JPH04299576A - Photovoltaic element and its manufacture - Google Patents
Photovoltaic element and its manufactureInfo
- Publication number
- JPH04299576A JPH04299576A JP3089930A JP8993091A JPH04299576A JP H04299576 A JPH04299576 A JP H04299576A JP 3089930 A JP3089930 A JP 3089930A JP 8993091 A JP8993091 A JP 8993091A JP H04299576 A JPH04299576 A JP H04299576A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- amorphous silicon
- amorphous semiconductor
- type amorphous
- silicon layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000004065 semiconductor Substances 0.000 claims abstract description 29
- 239000002019 doping agent Substances 0.000 claims abstract description 19
- 239000007789 gas Substances 0.000 claims abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 88
- 229910021417 amorphous silicon Inorganic materials 0.000 description 53
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 229910052698 phosphorus Inorganic materials 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000036211 photosensitivity Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、太陽光等の光エネル
ギーを直接電気エネルギーに変換する光起電力素子及び
その製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device that directly converts light energy such as sunlight into electrical energy, and a method for manufacturing the same.
【0002】0002
【従来の技術】従来の光起電力装置は、ガラス等の絶縁
性透明基板上に、酸化インジウム・スズ(ITO)又は
酸化錫(SnO2)等の透光性導電性酸化物からなる透
明電極を被着せしめ、その上にp型非晶質シリコン層と
、光反射を受け主に電子及び正孔の光キャリアを発生す
るi型非晶質シリコン層と、n型非晶質シリコン層とが
順次積層され、更にその上にアルミニウム(AI)、銀
(Ag)等の背面電極が被着されて構成される。[Prior Art] A conventional photovoltaic device has a transparent electrode made of a light-transmitting conductive oxide such as indium tin oxide (ITO) or tin oxide (SnO2) on an insulating transparent substrate such as glass. A p-type amorphous silicon layer, an i-type amorphous silicon layer that receives light reflection and generates photocarriers mainly electrons and holes, and an n-type amorphous silicon layer are deposited thereon. They are sequentially laminated, and a back electrode made of aluminum (AI), silver (Ag), etc. is further deposited thereon.
【0003】0003
【発明が解決しようとする課題】一般に、p型非晶質シ
リコン層、n型非晶質シリコン層、即ち導電型を決定す
る不純物がドピーングされたドーピング層は欠陥が多い
ため発電に寄与できない。また、非晶質シリコン層を形
成するときに、ドーピング元素を含むガスを混入する従
来のドーピング層の形成方法では、そのドーピング効率
が低い。このため導電率が低いので、太陽電池等の光起
電力装置では、ある程度その膜厚を厚くして電極等の接
触抵抗による損失を低減していた。Generally, p-type amorphous silicon layers and n-type amorphous silicon layers, that is, doped layers doped with impurities that determine conductivity type, cannot contribute to power generation because they have many defects. Further, in the conventional method of forming a doping layer in which a gas containing a doping element is mixed when forming an amorphous silicon layer, the doping efficiency is low. Because of this, conductivity is low, so in photovoltaic devices such as solar cells, the film thickness has been increased to some extent to reduce loss due to contact resistance of electrodes, etc.
【0004】上記したように、従来の方法ではドーピン
グ層の導電率が低いため、十分な特性を得るためには、
その膜厚を厚くしなければならず、そのため光の有効利
用ができず、光起電力素子の効率向上を妨げていた。As mentioned above, in the conventional method, the conductivity of the doped layer is low, so in order to obtain sufficient characteristics,
The thickness of the film had to be increased, which made it impossible to use light effectively, which hindered improvement in the efficiency of photovoltaic devices.
【0005】この発明は、上述した従来の問題点を解消
するためになされたもので、ドーピング効率を高め、導
電率の高いドーピング層を提供し、光起電力素子の効率
を向上させることをその課題とする。The present invention was made to solve the above-mentioned conventional problems, and its purpose is to improve the efficiency of a photovoltaic device by increasing doping efficiency and providing a doped layer with high conductivity. Take it as a challenge.
