくは、第2図aのほうである。また、噴出
口14の設置条件により決められる反応性ガスの
噴出方向は、第3図に示す如く、噴出ガスが基板
3に衝突する位置における基板面に立てた法線と
ガスの噴出方向とのなす角θが、90゜以上が好ま
しく、より好ましくは140゜〜180゜である。さら
に、噴出口14と基板面との間隔は、15mm以下が
好ましく、より好ましくは3〜10mmである。
噴出ガスの速度、量と噴出口14のスリツトの
幅は相関的に適性値が決められるが、スリツトの
幅は5mm以下が好ましく、より好ましくは0.5〜
2mmであり、噴出ガスの速度、量は、スリツト幅
10cmにつき2×10-2〜0.5Pacm3/sが好ましく、
より好ましくはスリツト幅10cmにつき0.1〜0.3Pa
cm3/sである。このとき、噴出ガスの速度、量の
均一性を高めるために、導入パイプ15と導入口
との間にタンクを設けることは本発明の効果をよ
り高めるものであり好ましい態様である。
その他、基板支持体、マスク等における冷却機
構等は省略してあるが、当業界で公知の技術を、
本発明の効果を減じない範囲で選択的に使用でき
る。
また、実施例では電子ビーム加熱法を用いた
が、抵抗加熱、レーザービーム加熱等の方法によ
つてもよい。
本発明に使用する反応性ガスとしては、酸素、
酸素の同素体および酸素の活性種から選ばれる少
なくとも1種を含むガスであればよく、該ガスと
併用できる他のガスとして、たとえば窒素(N2)
ガス、ヘリウムガス(He)、キセノンガス
(Xe)、ラドンガス(Rn)、アルゴン(Ar)、ネオ
ン(Ne)などの不活性ガス、一酸化炭素(CO)、
炭酸ガス(CO2)、水素(H2)、水蒸気(H2O)
単独で、若しくは2種類以上を混合して併用でき
る。
本発明にかかる磁気記録媒体の製造方法に使用
できる磁性材料は、従来から使用されている公知
のものでよく、かかる磁性材料としては、Fe、
Ni、Co等の金属系の磁性材料:Fe−Ni−Co合
金、Fe−Mn−Zn合金、Fe−Ni−Zn合金、Fe−
Co−Ni−Cr合金、Fe−Co−Ni−P合金、Co−
Ni合金等Fe、Ni、Coを主成分とする合金系磁性
材料等各種の磁性材料が挙げられる。非磁性基板
上に磁性材料を飛翔させて磁性層を形成する方法
としては、公知の真空蒸着、スパツタリング、イ
オンプレーテイング法等が挙げられる。すなわ
ち、本発明でいう「飛翔」とは各種の蒸着(反応
蒸着を含む)やスパツター、CVD(Chemical
Vapor Deposition)、イオンプレーテイング等の
方法により、材料が飛翔空間を経て支持体上に被
着することをいうものである。
非磁性基板の素材としては、ポリエチレンテレ
フタレート、ポリエチレン−2,6−ナフタレー
ト等のポリエステル類、ポリプロピレン等のポリ
オレフイン類、セルローストリアセテート、セル
ロースダイアセテート等のセルロース誘導体、ポ
リカーボネートなどのプラスチツク、Cu、Al、
Znなどの金属等が使用でき、さらにガラス、い
わゆるニユーセラミツク(たとえば窒化ほう素、
炭化けい素等)などが使用される。ガラス等の非
可撓性基板は、可撓性基板上にこれらを複数個保
持し連続的に磁性層を形成させることができる。
最終的な磁気記録媒体としての基板の形態はテー
プ、シート、カード、デイスク、ドラム等いずれ
でもよく、形態に応じて種々の材料が必要に応じ
て選択される。
これらの基板の厚みは、フイルム、シート状の
場合は約3〜10μm程度、好ましくは5〜50μmで
あり、デイスク、カード状の場合は30μm〜10mm
程度である。
また、本発明にかかる磁気記録媒体の製造方法
は、磁気記録媒体の滑り性の改善、帯電防止、転
写防止、保存性向上、耐摩耗性向上の目的で、基
板上に、前述した磁性層形成後および/又は形成
前にたとえば公知の塗布方法、蒸着方法等に依
り、オーバーコート層やバツクコート層を設けて
もよい。これらの塗布方法、蒸着方法は、たとえ
ば特開昭54−123922号、同54−123923号、同56−
