JPH04305171A - Method and apparatus for measuring surface charge density - Google Patents
Method and apparatus for measuring surface charge densityInfo
- Publication number
- JPH04305171A JPH04305171A JP9501491A JP9501491A JPH04305171A JP H04305171 A JPH04305171 A JP H04305171A JP 9501491 A JP9501491 A JP 9501491A JP 9501491 A JP9501491 A JP 9501491A JP H04305171 A JPH04305171 A JP H04305171A
- Authority
- JP
- Japan
- Prior art keywords
- charged body
- detection electrodes
- electrodes
- surface charge
- charge density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 8
- 238000001514 detection method Methods 0.000 claims abstract description 47
- 238000010586 diagram Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、フィルム等の帯電体の
両表面の電荷密度を同時に測定する表面電荷密度の測定
方法及びその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface charge density measuring method and apparatus for simultaneously measuring charge densities on both surfaces of a charged body such as a film.
【0002】0002
【従来の技術】従来、フィルム等の帯電体の両表面の電
荷密度を測定する方法としては、図6に示すような距離
補償型電位計を用いる方法が代表的なものである。同図
において、20は、検出電極21及び振動体22を内蔵
したプローブユニット、23は発振器、24はプリアン
プ、25は増幅器、26は同期検波器、27は積分器、
28は高電圧発生器、29はインピーダンス整合回路で
ある。検出電極21を振動させながら帯電体30に対向
させると、電界強度E2に応じた交流電圧が検出電極2
1に生じ、更にこの交流電圧に応じた直流電圧Vbが高
電圧発生器28に発生し、このVbがプローブユニット
20へフィードバックされる。このVbはE2を打ち消
す方向に作用し、0から上昇を始めてE2=0となった
ところで一定値となる。このとき、次の数1の関係が成
り立つ。2. Description of the Related Art Conventionally, a typical method for measuring the charge density on both surfaces of a charged body such as a film is a method using a distance-compensated electrometer as shown in FIG. In the figure, 20 is a probe unit incorporating a detection electrode 21 and a vibrating body 22, 23 is an oscillator, 24 is a preamplifier, 25 is an amplifier, 26 is a synchronous detector, 27 is an integrator,
28 is a high voltage generator, and 29 is an impedance matching circuit. When the detection electrode 21 is made to face the charged body 30 while being vibrated, an AC voltage corresponding to the electric field strength E2 is applied to the detection electrode 2.
1, a DC voltage Vb corresponding to this AC voltage is generated in the high voltage generator 28, and this Vb is fed back to the probe unit 20. This Vb acts in the direction of canceling E2, starts rising from 0, and becomes a constant value when E2=0. At this time, the following relationship 1 holds true.
【0003】0003
【数1】[Math 1]
【0004】ここに、σ1*とσ2*は表面電荷密度、
ε0は空気中の誘電率、εは帯電体30の誘電率、hは
帯電体30の厚さ、x1は帯電体30と接地電極31と
の距離である。σ1*とσ2*を求めるには、まず少な
くともx1の二つの異なる値x11及びx12に対して
E2=0となるようなVbの値Vb1とVb2を測定し
、Vb−x1特性を表す直線の方程式を求める。すると
、この直線の傾きΔVb/Δx1及びこの直線をx1=
0まで外挿したときの値Vb0と上記数1の式から、次
の数2及び数3の関係式が得られ、これらの式からσ1
*とσ2*が求められる。[0004] Here, σ1* and σ2* are surface charge densities,
ε0 is the dielectric constant of air, ε is the dielectric constant of the charged body 30, h is the thickness of the charged body 30, and x1 is the distance between the charged body 30 and the ground electrode 31. To find σ1* and σ2*, first measure the Vb values Vb1 and Vb2 such that E2=0 for at least two different values of x1, x11 and x12, and then calculate the straight line equation that represents the Vb-x1 characteristic. seek. Then, the slope of this straight line is ΔVb/Δx1 and this straight line is x1=
From the value Vb0 when extrapolated to 0 and the equation of equation 1 above, the following relational equations of equations 2 and 3 are obtained, and from these equations, σ1
* and σ2* are found.