【0006】[0006]
【課題を解決するための手段】この発明の光起電力素子
は、一導電型非晶質半導体層、i型非晶質半導体層、他
導電型非晶質半導体層、をこの順序で積層してなる光起
電力素子であって、上記他導電型非晶質半導体層は、上
記i型非晶質半導体層の表面または微小にドーピング元
素を含んだ非晶質半導体層に、ドーパントを注入するこ
とにより形成されていることを特徴とする。[Means for Solving the Problems] A photovoltaic device of the present invention has an amorphous semiconductor layer of one conductivity type, an i-type amorphous semiconductor layer, and an amorphous semiconductor layer of another conductivity type stacked in this order. In the photovoltaic device, the other conductivity type amorphous semiconductor layer is formed by injecting a dopant into the surface of the i-type amorphous semiconductor layer or into the amorphous semiconductor layer containing a minute amount of a doping element. It is characterized by being formed by
【0007】また、上記他導電型非晶質半導体層にドー
ピングされたドーパントの濃度が3%以上であることが
好ましい。[0007] Furthermore, it is preferable that the concentration of the dopant doped into the other conductivity type amorphous semiconductor layer is 3% or more.
【0008】更に、ドーパントの注入は、そのドーパン
ト元素を含むガス及び水素の混合ガスのプラズマ分解に
より行なうとよい。Furthermore, the dopant is preferably implanted by plasma decomposition of a mixed gas of hydrogen and a gas containing the dopant element.
【0009】また、この発明の光起電力素子の製造方法
は、基板上に、一導電型非晶質半導体層、i型非晶質半
導体層をこの順序で形成した後、他導電型となるとドー
パント元素を含むガス及び水素の混合ガスをプラズマ分
解し、上記i型非晶質半導体層表面にドーパント元素の
ドーピングを行い他導電型非晶質半導体層を形成するこ
とを特徴とする。Further, the method for manufacturing a photovoltaic device of the present invention includes forming an amorphous semiconductor layer of one conductivity type and an amorphous semiconductor layer of an i-type on a substrate in this order, and then forming an amorphous semiconductor layer of another conductivity type. The method is characterized in that a mixed gas of hydrogen and a gas containing a dopant element is subjected to plasma decomposition, and the surface of the i-type amorphous semiconductor layer is doped with the dopant element to form an amorphous semiconductor layer of other conductivity type.
【0010】0010
【作用】この発明によれば、導電型を決定する不純物が
混入された非晶質半導体層、即ちドーピング層形成に、
i型非晶質半導体層表面または微小にドーピング元素を
含んだ非晶質半導体層へのドーパント注入を行うことで
、導電率の高いドーピング層が形成できる。[Operation] According to the present invention, in the formation of an amorphous semiconductor layer mixed with an impurity that determines the conductivity type, that is, a doping layer,
A doped layer with high conductivity can be formed by injecting a dopant into the surface of an i-type amorphous semiconductor layer or into an amorphous semiconductor layer containing a minute amount of a doping element.
【0011】[0011]
【実施例】以下、この発明の実施例につき図面を参照し
て説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.
【0012】図1は、この発明の一実施例の光起電力素
子を用いた太陽電池を示す概略図である。FIG. 1 is a schematic diagram showing a solar cell using a photovoltaic element according to an embodiment of the present invention.
【0013】図1において、1は光入射側となるガラス
等の絶縁性透明基板、2はITO又はSnO2等の透光
性導電型酸化物からなる透明電極で、透明基板1上に熱
CVD法等により被着される。In FIG. 1, 1 is an insulating transparent substrate such as glass which becomes the light incident side, and 2 is a transparent electrode made of a translucent conductive oxide such as ITO or SnO2. It is deposited by etc.
【0014】3はこの発明にかかる光起電力素子であり
、p型非晶質シリコン層4、バッファ層5、光反射を受
け主に電子及び正孔の光キャリアを発生するノンドープ
のi型非晶質シリコン層6、i型非晶質シリコン層6に
ドーパントを注入して形成されるn型非晶質シリコン層
7からなる。3 is a photovoltaic element according to the present invention, which includes a p-type amorphous silicon layer 4, a buffer layer 5, a non-doped i-type non-conductor that generates photocarriers mainly electrons and holes upon reflection of light. It consists of a crystalline silicon layer 6 and an n-type amorphous silicon layer 7 formed by implanting a dopant into the i-type amorphous silicon layer 6.
【0015】8はアルミニウム、銀等の背面電極である
。8 is a back electrode made of aluminum, silver, or the like.