71284号、同56−71286号、同56−71287号、同56
−11626号、同57−135442号の公開特許公報明細
書に携載されている。
これらオーバーコート層、バツクコート層の材
料としては各種のポリマー(たとえばウレタン樹
脂エポキシ脂、塩化ビニル−酢酸ビニル共重合体
等)やシリコン樹脂等の各有機オリゴマーやポリ
マー:カーボンブラツク、アルミナ等の無機材
料:フエノール誘導体等の酸化防止剤やアミン誘
導体等の一重項酸素クエンチヤー等の低分子有機
化合物等の各種材料が使用できる他、各種の潤滑
剤、研磨剤、帯電防止剤、分散剤等と呼ばれてい
る各種の成分を添加して使用することができる。
発明の具体的実施例
以下、本発明を実施例および比較例により、さ
らに具体的に説明するが、本発明はこれにより限
定されるものではない。
実施例 1
第1図に示した装置を用い、第2図aに示した
スリツト状の反応性ガス噴出口を有するマスクを
用いて以下の条件で磁気記録媒体を製造した。
スリツト幅 1.0mm,長さ20cm
ガス噴出角度 θ=170゜
噴出口と基板との距離 7.0mm
圧力7×10-3Paにおいて、12.5μm厚のポリエ
チレンテレフタレートの基板を50m/minの速度
で走行させながら、Co−Ni(80−20)の磁性材料
を電子ビーム加熱により蒸発させ、酸素ガスを
2.5Kg/cm2、1.0/minで噴出口から噴出させ、
0.15μm厚の磁性層を形成した。
得られた磁気記録媒体の原反を、12.65mm幅の
テープに裁断し、実施例テープを得た。実施例テ
ープは、薄膜形成時の各位置、即ち、幅方向で
は、スリツト状噴出口の中点で形成されたテープ
および中点から一定の幅方向距離で形成されたテ
ープを長手方向では、薄膜形成当初から約2000m
にわたる範囲を以下の磁気特性等の測定対象とし
た。
上記実施例テープについて、保持力、残留磁
束、スチル耐久性、5MHzおよび0.75MHzにおけ
るC/Nの各特性を調べた。結果を表1および図
4a,b,cに示す。(実施例テープをaで表わ
す。)
なお、保持力、残留磁束については、東芝工業
社製振動試料型磁気記録計を用いて測定し、ま
た、スチル耐久性は市販のVHS機を用いて出力
が3db低下するまでの時間を測定した。C/N
は、ヘツドとテープの相対速度3.75m/secでの
値である。[Detailed Description of the Invention] Background Technical Field of the Invention Signal relates to a method of manufacturing a magnetic recording medium by flying a magnetic material, and more specifically, a method of manufacturing a magnetic recording medium with improved electromagnetic conversion characteristics, magnetic characteristics, and physical and chemical characteristics. Regarding the method. BACKGROUND TECHNOLOGY Methods for manufacturing magnetic recording media can be classified into two types, those using a coating method and those using a flying or plating method. By coating method (Hereinafter, magnetic recording media obtained by this method are referred to as coating-type magnetic recording media.)