【0005】[0005]
【数2】[Math 2]
【0006】[0006]
【数3】[Math 3]
【0007】[0007]
【発明が解決しようとする課題】しかし、このような距
離補償型電位計を用いる方法は、電位そのものの測定に
対しては、瞬時に測定を行えるので他の従来の方法に比
べて優れてはいるが、帯電体両面の電荷密度を求めるこ
とに関しては、上記のように検出電極と帯電体の距離を
少なくとも2回変えて電位を求めなければならないので
、瞬時というわけにはいかない。従って、帯電体が移動
している場合の測定には適さない。又、距離補償型電位
計は、高電圧発生器を含むフィードバック機構を取り入
れているため、危険性があって取扱いに注意が必要であ
り、しかも高価である等の問題がある。[Problem to be Solved by the Invention] However, the method using such a distance-compensated electrometer is not superior to other conventional methods when it comes to measuring the potential itself because it can measure the potential itself instantaneously. However, in order to determine the charge density on both sides of the charged body, the distance between the detection electrode and the charged body must be changed at least twice as described above to determine the potential, so this cannot be done instantly. Therefore, it is not suitable for measurement when a charged body is moving. Further, since the distance compensation electrometer incorporates a feedback mechanism including a high voltage generator, it is dangerous, requires careful handling, and is expensive.
【0008】本発明の目的は、帯電体の両表面の電荷を
、移動中であっても同時にかつリアルタイムで測定でき
、しかも本質的に危険性がなく、かつまた経済的でもあ
る、表面電荷密度の測定方法及びその装置を提供するこ
とにある。The object of the present invention is to measure the surface charge density on both surfaces of a charged body simultaneously and in real time, even during movement, and in an essentially non-hazardous and economical manner. An object of the present invention is to provide a method for measuring and a device for the same.
【0009】[0009]
【課題を解決するための手段】本発明による測定方法は
、2つの検出電極を、帯電体を挟んで対向させて互いに
異なる周波数で帯電体面に対し垂直に振動させ、これら
検出電極の出力を、その振動周波数に対応するフィルタ
を介して測定する。[Means for Solving the Problems] In the measurement method according to the present invention, two detection electrodes are made to face each other with a charged body in between and are vibrated perpendicularly to the surface of the charged body at different frequencies, and the outputs of these detection electrodes are Measure through a filter corresponding to that vibration frequency.
【0010】本発明による測定装置は、帯電体を挟んで
対向される2つの検出電極と、これら検出電極を互いに
異なる周波数で帯電体面に対し垂直に振動させる2つの
振動体と、検出電極の出力からその振動周波数成分だけ
をそれぞれ抽出する2つのバンドパスフィルタと、これ
らバンドパスフィルタを通過した出力電圧を測定する電
圧測定手段とからなる。The measuring device according to the present invention includes two detection electrodes facing each other with a charged body in between, two vibrating bodies that vibrate these detection electrodes perpendicularly to the surface of the charged body at different frequencies, and an output of the detection electrodes. It consists of two band-pass filters that extract only the vibration frequency components from each band, and voltage measuring means that measures the output voltage that has passed through these band-pass filters.