【0016】さて、この発明の特徴とするところはi型
非晶質シリコン層6にドーパントを注入して形成された
n型非晶質シリコン層7にある。i型非晶質シリコン層
6を形成した後、燐(P)元素を含むガス及び水素の混
合ガスをプラズマ分解し、このi型非晶質シリコン層6
表面に燐(P)をドーピングし、n型非晶質シリコン層
7を形成したものである。このドーピングの方法を以下
、ポストドーピング法ということにする。Now, the feature of the present invention lies in the n-type amorphous silicon layer 7 formed by implanting a dopant into the i-type amorphous silicon layer 6. After forming the i-type amorphous silicon layer 6, a mixed gas of hydrogen and a gas containing phosphorus (P) element is subjected to plasma decomposition to form the i-type amorphous silicon layer 6.
The surface is doped with phosphorus (P) to form an n-type amorphous silicon layer 7. This doping method will hereinafter be referred to as a post-doping method.
【0017】次に、この発明による光起電力素子を用い
た太陽電池の具体的形成条件を表1に示す。また比較の
ために従来の方法による太陽電池も試作した。その具体
的形成条件を表2に示す。形成温度は全て200℃であ
る。厳密に特性比較を行うため、i非晶質シリコン層,
n非晶質シリコン層の総合膜厚は同じとした。Next, Table 1 shows specific conditions for forming a solar cell using the photovoltaic element according to the present invention. For comparison, we also prototyped a solar cell using a conventional method. The specific formation conditions are shown in Table 2. All formation temperatures were 200°C. In order to strictly compare the characteristics, i amorphous silicon layer,
The total thickness of the n-amorphous silicon layer was the same.
【0018】この発明による光起電力素子3では、n型
非晶質シリコン層7はi型非晶質シリコン層6形成後、
ホスフィン(PH3)及び水素(H2)の混合ガスをプ
ラズマ分解し、i型非晶質シリコン層6への燐(P)の
ドーピングを行った。In the photovoltaic device 3 according to the present invention, the n-type amorphous silicon layer 7 is formed after the i-type amorphous silicon layer 6 is formed.
A mixed gas of phosphine (PH3) and hydrogen (H2) was subjected to plasma decomposition, and the i-type amorphous silicon layer 6 was doped with phosphorus (P).
【0019】[0019]
【表1】[Table 1]
【0020】[0020]
【表2】[Table 2]
【0021】上記の各形成条件により作成した2個の太
陽電池における燐(P)の深さ方向分布をSIMS(二
次イオン質量分析法)により分析した。その結果を図3
に示す。この場合、裏面電極(Ag)のない場所で測定
している。[0021] The depth distribution of phosphorus (P) in two solar cells produced under each of the above formation conditions was analyzed by SIMS (secondary ion mass spectrometry). The results are shown in Figure 3.
Shown below. In this case, measurements are taken at a location where there is no back electrode (Ag).
【0022】本発明による太陽電池のn非晶質シリコン
層7の厚さは実効的に100Åであり、従来の太陽電池
のn非晶質シリコン層(400Å)よりも薄いことが分
かる。この膜厚の違いが図2に示したような長波長の感
度の差となっている。It can be seen that the effective thickness of the n-amorphous silicon layer 7 of the solar cell according to the present invention is 100 Å, which is thinner than the n-amorphous silicon layer (400 Å) of the conventional solar cell. This difference in film thickness results in a difference in sensitivity at long wavelengths as shown in FIG.
【0023】上述した形成条件で作成した本発明による
太陽電池(本発明■)と従来の太陽電池との場合の特性
を表3に示す。Table 3 shows the characteristics of the solar cell according to the present invention (invention ①) prepared under the above-mentioned formation conditions and a conventional solar cell.
【0024】[0024]
【表3】[Table 3]
【0025】表3から本発明の光起電力素子を用いた太
陽電池の電流が増加していることが分かる。この原因は
、図2に示すように長波長光の光感度が向上したことに
よる。即ち、本発明により光が有効に利用できたことを
示している。It can be seen from Table 3 that the current of the solar cell using the photovoltaic element of the present invention increases. The reason for this is that the photosensitivity to long wavelength light has improved as shown in FIG. That is, it shows that light could be effectively utilized according to the present invention.