In this method, a magnetic paint obtained by mixing and dispersing ferromagnetic powder such as γ-F 2 O 3 and Fe with an appropriate binder is applied onto a non-magnetic substrate, and subjected to treatments such as magnetic field orientation, drying, and super calendering. This gives it properties as a magnetic recording medium. This coated magnetic recording medium is aimed at increasing coercive force, improving recording density, and making the magnetic layer thinner. However, in the method of coating a magnetic paint obtained by mixing ferromagnetic powder with a binder on a non-magnetic substrate,
There is essentially a limit to the effective filling rate of ferromagnetic powder, which makes it difficult to aim for higher density and thinner films. For this reason, in order to achieve higher density and thinner films, a continuous thin film of magnetic material is usually deposited on a non-magnetic substrate by flying the magnetic material using methods such as vacuum evaporation, sputtering, and ion plating. A method of forming the magnetic recording medium and a method of forming it by electrolysis or chemical plating (hereinafter, magnetic recording media obtained by these methods are referred to as thin-film magnetic recording media) have been adopted. This thin-film magnetic recording medium provides a magnetic recording medium that has characteristics not found in the coating-type magnetic recording media, such as high density and thin film. However, thin-film magnetic recording media generally have physical and chemical properties such as corrosion resistance and abrasion resistance, magnetic properties such as residual magnetic flux density, squareness ratio, coercive force, output level,
Improvements in electromagnetic conversion characteristics such as output fluctuation and still durability are required. The physical, chemical, magnetic, and electromagnetic properties of magnetic thin films created by vacuum evaporation, sputtering, ion plating, etc. are determined by the angle of incidence of the flying magnetic material on the substrate surface, the degree of oxidation, the rate of magnetic layer formation, It depends on the energy of the incident particle, etc. For improving physical and chemical properties such as corrosion resistance and abrasion resistance, reactive vapor deposition technology using reactive gases such as oxygen is known, and for improving magnetic properties and electromagnetic conversion properties, Kosho 41−
Techniques such as so-called oblique evaporation described in No. 19389 are known. Furthermore, in reactive vapor deposition, JP-A-57-
No. 88531 discloses that supplying oxygen gas having a flow generally opposite to the running direction of the substrate is effective in improving the above-mentioned properties. Furthermore, in JP-A No. 58-45625, a mask for regulating the angle of incidence is used, and a reactive gas is ejected from the side of the mask facing the flying vapor flow of a magnetic material to form a thin film and provide corrosion resistance. It improves physical and chemical properties such as hardness and abrasion resistance, as well as magnetic properties such as control of holding force.
A technique has been proposed to make the electromagnetic conversion characteristics uniform in the width direction and length direction of a magnetic recording medium. This publication discloses a group of small holes as a reactive gas outlet. However, when a group of small holes is used as the ejection port, when the reactive gas is ejected, the flow of gas molecules ejected from the small holes is greatly disturbed, and the magnetic properties of the formed magnetic recording medium in the width direction become non-uniform. It was inevitable that it would happen. In particular, the closer the reactive gas outlet is provided to the surface of the non-magnetic substrate, the greater the influence of turbulence on the gas molecular flow, and the more pronounced the non-uniformity of the magnetic properties. On the other hand, as mentioned above, the various characteristics of a thin film magnetic recording medium are greatly influenced by the incident angle of the flying magnetic material, the degree of oxidation, the reaction state, etc. It is necessary to install the jet port so as to provide a steady flow and a predetermined angle of incidence, and it has been desired to improve the shape and installation conditions of the reactive gas jet port. Purpose of the Invention The present invention has been made to solve the above-mentioned problems, and the first purpose of the present invention is to improve corrosion resistance,
An object of the present invention is to provide a method for manufacturing a magnetic recording medium having excellent physical and chemical properties such as wear resistance. A second object of the present invention is to provide a method for manufacturing a magnetic recording medium with excellent magnetic properties and electromagnetic conversion properties. A third object of the present invention is to provide a method for manufacturing a magnetic recording medium having uniform electromagnetic conversion characteristics and magnetic characteristics in the width direction and length direction. The fourth object of the present invention is to have excellent quality reliability;
An object of the present invention is to provide a method for manufacturing a magnetic recording medium with high productivity. The above-mentioned object of the present invention is to provide a method for manufacturing a magnetic recording medium in which a magnetic layer is formed by flying a magnetic material onto a non-magnetic substrate. A method for manufacturing a magnetic recording medium, wherein a magnetic layer is formed on the substrate by injecting gas from a slit-like jet nozzle having a long side in the width direction of the substrate, wherein the gas from the slit-like jet nozzle is 3 from the non-magnetic substrate surface
The injected gas is injected from a distance of 15 mm to 15 mm, and the injected gas passes through a slit-shaped outlet from a tank integrally formed in the mask for regulating the flying air inflow angle, and reaches a distance of 140 mm with respect to the normal line erected on the non-magnetic substrate. This is achieved by a method for manufacturing a magnetic recording medium characterized by jetting at an angle of 180° to 180°. DETAILED DESCRIPTION OF THE INVENTION FIG. 1 shows a sectional view of a main part of an embodiment of an apparatus used in the method of manufacturing a magnetic recording medium of the present invention. The inside of this device is hermetically sealed from the outside air by a casing 1, and the inside of the casing 1 is divided by a separation wall 2 into a chamber for sending out and winding up a non-magnetic substrate 3 and a deposition chamber. An exhaust pipe 4 is provided at the bottom of the tank, and the exhaust pipe 4 is connected to a vacuum exhaust device 5. The delivery/winding chamber has a delivery shaft 6, two free rollers 7, a substrate support 8, and a winding shaft 9 as a substrate running system. The vapor deposition chamber includes an electron beam generator 10, a crucible 11, and a crucible 11 as a vapor deposition system.