【0011】[0011]
【作用】図1に本発明の原理を示す。ここで、−σ1と
+σ2はフィルム状帯電体3の等価表面電荷密度、+σ
1’と−σ2’は検出電極1、2面に誘導された表面電
荷密度、Eは帯電体3内の電解強度、E1とE2はそれ
ぞれ検出電極1、2と帯電体3間の電界強度、εは帯電
体3の誘電率、ε0は空気中の誘電率、hは帯電体3の
厚さ、g1、g2はそれぞれ検出電極1、2と帯電体3
との間隔、Sは検出電極1と2の面積、R1とR2は負
荷抵抗、i1とi2は電流、v1とv2は電圧降下であ
る。同図において、検出電極1、2をそれぞれ各周波数
ω1、ω2で同時刻tにおいて、[Operation] FIG. 1 shows the principle of the present invention. Here, -σ1 and +σ2 are equivalent surface charge densities of the film-like charged body 3, +σ
1' and -σ2' are the surface charge densities induced on the detection electrodes 1 and 2, E is the electrolytic strength within the charged body 3, E1 and E2 are the electric field strengths between the detection electrodes 1 and 2 and the charged body 3, respectively. ε is the dielectric constant of the charged body 3, ε0 is the dielectric constant in air, h is the thickness of the charged body 3, and g1 and g2 are the detection electrodes 1 and 2 and the charged body 3, respectively.
S is the area of detection electrodes 1 and 2, R1 and R2 are load resistances, i1 and i2 are currents, and v1 and v2 are voltage drops. In the same figure, detection electrodes 1 and 2 are operated at respective frequencies ω1 and ω2 at the same time t,
【0012】0012
【数4】[Math 4]
【0013】となるように、帯電体3面に垂直、つまり
電気力線に対し平行に振動させた場合を考える。ここで
g10、g20はそれぞれ検出電極1、2が静止してい
るときの間隔、Δ1、Δ2はそれぞれ検出電極1、2の
振幅である。図1に電荷保存の法則、Kirchhof
fの第2法則、Gaussの法則を適用すると、Let us consider the case where the charged body is vibrated perpendicularly to the three planes, that is, parallel to the lines of electric force, so that the charged body vibrates in parallel to the lines of electric force. Here, g10 and g20 are the intervals when the detection electrodes 1 and 2 are stationary, respectively, and Δ1 and Δ2 are the amplitudes of the detection electrodes 1 and 2, respectively. Figure 1 shows the law of conservation of charge, Kirchhof
Applying the second law of f, Gauss's law, we get
【0014】[0014]
【数5】[Math 5]
【0015】[0015]
【数6】[Math 6]
【0016】であるようなときには、v2について[0016] For v2,
【0
017】0
017]
【数7】[Math 7]
【0018】なるノンパラメトリックな微分方程式が得
られる。これは、A nonparametric differential equation is obtained. this is,
【0019】[0019]
【数8】[Math. 8]
【0020】なる解をもつ。ここで、We have the following solution. here,
【0021】[0021]
【数9】[Math. 9]
【0022】[0022]
【数10】[Math. 10]
【0023】[0023]
【数11】[Math. 11]
【0024】[0024]
【数12】[Math. 12]
【数13】[Math. 13]
【0025】このような場合にΔ1、Δ2が既知ならば
、v2の成分であるa21sin(ω1t+θ1)とa
22sin(ω2t+θ2)を別々のバンドパスフィル
タで取り出すことにより、a21とa22から帯電体3
の表面電荷密度σ1とσ2を求めることができる。In such a case, if Δ1 and Δ2 are known, the components of v2, a21sin(ω1t+θ1) and a
By extracting 22sin(ω2t+θ2) with separate bandpass filters, the charged body 3 is extracted from a21 and a22.
The surface charge densities σ1 and σ2 of can be determined.
【0026】Δ1とΔ2は図2に示すように既知電圧V
cを与えた模擬帯電体(導体板)4を用いて求めること
ができる。図2で、gは検出電極1又は2と模擬帯電体
4との間隔、Rは負荷抵抗、Sは検出電極1又は2の面
積、iは電流、vはRの電圧降下である。いま、検出電
極1又は2をg0を中心として、振幅Δ、各周波数ωで
Δ1 and Δ2 are known voltages V as shown in FIG.