【0026】さらに、従来の条件でn非晶質シリコン層
の膜厚を100Åとして形成した太陽電池では、表3に
示すように開放電圧の低下が見られ、十分なポテンシャ
ルが得られていないことが分かる。これは、本発明によ
るn非晶質シリコン層の形成法がドーピング効率を高く
でき太陽電池用ドーピング層として十分な特性の膜が得
られることを示している。Furthermore, in a solar cell formed under conventional conditions with an n-amorphous silicon layer having a thickness of 100 Å, a decrease in open-circuit voltage was observed as shown in Table 3, indicating that sufficient potential was not obtained. I understand. This shows that the method for forming an n-amorphous silicon layer according to the present invention can increase doping efficiency and provide a film with sufficient characteristics as a doped layer for solar cells.
【0026】また上述のn層100Åの従来構造の太陽
電池を形成した後、本発明例と同様なPH3/H2によ
る処理を行った結果、その太陽電池(本発明■)の特性
は表3に示すように向上した。このように、従来の方法
によるドーピング層においても、さらにポストドーピン
グすることにより、ドーピング効率を向上できることが
分かる。[0026] Furthermore, after forming the solar cell of the conventional structure with an n-layer of 100 Å as described above, the same treatment with PH3/H2 as in the example of the present invention was performed. improved as shown. As described above, it can be seen that even in the doped layer formed by the conventional method, the doping efficiency can be improved by further performing post-doping.
【0027】本発明では、表面層(金属と界面近傍)が
最もドーパント(この場合には燐(P))の量が多くな
る。そこで燐(P)濃度をAES(オージェ電子分光法
)により調べ、開放電圧との相関を調べた。その結果は
、図4に示す通りである。従来例(n膜厚=100Å)
よりも特性が向上するのは燐(P)濃度が3%以上であ
ることが分かる。従って、燐(P)濃度は3%以上であ
ることが好ましい。In the present invention, the surface layer (near the interface with the metal) has the largest amount of dopant (phosphorus (P) in this case). Therefore, the phosphorus (P) concentration was investigated by AES (Auger electron spectroscopy), and the correlation with the open circuit voltage was investigated. The results are shown in FIG. Conventional example (n film thickness = 100 Å)
It can be seen that the characteristics are more improved when the phosphorus (P) concentration is 3% or more. Therefore, the phosphorus (P) concentration is preferably 3% or more.
【0028】次に、この発明を図5に示す構造の積層型
非晶質シリコン太陽電池に適用した実施例について説明
する。図5は積層型非晶質シリコン太陽電池所謂タンデ
ム構造の太陽電池を示す概略図である。Next, an embodiment in which the present invention is applied to a stacked amorphous silicon solar cell having the structure shown in FIG. 5 will be described. FIG. 5 is a schematic diagram showing a stacked amorphous silicon solar cell, a so-called tandem structure solar cell.
【0029】図5において、1は絶縁性透明基板、2は
透明電極である。In FIG. 5, 1 is an insulating transparent substrate, and 2 is a transparent electrode.
【0030】31はこの発明にかかる第1層目の光起電
力素子であり、p型非晶質シリコン層41、バッファ層
51、i型非晶質シリコン層61、i型非晶質シリコン
層61にドーパントを注入して形成されるn型非晶質シ
リコン層71からなる。31 is a first layer photovoltaic element according to the present invention, which includes a p-type amorphous silicon layer 41, a buffer layer 51, an i-type amorphous silicon layer 61, and an i-type amorphous silicon layer. It consists of an n-type amorphous silicon layer 71 formed by implanting dopants into 61.
【0031】32はこの発明にかかる第2層目の光起電
力素子であり、p型非晶質シリコン層42、バッファ層
52、i型非晶質シリコン層62、i型非晶質シリコン
層62にドーパントを注入して形成されるn型非晶質シ
リコン層72からなる。32 is a second layer photovoltaic element according to the present invention, which includes a p-type amorphous silicon layer 42, a buffer layer 52, an i-type amorphous silicon layer 62, and an i-type amorphous silicon layer. It consists of an n-type amorphous silicon layer 72 formed by implanting dopants into 62.
【0032】8はアルミニウム、銀等の背面電極である
。8 is a back electrode made of aluminum, silver, or the like.
【0033】この太陽電池の形成条件は表1と同じであ
るが、タンデム構造にするため各層の膜厚は表4に示す
通りである。The conditions for forming this solar cell were the same as those shown in Table 1, but the thickness of each layer was as shown in Table 4 in order to form a tandem structure.