There is a magnetic material 12 to be coated therein, and further,
A mask 13 is provided that projects into the flying space formed between the substrate support 8 and the crucible 11, and is designed to regulate the angle at which the flying airflow of the magnetic material 12 is incident on the substrate 3. The mask 13 has a hollow structure, and is provided with a slit-shaped jet nozzle 14 having a long side in the width direction of the substrate 3 set on the substrate support 8 in the vicinity of its incident angle regulating tip. Gas G is introduced from a gas introduction pipe 15 and is ejected from a slit-shaped ejection port 14 toward the substrate 3 at a predetermined angle. The jet nozzle 14 of the mask 13 according to the present invention has a slit shape, as shown in FIGS. 2a and 2b. The slit may have a slit shape as a whole, and for example, a plurality of partition plates or the like may be provided parallel to the short side of the slit. The formation position of the jet nozzle 14 may be in the vicinity of the incident angle regulating tip of the mask 13. For example, as shown in FIG. It may be provided on the surface of the mask 13 where the tip of the regulating portion is formed, as shown in FIG. here,
Preferably, it is the one shown in FIG. 2a. Furthermore, the jetting direction of the reactive gas determined by the installation conditions of the jetting port 14 is determined by the relationship between the normal to the substrate surface at the position where the jetting gas collides with the substrate 3 and the gas jetting direction, as shown in FIG. The angle θ formed is preferably 90° or more, more preferably 140° to 180°. Further, the distance between the jet nozzle 14 and the substrate surface is preferably 15 mm or less, more preferably 3 to 10 mm. Appropriate values for the speed and amount of ejected gas and the width of the slit in the ejection port 14 are determined in correlation, but the width of the slit is preferably 5 mm or less, and more preferably 0.5 to 5 mm.
2mm, and the speed and amount of ejected gas are determined by the slit width.
2×10 -2 to 0.5 P a cm 3 /s per 10 cm is preferable,
More preferably 0.1 to 0.3P a per 10cm slit width
cm 3 /s. At this time, in order to improve the uniformity of the speed and amount of the ejected gas, it is a preferred embodiment to provide a tank between the introduction pipe 15 and the introduction port, as this further enhances the effects of the present invention. In addition, although cooling mechanisms for the substrate support, mask, etc. are omitted, techniques known in the industry are used.
They can be used selectively as long as they do not reduce the effects of the present invention. Furthermore, although an electron beam heating method is used in the embodiment, methods such as resistance heating and laser beam heating may also be used. The reactive gas used in the present invention includes oxygen,
Any gas may be used as long as it contains at least one selected from oxygen allotropes and oxygen active species. Other gases that can be used in combination with the gas include, for example, nitrogen (N 2 ).
