[go: up one dir, main page]

JPH04297808A - Error correction of phase shift fizeau interferometer - Google Patents

Error correction of phase shift fizeau interferometer

Info

Publication number
JPH04297808A
JPH04297808A JP3087578A JP8757891A JPH04297808A JP H04297808 A JPH04297808 A JP H04297808A JP 3087578 A JP3087578 A JP 3087578A JP 8757891 A JP8757891 A JP 8757891A JP H04297808 A JPH04297808 A JP H04297808A
Authority
JP
Japan
Prior art keywords
phase
phase shift
light
reference mirror
test sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3087578A
Other languages
Japanese (ja)
Other versions
JP2529901B2 (en
Inventor
Gun Chin
軍 陳
Katsunori Ebara
克典 江原
Taizo Nakamura
泰三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP3087578A priority Critical patent/JP2529901B2/en
Publication of JPH04297808A publication Critical patent/JPH04297808A/en
Application granted granted Critical
Publication of JP2529901B2 publication Critical patent/JP2529901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To reduce errors due to repetitive reflection by obtaining surface information of a test sample from the average of test phases obtained from two times of 4-interference fringe data pi/4 off in initial phase. CONSTITUTION:In the case of calculation by 4-point phase derivation algorithm, an error changes by a quadruple cycle of test phase: determining the average of two times of measurement pi/4 off in initial phase allows removal of errors. That is, with the initial phase set 0 deg. a 90 deg. phase shift is given to latch interference fringe data by repeating this scanning four times. Next, with the initial phase set 45 deg. interference fringe data is latched four times in the same manner. The result of first and second operations is obtained. As a result, the average of both cancels the respective errors from error characteristics carried by both.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は位相シフトフィゾー干渉
計の誤差補正方法、特に参照ミラーと被検試料面との繰
返し反射による誤差の補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting errors in a phase shift Fizeau interferometer, and more particularly to a method for correcting errors caused by repeated reflections between a reference mirror and a surface of a sample to be measured.

【0002】0002

【従来の技術】非接触で測定対象の表面微細形状の測定
を行なう場合等に、位相シフト干渉法を用いた干渉顕微
鏡が注目されている。この位相シフトフィゾー干渉計1
0は、図5に示すように光源12から出射された光はビ
ームスプリッタ14により図中下方に反射され、その一
部が参照ミラー16により反射され、更に参照ミラー1
6を透過した光が被検試料18に反射される。そして、
前記参照ミラー16からの反射光と前記被検試料18か
らの反射光を合成し干渉光を生起させる。そこで干渉計
に位相シフトを導入し、干渉縞を導出させ、その時の干
渉縞をカメラ20により検出し、試料の表面形状の情報
を得るものである。
2. Description of the Related Art Interference microscopes using phase shift interferometry are attracting attention when measuring the fine surface shape of an object in a non-contact manner. This phase shift Fizeau interferometer 1
0, as shown in FIG. 5, the light emitted from the light source 12 is reflected downward in the figure by the beam splitter 14, a part of it is reflected by the reference mirror 16, and further reflected by the reference mirror 1.
The light that has passed through 6 is reflected by test sample 18 . and,
The reflected light from the reference mirror 16 and the reflected light from the test sample 18 are combined to generate interference light. Therefore, a phase shift is introduced into the interferometer to derive interference fringes, and the interference fringes at that time are detected by the camera 20 to obtain information on the surface shape of the sample.

【0003】この位相シフト干渉計において、表面形状
の情報を得るためには四点法位相導出アルゴリズムが用
いられることが多い。四点法位相導出アルゴリズムは、
干渉縞の一周期を四分割し、π/2ずつの位相シフトを
与えて干渉縞を偏移させ、四つの干渉縞のデータから位
相を計算する方法である。すなわち、被検試料表面18
及び参照ミラー16の反射率が低く、二次以上の繰返し
反射の影響が無視できるとすれば、像面における干渉縞
の強度分布は、次の数1で表わすことができる。
In this phase shift interferometer, a four-point phase derivation algorithm is often used to obtain surface shape information. The four-point phase derivation algorithm is
In this method, one period of the interference fringes is divided into four, a phase shift of π/2 is applied to shift the interference fringes, and the phase is calculated from the data of the four interference fringes. That is, the test sample surface 18
Assuming that the reflectance of the reference mirror 16 is low and that the influence of secondary and higher-order repeated reflections can be ignored, the intensity distribution of interference fringes on the image plane can be expressed by the following equation 1.