【0034】但し、本発明においては、前述の実施例と
同様i型非晶質シリコン層の膜厚をn型非晶質シリコン
層との和(i61の場合には870Å、i62の場合に
は4100Å)として形成した後、表1の条件でポスト
ドーピングを行った。However, in the present invention, the thickness of the i-type amorphous silicon layer is the sum of the thickness of the n-type amorphous silicon layer (870 Å in the case of i61 and 870 Å in the case of i62), as in the above embodiment. 4100 Å), post-doping was performed under the conditions shown in Table 1.
【0035】[0035]
【表4】[Table 4]
【0036】この場合の特性を、表5に示す。タンデム
型の場合には、特にn/pの逆接合特性(n型非晶質シ
リコン層71/p型非晶質シリコン層42)が特性(特
に開放電圧)に及ぼす影響が大きい。ところが、本発明
では開放電圧が高く良好な接合が得られていることが分
かる。Table 5 shows the characteristics in this case. In the case of a tandem type, the n/p reverse junction characteristic (n-type amorphous silicon layer 71/p-type amorphous silicon layer 42) has a particularly large influence on the characteristics (particularly the open-circuit voltage). However, it can be seen that in the present invention, the open circuit voltage is high and a good junction is obtained.
【0037】[0037]
【表5】[Table 5]
【0038】ここに示したタンデムのような積層構造の
場合には、光入射側を上部とした場合、逆接合部の下部
にも発電層(i型非晶質シリコン層)があるため、逆接
合部での光吸収を減少させることが特性の向上につなが
る。このため、一般には表4のn型非晶質シリコン層7
1のように、n型非晶質シリコン層71をn型非晶質シ
リコン層72よりも薄くしている。このような場合には
、本発明の効果も大きくなる。即ち、表5の最下段に示
したように、逆接合部のみ本発明の方法で形成しても、
効果が大きいことが分かる。In the case of a laminated structure such as the tandem shown here, when the light incidence side is set at the top, there is also a power generation layer (i-type amorphous silicon layer) at the bottom of the reverse junction. Reducing light absorption at the junction leads to improved properties. Therefore, in general, n-type amorphous silicon layer 7 in Table 4
1, the n-type amorphous silicon layer 71 is made thinner than the n-type amorphous silicon layer 72. In such a case, the effects of the present invention will be greater. That is, as shown in the bottom row of Table 5, even if only the reverse joint is formed by the method of the present invention,
It can be seen that the effect is large.
【0039】以上の実施例は透光性の基板(ガラス)を
用い、p,i,nの順に形成する場合について示したが
、逆構造、即ちn,i,pの順に形成する場合も同様で
ある。この場合には、p型非晶質シリコン層を本発明の
ポストドーピング法で形成すればよい。さらに、非晶質
シリコンゲルマニウム(a−SiGe)を用いた3層構
造の太陽電池でも同様の効果が得られる。[0039] In the above embodiment, a translucent substrate (glass) is used, and p, i, and n are formed in this order. However, the same applies to the case where the reverse structure is formed, that is, n, i, and p are formed in this order. It is. In this case, the p-type amorphous silicon layer may be formed by the post-doping method of the present invention. Furthermore, a similar effect can be obtained with a solar cell having a three-layer structure using amorphous silicon germanium (a-SiGe).
【0040】[0040]
【発明の効果】以上説明したように、本発明によれば、
より有効なドーピング層が得られるため、非晶質半導体
からなる太陽電池の特性向上に有効である。[Effects of the Invention] As explained above, according to the present invention,
Since a more effective doping layer can be obtained, it is effective in improving the characteristics of solar cells made of amorphous semiconductors.
【図1】 この発明の第1の実施例を示し、この発明
の光起電力素子を用いた太陽電池を示す概略図である。FIG. 1 is a schematic diagram illustrating a solar cell using a photovoltaic element of the present invention, showing a first embodiment of the present invention.
【図2】 この発明の光起電力素子を用いた太陽電池
と従来の太陽電池の光感度を示す特性図である。FIG. 2 is a characteristic diagram showing the photosensitivity of a solar cell using the photovoltaic element of the present invention and a conventional solar cell.
【図3】 この発明と従来例の夫々の燐濃度の深さ方
向の分布を示す特性図である。FIG. 3 is a characteristic diagram showing the distribution of phosphorus concentration in the depth direction of the present invention and a conventional example.