gas, inert gases such as helium gas (He), xenon gas (Xe), radon gas (Rn), argon (Ar), neon (Ne), carbon monoxide (CO),
Carbon dioxide (CO 2 ), hydrogen (H 2 ), water vapor (H 2 O)
They can be used alone or in combination of two or more. The magnetic material that can be used in the method for manufacturing a magnetic recording medium according to the present invention may be any conventionally used and known magnetic material, such as Fe,
Metal-based magnetic materials such as Ni and Co: Fe-Ni-Co alloy, Fe-Mn-Zn alloy, Fe-Ni-Zn alloy, Fe-
Co-Ni-Cr alloy, Fe-Co-Ni-P alloy, Co-
Examples include various magnetic materials such as alloy-based magnetic materials containing Fe, Ni, and Co as main components, such as Ni alloy. Examples of methods for forming a magnetic layer by flying a magnetic material onto a nonmagnetic substrate include well-known vacuum evaporation, sputtering, and ion plating methods. In other words, "flying" in the present invention refers to various types of vapor deposition (including reactive vapor deposition), sputtering, CVD (Chemical
This refers to the deposition of a material onto a support through a flying space using methods such as vapor deposition and ion plating. Materials for the non-magnetic substrate include polyesters such as polyethylene terephthalate and polyethylene-2,6-naphthalate, polyolefins such as polypropylene, cellulose derivatives such as cellulose triacetate and cellulose diacetate, plastics such as polycarbonate, Cu, Al,
Metals such as Zn can be used, as well as glass and so-called new ceramics (such as boron nitride,
silicon carbide, etc.) are used. A plurality of non-flexible substrates such as glass can be held on a flexible substrate to form a magnetic layer continuously.
The form of the substrate as the final magnetic recording medium may be tape, sheet, card, disk, drum, etc., and various materials are selected as necessary depending on the form. The thickness of these substrates is approximately 3 to 10 μm in the case of a film or sheet, preferably 5 to 50 μm, and 30 μm to 10 mm in the case of a disk or card.
That's about it. Further, the method for manufacturing a magnetic recording medium according to the present invention includes forming the above-described magnetic layer on a substrate for the purpose of improving slipperiness, preventing static electricity, preventing transfer, improving storage stability, and improving wear resistance of the magnetic recording medium. After and/or before formation, an overcoat layer or a backcoat layer may be provided, for example, by a known coating method, vapor deposition method, etc. These coating methods and vapor deposition methods are described, for example, in JP-A-54-123922, JP-A-54-123923, and JP-A-56-
No. 71284, No. 56-71286, No. 56-71287, No. 56
-11626 and 57-135442. Materials for these overcoat layers and backcoat layers include various polymers (for example, urethane resin epoxy resin, vinyl chloride-vinyl acetate copolymer, etc.), organic oligomers and polymers such as silicone resin, and inorganic materials such as carbon black and alumina. : Various materials such as low molecular weight organic compounds such as antioxidants such as phenol derivatives and singlet oxygen quenchers such as amine derivatives can be used, as well as various lubricants, abrasives, antistatic agents, dispersants, etc. Various ingredients can be added and used. Specific Examples of the Invention Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Example 1 A magnetic recording medium was manufactured using the apparatus shown in FIG. 1 and a mask having a slit-shaped reactive gas outlet shown in FIG. 2a under the following conditions. Slit width 1.0 mm, length 20 cm Gas jet angle θ = 170° Distance between jet nozzle and substrate 7.0 mm A 12.5 μm thick polyethylene terephthalate board was run at a speed of 50 m/min at a pressure of 7 × 10 -3 Pa. Meanwhile, Co-Ni (80-20) magnetic material is evaporated by electron beam heating, and oxygen gas is released.
2.5Kg/cm 2 , spouted from the spout at 1.0/min,
A magnetic layer with a thickness of 0.15 μm was formed. The obtained original magnetic recording medium was cut into tapes having a width of 12.65 mm to obtain example tapes. The example tapes were formed at each position during thin film formation, that is, in the width direction, the tape formed at the midpoint of the slit-shaped jet nozzle, and the tape formed at a certain width direction distance from the midpoint, and in the longitudinal direction, the thin film was formed at each position. Approximately 2000m from the beginning of formation
The following magnetic properties were measured over the entire range. The properties of the above example tape, including coercive force, residual magnetic flux, still durability, and C/N at 5 MHz and 0.75 MHz, were investigated. The results are shown in Table 1 and Figures 4a, b, c. (The example tape is indicated by a.) The holding force and residual magnetic flux were measured using a vibrating sample magnetic recorder manufactured by Toshiba Industries, and the still durability was measured using a commercially available VHS machine. We measured the time it took for the value to decrease by 3db. C/N
is the value at a relative speed of head and tape of 3.75 m/sec.