【0004】0004

【数1】I(x,y)=a(x,y)+b(x,y)c
os{φ(x,y)}ここで、φ(x,y)は2π・ω
(x,y)/λであり、ω(x,y)は被検面の高低分
布である。従って、このω(x,y)を求めることによ
り、被検試料の表面情報を得ることができる。また、a
(x,y)及びb(x,y)はそれぞれ被検表面の特定
点については定数と考えることができる。そこで、何ら
かの方法で位相シフトΔφを導入すると、前記数1を下
記の数2のように置き換えることができる。
[Equation 1] I (x, y) = a (x, y) + b (x, y) c
os {φ(x, y)} where φ(x, y) is 2π・ω
(x, y)/λ, and ω(x, y) is the height distribution of the test surface. Therefore, by determining this ω(x, y), surface information of the test sample can be obtained. Also, a
(x, y) and b(x, y) can each be considered constants for specific points on the surface to be tested. Therefore, if a phase shift Δφ is introduced by some method, the above equation 1 can be replaced as shown in the following equation 2.

【0005】[0005]

【数2】 I(x,y,Δφ)=a(x,y)+b(x,y)co
s{φ(x,y+Δφ)}そして、前記Δφを0,π/
2,π,3π/2と変化させ、それぞれの強度分布I1
,I2,I3,I4を測定することで、次の数3により
φ(x,y)を求めることができる。
[Formula 2] I (x, y, Δφ) = a (x, y) + b (x, y) co
s{φ(x, y+Δφ)} and the said Δφ is 0, π/
2, π, 3π/2, each intensity distribution I1
, I2, I3, and I4, φ(x, y) can be obtained from the following equation 3.

【0006】[0006]

【数3】 φ(x,y)=tan−1{(I4−I2)/(I1−
I3)}このφ(x,y)から被検表面の情報を得るの
である。
[Formula 3] φ(x, y) = tan-1 {(I4-I2)/(I1-
I3)} Information on the surface to be inspected is obtained from this φ(x, y).

【0007】[0007]

【発明が解決しようとする課題】ところが、この位相シ
フト干渉計10では、実際には参照ミラー16と被検試
料18の間で繰返し反射に起因する誤差が生じる。すな
わち、図6に拡大して示すように入射光Lに対し参照ミ
ラー16と被検試料18の間で多重反射が生じ、反射光
L1,L2,L3…がそれぞれ測定誤差の原因となって
しまうのである。
However, in this phase shift interferometer 10, errors actually occur due to repeated reflections between the reference mirror 16 and the test sample 18. That is, as shown in an enlarged view in FIG. 6, multiple reflections occur between the reference mirror 16 and the test sample 18 for the incident light L, and each of the reflected lights L1, L2, L3, etc. causes a measurement error. It is.

【0008】このフィゾー干渉計の繰返し反射の影響を
低減する方法として、干渉計の参照ミラーと被検試料の
間にアッテネータを挿入して、その間を通る光を吸収す
る方法が考えられる。しかしながら、アッテネータは高
価でしかもこわれやすく、また設置スペースが要求され
る等の課題があった。
[0008] As a method of reducing the influence of repeated reflections in the Fizeau interferometer, it is possible to insert an attenuator between the reference mirror of the interferometer and the test sample and absorb the light passing between them. However, attenuators are expensive, easily breakable, and require installation space.

【0009】また、参照ミラーに吸収膜をコーティング
し、繰返し反射の光を吸収する方法が考えられる。しか
し、この方法では繰返し反射が完全には除去できないと
いう課題が残されていた。
Another possible method is to coat the reference mirror with an absorbing film to absorb the repeatedly reflected light. However, this method still has the problem that repeated reflections cannot be completely removed.

【0010】本発明は前記従来技術の課題に鑑みなされ
たものであり、その目的は繰返し反射に起因する誤差を
低減することのできる位相シフトフィゾー干渉計の誤差
補正方法を提供することにある。
The present invention has been made in view of the problems of the prior art described above, and its object is to provide an error correction method for a phase shift Fizeau interferometer that can reduce errors caused by repeated reflections.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に本発明にかかる位相シフトフィゾー干渉計は、初期位
相をπ/4だけずらした2回の測定の結果の平均をとる
ことで位相誤差を取除くものである。すなわち、本出願
の位相シフト干渉装置の補正方法は、初期位相がπ/4
ずれた2度の4干渉縞データを採取し、それぞれの4干
渉縞データから得られた被検位相の平均より被検試料の
表面情報を得ることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the phase shift Fizeau interferometer according to the present invention calculates the phase error by averaging the results of two measurements in which the initial phase is shifted by π/4. It removes the That is, the correction method of the phase shift interference device of the present application is such that the initial phase is π/4.
The method is characterized in that 4 interference fringe data with a deviation of 2 degrees are collected and the surface information of the test sample is obtained from the average of the test phases obtained from each of the 4 interference fringe data.