【図4】 この発明の光起電力素子を用いた太陽電池
と従来の太陽電池における燐濃度の依存性を示す特性図
である。FIG. 4 is a characteristic diagram showing the dependence of phosphorus concentration in a solar cell using the photovoltaic element of the present invention and a conventional solar cell.
【図5】 この発明の第2の実施例を示し、この発明
の光起電力素子を用いた積層型非晶質シリコン太陽電池
を示す概略図である。FIG. 5 is a schematic diagram illustrating a second embodiment of the present invention, illustrating a stacked amorphous silicon solar cell using the photovoltaic element of the present invention.
1 絶縁性透明基板 2 透明電極 3 光起電力素子 4 p型非晶質シリコン層 5 バッファ層 6 i型非晶質シリコン層 7 n型非晶質シリコン層 8 背面電極 31 第1層目の光起電力素子 41 p型非晶質シリコン層 51 バッファ層 61 i型非晶質シリコン層 71 n型非晶質シリコン層 32 第2層目の光起電力素子 42 p型非晶質シリコン層 52 バッファ層 62 i型非晶質シリコン層 72n型非晶質シリコン層 1 Insulating transparent substrate 2 Transparent electrode 3 Photovoltaic element 4 P-type amorphous silicon layer 5 Buffer layer 6 I-type amorphous silicon layer 7 N-type amorphous silicon layer 8 Back electrode 31 First layer photovoltaic element 41 p-type amorphous silicon layer 51 Buffer layer 61 I-type amorphous silicon layer 71 N-type amorphous silicon layer 32 Second layer photovoltaic element 42 p-type amorphous silicon layer 52 Buffer layer 62 I-type amorphous silicon layer 72n type amorphous silicon layer
Claims (4)
半導体層、他導電型非晶質半導体層、をこの順序で積層
してなる光起電力素子であって、上記他導電型非晶質半
導体層は、上記i型非晶質半導体層表面または微小にド
ーピング元素を含んだ非晶質半導体層に、ドーパントを
注入することにより形成されていることを特徴とする光
起電力素子。1. A photovoltaic element comprising an amorphous semiconductor layer of one conductivity type, an i-type amorphous semiconductor layer, and an amorphous semiconductor layer of another conductivity type, which are laminated in this order, A photovoltaic device characterized in that the amorphous semiconductor layer is formed by injecting a dopant into the surface of the i-type amorphous semiconductor layer or into the amorphous semiconductor layer containing a minute amount of a doping element. element.
ングされたドーパントの濃度が3%以上であることを特
徴とする請求項1に記載の光起電力素子。2. The photovoltaic device according to claim 1, wherein the concentration of the dopant doped into the other conductivity type amorphous semiconductor layer is 3% or more.
元素を含むガス及び水素の混合ガスのプラズマ分解によ
り行なわれることを特徴とする請求項1または2に記載
の光起電力素子。3. The photovoltaic device according to claim 1, wherein the dopant is implanted by plasma decomposition of a mixed gas of hydrogen and a gas containing the dopant element.