It can be determined using a simulated charged body (conductor plate) 4 given c. In FIG. 2, g is the distance between the detection electrode 1 or 2 and the simulated charged body 4, R is the load resistance, S is the area of the detection electrode 1 or 2, i is the current, and v is the voltage drop of R. Now, the detection electrode 1 or 2 is set at an amplitude Δ and each frequency ω with g0 as the center.
【0027】[0027]
【数14】[Math. 14]
【0028】となるように振動させたとする。この場合
、もしSuppose that it is vibrated as follows. In this case, if
【0029】[0029]
【数15】[Math. 15]
【0030】であれば、出力電圧vは[0030] Then, the output voltage v is
【0031】[0031]
【数16】[Math. 16]
【0032】となる。ここで[0032] here
【0033】[0033]
【数17】[Math. 17]
【0034】[0034]
【数18】[Math. 18]
【0035】[0035]
【数19】[Math. 19]
【0036】vの振幅aを測定すれば数14よりΔを求
めることができる。このΔは検出電極が1のときはΔ1
となり2のときはΔ2となる。By measuring the amplitude a of v, Δ can be obtained from Equation 14. This Δ is Δ1 when the detection electrode is 1
Then, when it is 2, it becomes Δ2.
【0037】[0037]
【実施例】図3に本発明による測定装置の一実施例を示
す。第1と第2の2つの検出電極1、2を、それぞれ支
柱1a、2aを介してスピーカ5、6に取り付け、帯電
体3を挟んで対向させる。スピーカ5、6のムービング
コイル5a、6aに発振器7、8から互いに異なる周波
数の信号を与え、両検出電極1、2を帯電体3面に対し
垂直に振動、つまり電気力線と平行に縦振動させる。例
えば、第1の検出電極1は659.5Hz、第2の検出
電極2は286Hzでそれぞれ振動させる。各検出電極
1、2と接地間との負荷抵抗R1、R2は例えば同じく
100KΩとする。又、検出電極1と帯電体3との距離
g1と、検出電極2と帯電体3との距離g2は同じとす
る(g1=g2=g0)。Embodiment FIG. 3 shows an embodiment of the measuring device according to the present invention. The first and second detection electrodes 1 and 2 are attached to speakers 5 and 6 via support columns 1a and 2a, respectively, and are opposed to each other with the charged body 3 in between. The moving coils 5a, 6a of the speakers 5, 6 are given signals of different frequencies from the oscillators 7, 8, and both the detection electrodes 1, 2 are vibrated perpendicularly to the surface of the charged body 3, that is, longitudinally vibrated parallel to the lines of electric force. let For example, the first detection electrode 1 is vibrated at 659.5 Hz, and the second detection electrode 2 is vibrated at 286 Hz. The load resistances R1 and R2 between each of the detection electrodes 1 and 2 and the ground are, for example, 100KΩ. Further, it is assumed that the distance g1 between the detection electrode 1 and the charged body 3 and the distance g2 between the detection electrode 2 and the charged body 3 are the same (g1=g2=g0).
【0038】第2の検出電極2には、帯電体3の一方の
面の表面電荷密度と、他方の面の表面電荷密度に応じた
電圧が表れる。この電圧を電圧増幅器9で増幅した後、
第1及び第2のバンドパスフィルタ10、11によって
それぞれの振動周波数成分だけを抽出する。本例の場合
、第1のバンドパスフィルタ10の通過周波数は659
.5Hz、第2のバンドパスフィルタ10の通過周波数
は286Hzにしてある。A voltage appears on the second detection electrode 2 in accordance with the surface charge density on one surface of the charged body 3 and the surface charge density on the other surface. After amplifying this voltage with the voltage amplifier 9,
Only the respective vibration frequency components are extracted by the first and second bandpass filters 10 and 11. In this example, the pass frequency of the first bandpass filter 10 is 659
.. The pass frequency of the second bandpass filter 10 is 286 Hz.