【0012】0012

【作用】本発明者らは次のようにして位相シフトフィゾ
ー干渉計の誤差解析を行なった。すなわち、繰返し反射
を考慮した場合の干渉縞の強度分布は次の数4の通りで
ある。
[Operation] The present inventors conducted an error analysis of the phase shift Fizeau interferometer as follows. That is, the intensity distribution of interference fringes when repeated reflections are considered is as shown in Equation 4 below.

【0013】[0013]

【数4】I=1−b/{1−c・cos(Φ/4)}な
お、b及びcは参照ミラーと被検試料の反射率だけに依
存し、それぞれ次の数5及び数6に示す通りである。
[Equation 4] I=1-b/{1-c・cos(Φ/4)} Note that b and c depend only on the reflectance of the reference mirror and the test sample, and are expressed by the following equations 5 and 6, respectively. As shown.

【0014】[0014]

【数5】 b=(1−r12)(1−r02)/(1+r12r2
2)r0:ガラスと膜の境界面における光の振幅反射率
r1:膜と空気の境界面における光の振幅反射率r2:
被検試料表面により光の振幅反射率
[Formula 5] b=(1-r12)(1-r02)/(1+r12r2
2) r0: Amplitude reflectance of light at the interface between glass and film r1: Amplitude reflectance of light at the interface between film and air r2:
The amplitude reflectance of light depends on the surface of the sample being tested.

【0015】[0015]

【数6】c=2r1r2/(1+r12・r22)数6
において、位相シフトΔφ=0,π/2,π,3π/2
を与えると、対応する干渉縞の強度分布はそれぞれ、
[Math 6]c=2r1r2/(1+r12・r22)Math 6
, phase shift Δφ=0, π/2, π, 3π/2
given, the intensity distribution of the corresponding interference fringes is, respectively,

【0016】[0016]

【数7】I1=1−b/(1−c・cosφ)I2=1
−b/{1−c・cos(φ+π/2)}=1−b/(
1+c・sinφ) I3=1−b/{1−c・cos(φ+π)}=1−b
/(1+c・cosφ) I4=1−b/{1−c・cos(φ+3π/2)}=
1−b/(1−c・sinφ) となる。前記数3の位相計算アルゴリズムを用いると、
[Formula 7] I1=1-b/(1-c・cosφ)I2=1
-b/{1-c・cos(φ+π/2)}=1-b/(
1+c・sinφ) I3=1−b/{1−c・cos(φ+π)}=1−b
/(1+c・cosφ) I4=1−b/{1−c・cos(φ+3π/2)}=
1-b/(1-c·sinφ). Using the phase calculation algorithm of number 3 above,

【0017】[0017]

【数8】 I4−I2=2bc・sinφ/(1−c2sin2φ
)I3−I1=2bc・cosφ/(1−c2cos2
φ)となる。この数8から次のように位相φ’を求める
ことができる。
[Formula 8] I4-I2=2bc・sinφ/(1-c2sin2φ
)I3-I1=2bc・cosφ/(1-c2cos2
φ). From this equation 8, the phase φ' can be determined as follows.

【0018】[0018]

【数9】 tanφ’=(I4−I2)/(I3−I1)    
  =tanφ−(1−c2cos2φ)/(1−c2
sin2φ)      =tanφ+tanφ{(−
c2cos2φ)/(1−c2sin2φ)}この数9
から
[Formula 9] tanφ'=(I4-I2)/(I3-I1)
= tanφ−(1−c2cos2φ)/(1−c2
sin2φ) = tanφ+tanφ{(−
c2cos2φ)/(1-c2sin2φ)}This number is 9
from

【0019】[0019]

【数10】 tanφ’−tanφ=−c2tanφ{cos2φ/
(1−c2sin2φ)}このため、誤差が小さくφ’
とφが近いときに、
[Formula 10] tanφ'-tanφ=-c2tanφ{cos2φ/
(1-c2sin2φ)} Therefore, the error is small and φ'
When and φ are close,

【0020】[0020]