【表】
* 変動の最大値を示す。
** ばらつきの平均値(平均偏差)を
示す。
比較例 1
噴出口として、直径1mmの孔を2cm間隔に幅方
向に11個設けた小孔群を採用したた以外は実施例
1と同じ条件で行なつた。
得られた磁気記録媒体の特性を表1、図4a,
bに示す。(比較例1テープをbで表わす。)
比較例 2
噴出口から酸素の噴出をしない以外は実施例1
と同じ条件で行なつた。
得られた磁気記録媒体の特性を図4cに示す。
(比較例2テープをcで表わす。)
図4a,b,cにおける各特性曲線は、各実施
例テープ、比較例テープのそれぞれの内の最大値
を100とした相対%で示してある。
表1の結果より、実施例テープは、5MHzおよ
び0.75MHzC/N比、スチル耐久性のそれぞれの
特性において、幅方向、長手方向の変動幅が比較
例1テープより小さいことがわかる。
また、図4aより、実施例テープの残留磁束特
性幅方向変動は、90%以上の範囲が拡がつている
だけでなく、比較例1テープにみられる小さな凹
凸の変動が消えていることがわかる。
図4bより、実施例テープの保磁力特性の幅方
向変動は、ほぼ全幅が95%以上を示し、比較例1
テープに比較して変動幅も小さく、優れているこ
とがわかる。
図4cより、実施例テープの保持力特性の長手
方向変動は、比較例2テープに比較してその幅が
非常に小さく優れていることがわかる。
実施例 2
噴出口と基板との距離を15.0mmとした以外は実
施例1と同様の条件で磁気記録媒体を製造し、実
施例1と同様に特性試験を行つた。試験結果を表
2に示す。
比較例 3
第1図に示した装置に、第2図aに示したスリ
ツト状反応性ガス噴出口を有する反応性ガス供給
管を分離隔壁2の下方で噴出口が基板近傍に位置
するよう設置し、噴出口14に代えて新設の噴出
口から反応性ガスを基板に向けて噴出させた。こ
の装置を用いて圧力を1×10-4トルに保つた以外
は実施例1と同様の条件で磁気記録媒体を製造
し、実施例2と同様に特性試験を行つた。試験結
果を表2に示す。[Table] * Shows the maximum value of fluctuation.
** Indicates the average value of dispersion (average deviation).
Comparative Example 1 The same conditions as in Example 1 were carried out, except that a group of 11 small holes each having a diameter of 1 mm and arranged at 2 cm intervals in the width direction was used as the ejection port. The characteristics of the obtained magnetic recording medium are shown in Table 1, Figure 4a,
Shown in b. (Comparative Example 1 tape is represented by b.) Comparative Example 2 Example 1 except that oxygen is not spouted from the spout.
It was carried out under the same conditions. The characteristics of the obtained magnetic recording medium are shown in FIG. 4c.
(Comparative Example 2 tape is represented by c.) Each of the characteristic curves in FIGS. 4a, b, and c is expressed as a relative percentage, with the maximum value of each of the example tape and comparative example tape being 100. From the results in Table 1, it can be seen that the Example tape had smaller fluctuation ranges in the width direction and longitudinal direction in each of the characteristics of 5MHz and 0.75MHz C/N ratio and still durability than Comparative Example 1 tape. Furthermore, from FIG. 4a, it can be seen that not only the variation in the width direction of the residual magnetic flux characteristic of the Example tape has expanded by more than 90%, but also the variation of small irregularities seen in the Comparative Example 1 tape has disappeared. . From FIG. 4b, the variation in the width direction of the coercive force characteristics of the example tape is 95% or more in almost the entire width, and Comparative Example 1
It can be seen that the fluctuation range is smaller than that of tape, which shows that it is superior. From FIG. 4c, it can be seen that the variation in the longitudinal direction of the holding force property of the example tape is much smaller than that of the comparative example 2 tape and is excellent. Example 2 A magnetic recording medium was manufactured under the same conditions as in Example 1 except that the distance between the ejection port and the substrate was 15.0 mm, and the characteristics tests were conducted in the same manner as in Example 1. The test results are shown in Table 2. Comparative Example 3 A reactive gas supply pipe having a slit-shaped reactive gas outlet shown in FIG. 2a is installed in the apparatus shown in FIG. 1 so that the outlet is located below the separation wall 2 and near the substrate. Then, the reactive gas was ejected toward the substrate from a newly installed ejection port instead of the ejection port 14. A magnetic recording medium was manufactured using this apparatus under the same conditions as in Example 1, except that the pressure was maintained at 1×10 -4 Torr, and the characteristics tests were conducted in the same manner as in Example 2. The test results are shown in Table 2.