【0039】これら第1及び第2のバンドパスフィルタ
10、11のアナログ出力をA/Dコンバータ12、1
3でそれぞれデジタルに変換した後、CPU14におい
てリアルタイムで演算する。いま、第1及び第2のバン
ドパスフィルタ10、11から得られた出力電圧をそれ
ぞれV1、V2とする。又、図3において、電圧増幅器
9と第1のバンドパスフィルタ10とを合わせた利得を
A1、電圧増幅器9と第2のバンドパスフィルタ11と
を合わせた利得をA2とすると、V1、V2と、上記数
6の式で与えられるa21、上記数11の式で与えられ
るa22とは次の関係が成立する。
V1=A1a21 V2=A2a22The analog outputs of these first and second bandpass filters 10 and 11 are converted to A/D converters 12 and 1.
After converting them into digital data in step 3, the CPU 14 calculates them in real time. Now, it is assumed that the output voltages obtained from the first and second bandpass filters 10 and 11 are V1 and V2, respectively. Further, in FIG. 3, if the combined gain of the voltage amplifier 9 and the first bandpass filter 10 is A1, and the combined gain of the voltage amplifier 9 and the second bandpass filter 11 is A2, then V1, V2 and , a21 given by the above equation 6, and a22 given by the above equation 11, the following relationship holds true. V1=A1a21 V2=A2a22
【00
40】従って、a21及びa22の中に含まれる既定値
である負荷抵抗R1、R2と、距離g0と検出電極1、
2の振幅Δ1、Δ2と、更に既定値である利得A1、A
2をRAM15に記憶しておき、そして電圧V1,V2
を取り込んでROM16又は外部記憶手段に格納されて
いるプログラムに従って演算すれば、帯電体3の両面の
表面電荷密度σ1とσ2をリアルタイムで求めることが
できる。
本発明者らが行った一つの実験例によれば、距離g0が
1.5mmのとき、σ1が12.3×10−4C/m2
、σ2が12.8×10−4C/m2であった。00
40] Therefore, the load resistances R1 and R2 which are default values included in a21 and a22, the distance g0 and the detection electrode 1,
2 amplitudes Δ1 and Δ2, and further default values of gains A1 and A
2 is stored in the RAM 15, and the voltages V1 and V2 are
By importing and calculating according to a program stored in the ROM 16 or external storage means, the surface charge densities σ1 and σ2 on both sides of the charged body 3 can be determined in real time. According to one experimental example conducted by the present inventors, when the distance g0 is 1.5 mm, σ1 is 12.3×10-4C/m2
, σ2 was 12.8×10 −4 C/m 2 .
【0041】図3において、電圧比較器17、18、符
号判定回路19は帯電体3の帯電極性を判定するもので
、プラス・マイナスに従い発光素子20が点滅する。In FIG. 3, voltage comparators 17 and 18 and a sign determination circuit 19 are used to determine the charging polarity of the charged body 3, and the light emitting element 20 blinks according to plus or minus.
【0042】図4に、検出電極1、2の振幅を模擬帯電
体4を使用して事前に測定する測定例を示す。ここで、
検出電極1、2とも直径は5.5mm、検出電極1は6
59.5Hz、検出電極2は286Hzで振動させた。
そして、メモリスコープ21により測定して前記数13
の式からaを求め、更にこれから前記数14の式により
検出電極1、2のそれぞれの振幅Δ1、Δ2を求めたと
ころ、距離g0の変化により図5に示すような結果が得
られた。この図からg0=0のとき、Δ1=7μm、Δ
2=8μmと推定できる。FIG. 4 shows an example of measurement in which the amplitudes of the detection electrodes 1 and 2 are measured in advance using the simulated charged body 4. here,
Both detection electrodes 1 and 2 have a diameter of 5.5 mm, and detection electrode 1 has a diameter of 6 mm.
The vibration frequency was 59.5 Hz, and the detection electrode 2 was vibrated at 286 Hz. Then, as measured by the memory scope 21, the number 13 is
When a was determined from the formula, and the amplitudes Δ1 and Δ2 of the detection electrodes 1 and 2 were determined from the equation 14, the results shown in FIG. 5 were obtained depending on the change in the distance g0. From this figure, when g0=0, Δ1=7 μm, Δ
It can be estimated that 2=8 μm.