【数11】 sin(φ’−φ)≒−c2/2・sin2φ・cos
2φ/(1−c2sin2φ)      =−c2/
4・sin4φ/(1−c2sin2φ)となり、更に
参照ミラーと被検試料面との反射率が小さく、r1,r
2<<1,c<<1の時、誤差εはε=φ’−φ≒−c
2/4・sin4φとなる。これは被検位相の4倍の周
期をもつ正弦関数であり、図7に示すようになる。なお
、図7中参照ミラーの強度反射率は25%であり、被検
試料面の反射率R2は4%,50%,90%である。
[Formula 11] sin(φ'-φ)≒-c2/2・sin2φ・cos
2φ/(1-c2sin2φ) =-c2/
4・sin4φ/(1−c2sin2φ), and furthermore, the reflectance between the reference mirror and the test sample surface is small, and r1, r
When 2<<1, c<<1, the error ε is ε=φ'-φ≒-c
It becomes 2/4・sin4φ. This is a sine function with a period four times that of the tested phase, as shown in FIG. Note that the intensity reflectance of the reference mirror in FIG. 7 is 25%, and the reflectance R2 of the test sample surface is 4%, 50%, and 90%.

【0021】本発明者らはこのような誤差の特徴に鑑み
、本発明を完成させたものである。すなわち、四点法で
計算した場合、誤差は被検位相の4倍の周期で変化して
おり、π/4だけの初期位相ずれた2回の測定の平均値
をとることで、この誤差を除去することとしたのである
The present inventors have completed the present invention in view of the characteristics of such errors. In other words, when calculated using the four-point method, the error changes at a period four times that of the tested phase, and this error can be reduced by taking the average value of two measurements with an initial phase shift of π/4. I decided to remove it.

【0022】[0022]

【実施例】以下、図面に基づき本発明の好適な実施例を
説明する。図1には本発明の一実施例にかかる位相シフ
トマイクロフィゾー干渉計の基本構成が示されている。 なお、図5に示す従来技術と対応する部分には符号10
0を加えて示し、説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the basic configuration of a phase shift microfizeau interferometer according to an embodiment of the present invention. Note that parts corresponding to the prior art shown in FIG.
0 is added and the explanation is omitted.

【0023】同図に示す干渉計110は、赤色半導体レ
ーザよりなる光源112と、ビームスプリッタ114と
、参照ミラー116とよりなる。そして、光源112か
ら出射したレーザー光はコリメータレンズ122により
平行光とされ、更にレンズ124,126,128を介
して前記ビームスプリッタ114に入射される。該ビー
ムスプリッタ114により図中下方に反射された光は対
物レンズ130により再度平行光とされ、更に1/4波
長板132で円偏光となる。そして、円偏光された光は
参照ミラー116を照射し、該参照ミラー116の表面
で一部の光が反射されると共に、参照ミラー116を透
過した光は被検試料118で反射される。この結果、参
照ミラー116の表面で反射された光と被検試料118
で反射された光は、参照ミラー116により再び重ね合
わされて、干渉光を形成する。そして、再度レンズ13
0、ビームスプリッタ114を通過し、図中上方に導光
される。この光は結像レンズ136によりCCDカメラ
120の受光面に結像される。
The interferometer 110 shown in the figure includes a light source 112 made of a red semiconductor laser, a beam splitter 114, and a reference mirror 116. The laser beam emitted from the light source 112 is made into parallel light by a collimator lens 122, and further enters the beam splitter 114 via lenses 124, 126, and 128. The light reflected downward in the drawing by the beam splitter 114 is again made into parallel light by the objective lens 130, and further becomes circularly polarized light by the quarter-wave plate 132. Then, the circularly polarized light irradiates the reference mirror 116, and part of the light is reflected by the surface of the reference mirror 116, and the light transmitted through the reference mirror 116 is reflected by the test sample 118. As a result, the light reflected on the surface of the reference mirror 116 and the test sample 118
The reflected light is superimposed again by the reference mirror 116 to form interference light. Then, lens 13 again
0, passes through the beam splitter 114 and is guided upward in the figure. This light is imaged by the imaging lens 136 on the light receiving surface of the CCD camera 120.

【0024】カメラ120による観察結果はモニタ14
0により目視観察されると共に、フレームメモリ142
に記憶され、マイクロコンピュータ144により所望の
データ処理を施された後、X−Yプロッター146に出
力される。
The observation results by the camera 120 are displayed on the monitor 14.
0 and is visually observed by the frame memory 142.
After being subjected to desired data processing by the microcomputer 144, the data is output to the X-Y plotter 146.

【0025】また、本実施例においてはマイクロコンピ
ュータ144よりの注入電流制御指令をインタフェース
148を介して注入電流制御手段150に与え、半導体
レーザー112への注入電力を変更可能とすると共に、
温度制御手段152が半導体レーザー112の温度を一
定に制御する。
Furthermore, in this embodiment, an injection current control command from the microcomputer 144 is given to the injection current control means 150 via the interface 148, and the injection power to the semiconductor laser 112 can be changed.
A temperature control means 152 controls the temperature of the semiconductor laser 112 to be constant.