i型非晶質半導体層をこの順序で形成した後、他導電型
となるとドーパント元素を含むガス及び水素の混合ガス
をプラズマ分解し、上記i型非晶質半導体層表面にドー
パント元素のドーピングを行い他導電型非晶質半導体層
を形成することを特徴とする光起電力素子の製造方法。4. On the substrate, an amorphous semiconductor layer of one conductivity type,
After forming the i-type amorphous semiconductor layer in this order, when a different conductivity type is obtained, a mixed gas of a gas containing a dopant element and hydrogen is plasma decomposed to dope the surface of the i-type amorphous semiconductor layer with a dopant element. 1. A method for manufacturing a photovoltaic device, the method comprising: forming an amorphous semiconductor layer of a different conductivity type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3089930A JPH04299576A (en) | 1991-03-27 | 1991-03-27 | Photovoltaic element and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3089930A JPH04299576A (en) | 1991-03-27 | 1991-03-27 | Photovoltaic element and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04299576A true JPH04299576A (en) | 1992-10-22 |
Family
ID=13984418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3089930A Pending JPH04299576A (en) | 1991-03-27 | 1991-03-27 | Photovoltaic element and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04299576A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5589007A (en) * | 1993-01-29 | 1996-12-31 | Canon Kabushiki Kaisha | Photovoltaic elements and process and apparatus for their formation |
US5716480A (en) * | 1995-07-13 | 1998-02-10 | Canon Kabushiki Kaisha | Photovoltaic device and method of manufacturing the same |
US5720826A (en) * | 1995-05-30 | 1998-02-24 | Canon Kabushiki Kaisha | Photovoltaic element and fabrication process thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245186A (en) * | 1984-05-18 | 1985-12-04 | Matsushita Electric Ind Co Ltd | Photoelectric conversion device |
JPH01103829A (en) * | 1987-10-16 | 1989-04-20 | Fuji Electric Corp Res & Dev Ltd | Manufacture of amorphous semiconductor |
JPH01290267A (en) * | 1988-05-18 | 1989-11-22 | Fuji Electric Co Ltd | Manufacturing method of photoelectric conversion element |
JPH02252235A (en) * | 1989-03-27 | 1990-10-11 | Toshiba Corp | Manufacture of amorphous semiconductor film |
-
1991
- 1991-03-27 JP JP3089930A patent/JPH04299576A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245186A (en) * | 1984-05-18 | 1985-12-04 | Matsushita Electric Ind Co Ltd | Photoelectric conversion device |
JPH01103829A (en) * | 1987-10-16 | 1989-04-20 | Fuji Electric Corp Res & Dev Ltd | Manufacture of amorphous semiconductor |
JPH01290267A (en) * | 1988-05-18 | 1989-11-22 | Fuji Electric Co Ltd | Manufacturing method of photoelectric conversion element |
JPH02252235A (en) * | 1989-03-27 | 1990-10-11 | Toshiba Corp | Manufacture of amorphous semiconductor film |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5589007A (en) * | 1993-01-29 | 1996-12-31 | Canon Kabushiki Kaisha | Photovoltaic elements and process and apparatus for their formation |
US5720826A (en) * | 1995-05-30 | 1998-02-24 | Canon Kabushiki Kaisha | Photovoltaic element and fabrication process thereof |
US5716480A (en) * | 1995-07-13 | 1998-02-10 | Canon Kabushiki Kaisha | Photovoltaic device and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109728103B (en) | Solar cell | |
US6878921B2 (en) | Photovoltaic device and manufacturing method thereof | |
CN114242803B (en) | Solar cell and preparation method thereof, photovoltaic module | |
EP2110859B1 (en) | Laminate type photoelectric converter and method for fabricating the same | |
JP2006080557A (en) | Improved stabilization characteristics of amorphous silicon-based devices fabricated by high hydrogen dilution low temperature plasma deposition | |
KR20180116460A (en) | Solar cell, method for manufacturing solar cell, and solar cell module | |
JPH06151916A (en) | Multi-junction photoelectric device and manufacturing method thereof | |
US4398054A (en) | Compensated amorphous silicon solar cell incorporating an insulating layer | |
KR20080045598A (en) | Solar cell and manufacturing method thereof | |
KR20140110213A (en) | Solar cell | |
KR101886818B1 (en) | Method for manufacturing of heterojunction silicon solar cell | |
Park et al. | Tunnel oxide passivating electron contacts for high‐efficiency n‐type silicon solar cells with amorphous silicon passivating hole contacts | |
CN113875025A (en) | Solar cell and method for manufacturing solar cell | |
CN101246926A (en) | Amorphous boron-carbon alloy and photovoltaic application thereof | |
CN112349801A (en) | Intermediate series layer of laminated battery, production method and laminated battery | |
JP4110718B2 (en) | Manufacturing method of multi-junction thin film solar cell | |
JP2896793B2 (en) | Method for manufacturing photovoltaic device | |
JPH04299576A (en) | Photovoltaic element and its manufacture | |
JP7344593B2 (en) | Semiconductor device, solar cell, and semiconductor device manufacturing method | |
KR20130061346A (en) | Solar cell and method of manufacturing the same | |
JPH05275725A (en) | Photovoltaic device and its manufacture | |
JP2744680B2 (en) | Manufacturing method of thin film solar cell | |
JPS62256481A (en) | Semiconductor device | |
JP2003298090A (en) | Solar cell element and its fabricating method | |
JP3245962B2 (en) | Manufacturing method of thin film solar cell |