【0043】[0043]
【発明の効果】本発明によれば、帯電体の両表面の電荷
を、移動中であっても同時にかつリアルタイムで瞬時に
測定できるので、例えば走行するフィルムの両面の電荷
密度を測定する場合などに好適である。[Effects of the Invention] According to the present invention, the charges on both surfaces of a charged body can be measured simultaneously and instantaneously in real time even during movement, so for example when measuring the charge density on both sides of a moving film. suitable for
【図1】 本発明の原理説明図である。FIG. 1 is a diagram explaining the principle of the present invention.
【図2】 模擬帯電体を使用して検出電極の振幅を測
定する原理説明図である。FIG. 2 is a diagram explaining the principle of measuring the amplitude of a detection electrode using a simulated charged body.
【図3】 本発明の測定装置の一実施例のブロック図
である。FIG. 3 is a block diagram of an embodiment of the measuring device of the present invention.
【図4】 模擬帯電体を使用して検出電極の振幅を測
定する一例の概要図である。FIG. 4 is a schematic diagram of an example of measuring the amplitude of a detection electrode using a simulated charged body.
【図5】 測定した振幅を帯電体と検出電極間の距離
との関係で示したグラフである。FIG. 5 is a graph showing the relationship between the measured amplitude and the distance between the charged body and the detection electrode.
【図6】 従来の距離補償型電位計による測定法を示
すブロック図である。FIG. 6 is a block diagram showing a measurement method using a conventional distance-compensated electrometer.
1 第1の検出電極
2 第2の検出電極
3 帯電体
4 模擬帯電体
5 スピーカ
6 スピーカ
5a ムービングコイル
6a ムービングコイル
11 第1のバンドパスフィルタ12 第
2のバンドパスフィルタ14 CPU1 First detection electrode 2 Second detection electrode 3 Charged body 4 Simulated charged body 5 Speaker 6 Speaker 5a Moving coil 6a Moving coil 11 First bandpass filter 12 Second bandpass filter 14 CPU
Claims (4)
せて互いに異なる周波数で帯電体面に対し垂直に振動さ
せ、これら検出電極の出力を、その振動周波数に対応す
るフィルタを介して測定することを特徴とする表面電荷
密度の測定方法。Claim 1: Two detection electrodes are placed opposite to each other with a charged body in between and vibrated perpendicularly to the surface of the charged body at different frequencies, and the outputs of these detection electrodes are measured via a filter corresponding to the vibration frequency. A method for measuring surface charge density, characterized by:
て事前に測定することを特徴とする請求項1に記載の表
面電荷密度の測定方法。2. The method for measuring surface charge density according to claim 1, wherein the amplitude of the detection electrode is measured in advance using a simulated charged body.
と、これら検出電極を互いに異なる周波数で帯電体面に
対し垂直に振動させる2つの振動体と、検出電極の出力
からその振動周波数成分だけをそれぞれ抽出する2つの
バンドパスフィルタと、これらバンドパスフィルタを通
過した出力電圧を測定する電圧測定手段とを備えてなる
ことを特徴とする表面電荷密度の測定装置。3. Two detection electrodes facing each other with a charged body in between, two vibrating bodies that vibrate the detection electrodes perpendicularly to the surface of the charged body at different frequencies, and the vibration frequency component obtained from the output of the detection electrodes. What is claimed is: 1. A surface charge density measuring device comprising: two band-pass filters for extracting only two band-pass filters, and a voltage measuring means for measuring output voltages passed through these band-pass filters.