【0026】すなわち、半導体レーザは注入電流iを増
加していくと、その注入電流iの増加に比例して波長λ
が大きくなっていく線形領域を有する。本実施例では、
半導体レーザのこの特徴的な性質を利用して表面情報を
得ている。
That is, as the injection current i increases, the semiconductor laser changes wavelength λ in proportion to the increase in injection current i.
has a linear region where the value increases. In this example,
This characteristic property of semiconductor lasers is used to obtain surface information.

【0027】前記数1は波長λをパラメータとして次の
ように書き改めることができる。
The above equation 1 can be rewritten as follows using the wavelength λ as a parameter.

【数12】 I(x,y,λ)=a(x,y)+b(x,y)cos
[{2π・2ω(x,y)+L}/λ0−Δφ]そして
、前記Δφを変化させ、I1〜I4を得るのである。尚
、Lは参照ミラー116と被検試料118表面との光路
長差である。ここで、半導体レーザ112の注入電流を
変化させると、発振波長だけでなくレーザ強度も変化す
るため、レーザ強度をモニタし干渉縞の強度を正規化す
るか、或いは干渉計の光路差を大きくして必要な位相差
を得るのに必要な注入電流の変化を小さくし、レーザー
出力の変化を最小限にする。この結果、本発明のように
レーザ波長を偏移させた場合にも、前記数12の干渉縞
の強度分布のバイアスaと振幅bを一定とみなすことが
できる。
[Formula 12] I (x, y, λ) = a (x, y) + b (x, y) cos
[{2π·2ω(x,y)+L}/λ0−Δφ] Then, by changing the above-mentioned Δφ, I1 to I4 are obtained. Note that L is the difference in optical path length between the reference mirror 116 and the surface of the test sample 118. Here, when the current injected into the semiconductor laser 112 is changed, not only the oscillation wavelength but also the laser intensity changes, so either the laser intensity is monitored and the intensity of the interference fringes is normalized, or the optical path difference of the interferometer is increased. This minimizes the change in the injection current required to obtain the required phase difference and minimizes the change in laser power. As a result, even when the laser wavelength is shifted as in the present invention, the bias a and amplitude b of the intensity distribution of the interference fringes shown in Equation 12 can be regarded as constant.

【0028】一方、注入電流iを変化させ、発振波長を
λ1からλ2に変位させると、位相はそれぞれ次のよう
に表示できる。     λ1:  φ1=2π・(L/2×2)/λ1
=2πL/λ1    λ2:  φ2=2π・(L/
2×2)/λ2=2πL/λ2従って、位相差Δφ=φ
2−φ1=2πLΔλ/λ12となる。このため、Δφ
=2πLΔλ/λ2と表わすことができる。すなわち、 Δφ=2πLΔλ/λ2=0 Δφ=2πLΔλ/λ2=π/2 Δφ=2πLΔλ/λ2=π Δφ=2πLΔλ/λ2=3π/2 となるΔλを、それぞれ注入電流iを変化させてI1、
I2、I3、I4を得れば良いのである。
On the other hand, when the injection current i is changed and the oscillation wavelength is shifted from λ1 to λ2, the phases can be expressed as follows. λ1: φ1=2π・(L/2×2)/λ1
=2πL/λ1 λ2: φ2=2π・(L/
2×2)/λ2=2πL/λ2 Therefore, the phase difference Δφ=φ
2-φ1=2πLΔλ/λ12. For this reason, Δφ
It can be expressed as =2πLΔλ/λ2. That is, by varying the injection current i, the Δλ that becomes Δφ=2πLΔλ/λ2=0 Δφ=2πLΔλ/λ2=π/2 Δφ=2πLΔλ/λ2=π Δφ=2πLΔλ/λ2=3π/2 is determined by changing the injection current I1,
All you have to do is obtain I2, I3, and I4.

【0029】ところで、波長の変化量Δλは注入電流の
変化Δiに比例するから、 Δλ=α・Δi すなわち2πLΔλ/λ2=2πLαΔi/λ2=2π
の場合を例にとると、 Δi=λ2/Lα となる。一般的な赤色レーザの場合、20℃では670
nmの基準波長に対しα=0.017nm/mA程度で
あるからL=24mmとすると、2πの変化に必要とす
る電流変化は、 Δi(mA)=(670×10−3)2/(24×0.
017)=1.100mAとなる。
By the way, since the amount of change in wavelength Δλ is proportional to the change in injection current Δi, Δλ=α・Δi, that is, 2πLΔλ/λ2=2πLαΔi/λ2=2π
Taking the case of Δi=λ2/Lα as an example. For a typical red laser, 670 at 20℃
Since α=0.017 nm/mA for the standard wavelength of nm, if L=24 mm, the current change required for a change of 2π is Δi (mA) = (670×10-3)2/(24 ×0.
017)=1.100mA.