【表】
すなわち、実施例の方法によれば蒸着原子の推
積が終了した直後に反応性ガスが吹き付けられる
ので主に磁性薄膜表面に酸化層が形成され、磁気
特性、電気特性、耐久性に優れた磁気記録媒体が
得られる。これに対して蒸着原子の推積の開始か
ら反応性ガスの吹き付けが行なわれる比較例の方
法では、薄膜全体に一様に酸化層が形成されるこ
とになり、諸特性の劣化が現れることがわかる。
発明の具体的効果
以上の結果から明らかなように、本発明にかか
る磁気記録媒体の材料方法によれば、得られる磁
気記録媒体が、物理、化学的特性、磁気特性、電
磁変換特性に優れ、かつ、媒体の幅方向、長手方
向に諸特性の均一を有しており、さらにまた、品
質の信頼性に優れ、生産性が向上して経済的にも
実用性が大きいものである。[Table] In other words, according to the method of the example, the reactive gas is sprayed immediately after the estimation of the deposited atoms is completed, so an oxide layer is mainly formed on the surface of the magnetic thin film, which deteriorates the magnetic properties, electrical properties, and durability. An excellent magnetic recording medium can be obtained. On the other hand, in the method of the comparative example, in which reactive gas is sprayed from the start of estimating the deposited atoms, an oxide layer is formed uniformly over the entire thin film, and deterioration of various properties may appear. Recognize. Specific Effects of the Invention As is clear from the above results, according to the material method for a magnetic recording medium according to the present invention, the obtained magnetic recording medium has excellent physical, chemical properties, magnetic properties, and electromagnetic conversion properties. Moreover, the medium has uniform properties in the width direction and longitudinal direction, and is also excellent in quality reliability, productivity is improved, and is economically practical.
図面は本発明の一実施例を示すもので、第1図
は本発明の磁気記録媒体の製造方法に使用する装
置の要部断面図、第2図aおよび第2図bは第1
図に示す装置に使用するマスクの斜視図、第3図
は噴出角度を示す説明図、第4a図は、磁気記録
媒体の幅方向における残留磁束の変動分布、第4
図b図は、同じく幅方向における保磁力の変動分
布、第4cは、同じく長手方向における保磁力の
変動分布の各特性曲線図(実施例テープ…a、比
較例1テープ…b、比較例2テープ…cである。
1……ケーシング、3……基板、6……送出
軸、8……基板支持体、9……巻取軸、10……
電子ビーム発生装置、11……るつぼ、13……
マスク、14……噴出口、15……反応性ガス供
給管。
The drawings show one embodiment of the present invention, and FIG. 1 is a cross-sectional view of a main part of an apparatus used in the method of manufacturing a magnetic recording medium of the present invention, and FIGS.
FIG. 3 is an explanatory diagram showing the ejection angle; FIG.
Figure b is the characteristic curve diagram of the variation distribution of coercive force in the width direction, and Figure 4c is the characteristic curve diagram of the variation distribution of coercive force in the longitudinal direction (Example tape...a, Comparative example 1 tape...b, Comparative example 2 Tape...c. 1... Casing, 3... Substrate, 6... Delivery shaft, 8... Substrate support, 9... Winding shaft, 10...
Electron beam generator, 11... Crucible, 13...
Mask, 14... spout, 15... reactive gas supply pipe.