項3に記載の表面電荷密度の測定装置。4. The surface charge density measuring device according to claim 3, wherein the vibrating body is a moving coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9501491A JPH0766019B2 (en) | 1991-04-02 | 1991-04-02 | Method and apparatus for measuring surface charge density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9501491A JPH0766019B2 (en) | 1991-04-02 | 1991-04-02 | Method and apparatus for measuring surface charge density |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04305171A true JPH04305171A (en) | 1992-10-28 |
JPH0766019B2 JPH0766019B2 (en) | 1995-07-19 |
Family
ID=14126137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9501491A Expired - Lifetime JPH0766019B2 (en) | 1991-04-02 | 1991-04-02 | Method and apparatus for measuring surface charge density |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766019B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7466145B2 (en) | 2005-10-12 | 2008-12-16 | Hioki Denki Kabushiki Kaisha | Voltage measuring apparatus and power measuring apparatus |
US7834645B2 (en) | 2005-12-20 | 2010-11-16 | Hioki Denki Kabushiki Kaisha | Variable capacitance circuit, voltage measuring apparatus, and power measuring apparatus |
CN110596476A (en) * | 2019-09-17 | 2019-12-20 | 华南师范大学 | A fast method for measuring surface bound charge density |
-
1991
- 1991-04-02 JP JP9501491A patent/JPH0766019B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7466145B2 (en) | 2005-10-12 | 2008-12-16 | Hioki Denki Kabushiki Kaisha | Voltage measuring apparatus and power measuring apparatus |
US7834645B2 (en) | 2005-12-20 | 2010-11-16 | Hioki Denki Kabushiki Kaisha | Variable capacitance circuit, voltage measuring apparatus, and power measuring apparatus |
CN110596476A (en) * | 2019-09-17 | 2019-12-20 | 华南师范大学 | A fast method for measuring surface bound charge density |
Also Published As
Publication number | Publication date |
---|---|
JPH0766019B2 (en) | 1995-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5130654A (en) | Magnetolelastic amorphous metal ribbon gradiometer | |
WO2020253795A1 (en) | Modal localization effect-based weak magnetic field measurement device and method | |
US4467271A (en) | Test apparatus for determination of vibration characteristics of piezoelectric transducers | |
EP1426772B1 (en) | Impedance measuring circuit, its method, and capacitance measuring circuit | |
JPS60142203A (en) | Device and method of measuring minute distance | |
JPH03267754A (en) | Method and device for eddy current flaw detection | |
JPH04305171A (en) | Method and apparatus for measuring surface charge density | |
US20080079435A1 (en) | Electrostatic Voltmeter With Spacing-Independent Speed of Response | |
RU195153U1 (en) | Device for measuring infrasonic vibrations of the environment | |
JP3522323B2 (en) | Distance compensation type surface electrometer | |
JPH0224476B2 (en) | ||
Liess et al. | The scanning Kelvin microscope with voltage modulation: a new principle to image discrete surface potentials | |
JP3277747B2 (en) | Capacitive electromagnetic flowmeter | |
JP2763255B2 (en) | Passive element value measuring device using current vector | |
JPS62121325A (en) | Electromagnetic type stress measuring instrument not influenced by lift-off | |
RU2115115C1 (en) | Process of detection of gas-saturated layers on titanium alloys and device for its implementation | |
SU1390578A1 (en) | Method of determining potential of a charged dielectric surface | |
RU2260811C1 (en) | Method for determining the charge surface density of plane dielectrics | |
JPS5938731Y2 (en) | phase detector | |
SU1396063A1 (en) | Electric meter | |
JP3157907B2 (en) | Acceleration detector | |
SU1394167A1 (en) | Method of measuring components of intensity vector of undisturbed electrostatic field of atmosphere from aircraft | |
Wang et al. | Research on the dynamic test method for force-balance accelerometers (FBAs) with electric stimulation Part 2. An improved test method for voltage-source type FBAs | |
JP3371847B2 (en) | Impedance / voltage conversion device and its conversion method | |
SU1411569A2 (en) | Superimposed electromagnetic transducer for measuring thickness of electrically conducting coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 15 |