【0030】従って、前記π/2,π,3π/2はそれ
ぞれ注入電流を0.275mA,0.550mA,0.
825mAづつ変化させればよいことになる。半導体レ
ーザの線形領域は10mA程度あるので、この程度の電
流変化を行なうことは容易である。以上のように本実施
例においては半導体レーザ112への注入電流の制御に
より、所望の位相差を得ているので、極めて正確な位相
制御が可能である。
Therefore, the injection currents of π/2, π, and 3π/2 are respectively 0.275 mA, 0.550 mA, and 0.
It is sufficient to change it by 825 mA. Since the linear region of a semiconductor laser is about 10 mA, it is easy to change the current to this extent. As described above, in this embodiment, a desired phase difference is obtained by controlling the current injected into the semiconductor laser 112, so extremely accurate phase control is possible.

【0031】本発明において特徴的なことは、四点法位
相導出アルゴリズムで計算した場合、誤差は被検位相の
4倍の周期で変化しており、π/4だけの初期位相ずれ
た2回の測定の平均値をとることで、この誤差を除去す
ることである。すなわち、図2には本発明の一実施例に
かかる誤差補正方法のフローチャート図が示されている
。同図より明らかなように、測定開始により、初期位相
を0と設定し、90゜の位相シフトを与えて干渉縞デー
タを取込み、この走査を四回繰返し、I1〜I4を得る
The characteristic feature of the present invention is that when calculated using the four-point method phase derivation algorithm, the error changes at a period four times that of the tested phase, and two times with an initial phase shift of only π/4. This error is removed by taking the average value of the measurements. That is, FIG. 2 shows a flowchart of an error correction method according to an embodiment of the present invention. As is clear from the figure, upon starting the measurement, the initial phase is set to 0, a 90° phase shift is applied, interference fringe data is acquired, and this scanning is repeated four times to obtain I1 to I4.

【0032】次に初期位相を45゜と設定し、90゜の
位相シフトを与えて干渉縞を取込み、この走査を四回繰
返し、I5〜I8を得る。そして、まず前記I1〜I4
に基づき、
Next, the initial phase is set to 45°, a phase shift of 90° is given, interference fringes are captured, and this scanning is repeated four times to obtain I5 to I8. Then, first, the above I1 to I4
Based on

【0033】[0033]

【数13】 Φ1=tan−1{(I3−I1)/(I4−I2)}
を演算する。次に、前記I5〜I8に基づき、
[Formula 13] Φ1=tan-1 {(I3-I1)/(I4-I2)}
Calculate. Next, based on the above I5 to I8,

【003
4】
003
4]

【数14】 Φ2=tan−1{(I7−I5)/(I8−I6)}
−π/4を演算する。そして、得られたΦ1、Φ2の平
均を得るのである。 Φ=(Φ1+Φ2)/2
[Formula 14] Φ2=tan-1 {(I7-I5)/(I8-I6)}
Calculate -π/4. Then, the average of the obtained Φ1 and Φ2 is obtained. Φ=(Φ1+Φ2)/2

【0035】この結果、図3に示すように、Φ1が図中
実線で示すような誤差特性を有する場合、Φ2は図中点
線で示すような誤差特性を有することとなり、両者の平
均値はちょうどΦ1、Φ2の誤差を打消すようになる。 尚、本実施例においてはI4を測定した後、シフト状態
を戻さなければならないが、現在実施されている位相シ
フト干渉計にも容易に適用可能であるという利点を有す
る。
As a result, as shown in FIG. 3, when Φ1 has an error characteristic as shown by the solid line in the figure, Φ2 has an error characteristic as shown by the dotted line in the figure, and the average value of both is exactly This will cancel out the errors in Φ1 and Φ2. Although this embodiment requires returning the shifted state after measuring I4, it has the advantage of being easily applicable to currently used phase shift interferometers.