Claims (1)
を形成する磁気記録媒体の製造方法において、磁
性材料の飛翔気流入射角規制用マスクの入射角規
制先端部に一体に形成された前記基板幅方向に長
辺を有するスリツト状噴出口からガスを噴射させ
て前記基板上に磁性層を形成する磁気記録媒体の
製造方法であつて、前記スリツト状噴出口からの
ガスが非磁性基板表面から3mm〜15mmの距離から
噴射され、且つ、噴射ガスが前記飛翔気流入射角
規制用マスク内に一体に形成されたタンクからス
リツト状噴出口を経て、非磁性基板に立てた法線
に対して140゜〜180゜で噴射されることを特徴とす
る磁気記録媒体の製造方法。 2 前記ガスが、酸素、酸素の同素体および酸素
の活性種から選ばれる少なくとも1種を含むガス
であることを特徴とする特許請求の範囲第1項記
載の磁気記録媒体の製造方法。[Scope of Claims] 1. In a method of manufacturing a magnetic recording medium in which a magnetic layer is formed by flying a magnetic material onto a non-magnetic substrate, a method for manufacturing a magnetic recording medium in which a magnetic material flying magnetic material is integrally attached to an incident angle regulating tip of a mask for regulating an inflow and incidence angle of flying air. A method for manufacturing a magnetic recording medium, wherein a magnetic layer is formed on the substrate by injecting gas from a slit-like jet nozzle having a long side in the width direction of the substrate, wherein the gas from the slit-like jet nozzle is A method in which the gas is injected from a distance of 3 mm to 15 mm from the surface of the non-magnetic substrate, and the injected gas passes through a slit-shaped outlet from a tank integrally formed within the mask for regulating the flying air inflow angle, and is erected on the non-magnetic substrate. A method for manufacturing a magnetic recording medium, characterized in that jetting is performed at an angle of 140° to 180° with respect to a line. 2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the gas is a gas containing at least one selected from oxygen, an allotrope of oxygen, and an active species of oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25166883A JPS60136036A (en) | 1983-12-24 | 1983-12-24 | Production of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25166883A JPS60136036A (en) | 1983-12-24 | 1983-12-24 | Production of magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60136036A JPS60136036A (en) | 1985-07-19 |
JPH0430644B2 true JPH0430644B2 (en) | 1992-05-22 |
Family
ID=17226241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25166883A Granted JPS60136036A (en) | 1983-12-24 | 1983-12-24 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60136036A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5841442A (en) * | 1981-09-03 | 1983-03-10 | Fuji Photo Film Co Ltd | Manufacture of magnetic recording medium |
-
1983
- 1983-12-24 JP JP25166883A patent/JPS60136036A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5841442A (en) * | 1981-09-03 | 1983-03-10 | Fuji Photo Film Co Ltd | Manufacture of magnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPS60136036A (en) | 1985-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4766034A (en) | Magnetic recording medium | |
KR0185237B1 (en) | Magnetic recording medium and manufacturing method thereof | |
US6110584A (en) | Magnetic recording medium | |
US4868070A (en) | Vertical magnetization type recording medium and manufacturing method therefor | |
JPS6194242A (en) | Manufacture of magnetic recording medium | |
JPH0430644B2 (en) | ||
US4652460A (en) | Process for preparing magnetic recording medium | |
EP0617414B1 (en) | Method and apparatus for producing magnetic recording medium | |
JP3323660B2 (en) | Magnetic recording medium and thin film manufacturing method and thin film manufacturing apparatus | |
JP3867544B2 (en) | Magnetic recording medium and method for manufacturing the same | |
JPH01264632A (en) | Method and apparatus for producing magnetic recording medium | |
JPS60191425A (en) | Magnetic recording medium | |
JP2629847B2 (en) | Manufacturing method of magnetic recording medium | |
JP2843252B2 (en) | Method and apparatus for manufacturing magnetic recording medium | |
JPS60177425A (en) | Magnetic recording medium | |
JP2843236B2 (en) | Method and apparatus for manufacturing magnetic recording medium | |
JPH10106834A (en) | Magnetic recording medium | |
JPH10237659A (en) | Formation of coating and device therefor | |
JPH0841644A (en) | Thin film forming device | |
JPH0795367B2 (en) | Magnetic recording medium | |
JPH10310869A (en) | Production of magnetic recording medium and device for producing magnetic recording medium | |
JPH10195664A (en) | Film forming method and its device | |
JPH103651A (en) | Magnetic recording medium | |
JPH10255263A (en) | Magnetic recording medium | |
JPH09217176A (en) | Formation of thin film and film forming device used for the same |