【0036】図4には本発明の第二実施例にかかる誤差
補正方法のフローチャート図が示されている。本実施例
においては、測定開始と共に45゜づつ位相シフトを与
えて測定を行ない、I1,I5,I2,I6,I3,I
7,I4,I8の順番でデータを得ている。そして、前
記数13,数14を用いてΦ1,Φ2を得、両者の平均
をとるものである。本実施例においては最初から連続的
に位相データを得ているので、シフト状態を戻す必要が
ないという利点を有する。
FIG. 4 shows a flowchart of an error correction method according to a second embodiment of the present invention. In this example, the measurement is performed by applying a phase shift of 45 degrees at the beginning of the measurement.
Data is obtained in the order of 7, I4, and I8. Then, Φ1 and Φ2 are obtained using Equations 13 and 14, and the average of the two is taken. In this embodiment, since phase data is obtained continuously from the beginning, there is an advantage that there is no need to return the shifted state.

【0037】以上説明したように、前記各実施例にかか
る位相シフト干渉計によれば、4点法を、π/4位相ず
らして2度行ない、両者の平均をとることとしたので、
従来の装置に特別な構成を付加えることなく正確な被検
試料の表面情報を得ることが可能となる。
As explained above, according to the phase shift interferometer according to each of the above embodiments, the four-point method is performed twice with a phase shift of π/4, and the average of both is taken.
It becomes possible to obtain accurate surface information of a test sample without adding any special configuration to a conventional device.

【0038】また、本実施例にかかるマイクロフィゾー
干渉計によれば、ピエゾ素子等の機械的可動部分がない
ため、システムが安定化されるとともに、π/4位相ず
れた測定であっても極めて正確に対応可能である。尚、
本実施例においては、位相シフトを与えるために半導体
レーザへの注入電流を制御する手法を用いているが、一
般的な位相シフト干渉計と同様にピエゾ素子等を用いて
参照ミラーを動かす方法によってもよい。
Furthermore, according to the micro-Fizeau interferometer according to this embodiment, since there is no mechanically movable part such as a piezo element, the system is stabilized, and even measurements with a phase shift of π/4 are extremely accurate. It is possible to respond accurately. still,
In this example, a method is used to control the current injected into the semiconductor laser in order to give a phase shift. However, like a general phase shift interferometer, a method of moving a reference mirror using a piezo element etc. is used. Good too.

【0039】[0039]

【発明の効果】以上説明したように本発明にかかる位相
シフトマイクロフィゾー干渉計によれば、4点法をπ/
4位相ずらして2度行ない、両者の平均をとることとし
たので、簡易な構成で誤差の少ない表面情報を得ること
ができる。
Effects of the Invention As explained above, according to the phase shift microfizeau interferometer according to the present invention, the four-point method can be
Since the measurement was performed twice with a four-phase shift and the average of both results was taken, surface information with few errors can be obtained with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例にかかる位相シフトフィゾー
干渉計の構成説明図である。
FIG. 1 is a diagram illustrating the configuration of a phase shift Fizeau interferometer according to an embodiment of the present invention.

【図2】本発明の第一実施例にかかる補正方法の概略工
程を示すフローチャート図である。
FIG. 2 is a flowchart schematically showing the steps of the correction method according to the first embodiment of the present invention.

【図3】前記第一実施例にかかる補正方法の作用の説明
図である。
FIG. 3 is an explanatory diagram of the operation of the correction method according to the first embodiment.

【図4】本発明の第二実施例にかかる補正方法の概略工
程を示すフローチャート図である。
FIG. 4 is a flowchart showing the general steps of a correction method according to a second embodiment of the present invention.

【図5】一般的な位相シフト干渉計の説明図である。FIG. 5 is an explanatory diagram of a general phase shift interferometer.

【図6】,[Figure 6],

【図7】従来の位相シフト干渉計の課題の説明図である
FIG. 7 is an explanatory diagram of problems with a conventional phase shift interferometer.

【符号の説明】[Explanation of symbols]

12,112  半導体レーザ 16,116  参照ミラー 18,118  被検試料 12,112 Semiconductor laser 16,116 Reference mirror 18,118 Test sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  光源から出射された光の一部を反射す
る参照ミラーと、前記光源から出射された光の他の部分
を反射する被検試料と、前記参照ミラーからの反射光と
前記試料からの反射光を合成し干渉光を生起させる合成
手段と、を備え、干渉縞のπ/2ずつ位相のずれた4つ
の干渉縞データから被検位相を得ることにより、被検試
料の表面情報を得る位相シフトフィゾー干渉計において
、初期位相がπ/4ずれた2度の4干渉縞データを採取
し、それぞれの4干渉縞データから得られた被検位相の
平均より被検試料の表面情報を得ることを特徴とする位
相シフトフィゾー干渉計の誤差補正方法。
1. A reference mirror that reflects a part of the light emitted from the light source, a test sample that reflects the other part of the light emitted from the light source, and a reference mirror that reflects the light reflected from the reference mirror and the sample. and a synthesizing means for synthesizing the reflected light from and generating interference light, and by obtaining the test phase from four pieces of interference fringe data whose phase is shifted by π/2 of the interference fringes, surface information of the test sample is obtained. In a phase shift Fizeau interferometer, 4 interference fringe data of 2 degrees with the initial phase shifted by π/4 are collected, and the surface information of the test sample is determined from the average of the test phases obtained from each of the 4 interference fringe data. A method for correcting errors in a phase-shifted Fizeau interferometer, characterized by obtaining the following:
JP3087578A 1991-03-27 1991-03-27 Phase shift Fize-interferometer error correction method Expired - Lifetime JP2529901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087578A JP2529901B2 (en) 1991-03-27 1991-03-27 Phase shift Fize-interferometer error correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087578A JP2529901B2 (en) 1991-03-27 1991-03-27 Phase shift Fize-interferometer error correction method

Publications (2)

Publication Number Publication Date
JPH04297808A true JPH04297808A (en) 1992-10-21
JP2529901B2 JP2529901B2 (en) 1996-09-04

Family

ID=13918888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087578A Expired - Lifetime JP2529901B2 (en) 1991-03-27 1991-03-27 Phase shift Fize-interferometer error correction method

Country Status (1)

Country Link
JP (1) JP2529901B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038695A (en) * 2008-08-04 2010-02-18 Mitsutoyo Corp Shape measuring device, and method of calibrating the same
CN102425988A (en) * 2011-11-20 2012-04-25 中国科学院光电技术研究所 Phase extraction method for phase-shifting interference fringe pattern
JP2018077140A (en) * 2016-11-09 2018-05-17 株式会社ミツトヨ Phase shift interferometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155902A (en) * 1984-12-28 1986-07-15 Tokyo Seimitsu Co Ltd Interference measuring apparatus
JPS6435304A (en) * 1987-07-31 1989-02-06 Hitachi Electr Eng Method and instrument for measurement of absolute distance
JPH03238309A (en) * 1990-02-16 1991-10-24 Yokogawa Electric Corp Surface-shape measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155902A (en) * 1984-12-28 1986-07-15 Tokyo Seimitsu Co Ltd Interference measuring apparatus
JPS6435304A (en) * 1987-07-31 1989-02-06 Hitachi Electr Eng Method and instrument for measurement of absolute distance
JPH03238309A (en) * 1990-02-16 1991-10-24 Yokogawa Electric Corp Surface-shape measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038695A (en) * 2008-08-04 2010-02-18 Mitsutoyo Corp Shape measuring device, and method of calibrating the same
CN102425988A (en) * 2011-11-20 2012-04-25 中国科学院光电技术研究所 Phase extraction method for phase-shifting interference fringe pattern
JP2018077140A (en) * 2016-11-09 2018-05-17 株式会社ミツトヨ Phase shift interferometer

Also Published As

Publication number Publication date
JP2529901B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US6359692B1 (en) Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
KR100322938B1 (en) Superheterodyne interferometry and method for compensating the refractive index of air using electronic frequency multiplication
US7978337B2 (en) Interferometer utilizing polarization scanning
KR100328007B1 (en) Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry
US7088451B2 (en) Scatterometry by phase sensitive reflectometer
US5956141A (en) Focus adjusting method and shape measuring device and interference microscope using said focus adjusting method
EP0498541A1 (en) Interferometric laser profilometer
JPH05113316A (en) Three wavelength optical measuring device and method
JPS6125282B2 (en)
CN102109414A (en) Method and device for calibrating phase modulation of spatial light modulators by utilizing heterodyne interference
JPS62153704A (en) Optical determination method of surface profile
US12228399B2 (en) Heterodyne light source for use in metrology system
JPH04297808A (en) Error correction of phase shift fizeau interferometer
JP3621994B2 (en) Disturbance measuring device and high-precision optical interference measuring device in optical interferometer
JPH1089912A (en) Interference microscope
Kranz et al. Fiber optical single-frame speckle interferometer for measuring industrial surfaces
US12313791B2 (en) Digital holography metrology system
JP2805045B2 (en) Spatial positioning method
JP2838171B2 (en) Phase shift micro Fizeau interferometer
JP3184914B2 (en) Surface shape measuring method and surface shape measuring instrument
JP2705752B2 (en) Method of measuring refractive index and method of measuring property characteristics
JP2003227704A (en) Multi-wavelength optical heterodyne interference measurement method and apparatus
JPH0283422A (en) Laser frequency meter
Dändliker et al. Multiple-Wavelength and White-Light Interferometry
JP2003042710A (en) Optical heterodyne interferometer