JPH04297563A - Galvannealed steel sheet excellent in workability and its production - Google Patents
Galvannealed steel sheet excellent in workability and its productionInfo
- Publication number
- JPH04297563A JPH04297563A JP8586091A JP8586091A JPH04297563A JP H04297563 A JPH04297563 A JP H04297563A JP 8586091 A JP8586091 A JP 8586091A JP 8586091 A JP8586091 A JP 8586091A JP H04297563 A JPH04297563 A JP H04297563A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- hot
- weight
- plating layer
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 229910000831 Steel Inorganic materials 0.000 title abstract description 15
- 239000010959 steel Substances 0.000 title abstract description 15
- 238000005246 galvanizing Methods 0.000 claims abstract description 21
- 238000005275 alloying Methods 0.000 claims abstract description 19
- 239000011248 coating agent Substances 0.000 claims abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 238000007747 plating Methods 0.000 claims description 52
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 26
- 239000008397 galvanized steel Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 13
- 239000010953 base metal Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 238000000227 grinding Methods 0.000 abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 abstract description 4
- 229910052748 manganese Inorganic materials 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 229910000859 α-Fe Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 50
- 238000012360 testing method Methods 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011701 zinc Substances 0.000 description 4
- 229920000298 Cellophane Polymers 0.000 description 3
- 239000002390 adhesive tape Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical group [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、耐パウダリング性,耐
フレーキング性及びプレス成形性が優れている加工性に
優れた合金化溶融亜鉛めっき鋼板とその製造方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloyed hot-dip galvanized steel sheet with excellent powdering resistance, flaking resistance and press formability, and excellent workability, and a method for producing the same.
【0002】0002
【従来の技術】従来より溶融亜鉛めっき鋼板の耐食性に
加えて、塗装性,塗膜密着性,溶接性及び加工性を付与
するために、鋼板に溶融亜鉛めっきを行った後に加熱処
理を施してめっき層を鉄−亜鉛合金化した合金化溶融亜
鉛めっき鋼板が製造され、自動車や家電製品や建築など
様々な分野に使用されている。[Prior Art] Conventionally, in order to impart paintability, coating adhesion, weldability, and workability to hot-dip galvanized steel sheets in addition to their corrosion resistance, heat treatment has been applied after hot-dip galvanizing to steel sheets. Alloyed hot-dip galvanized steel sheets in which the plating layer is an iron-zinc alloy are manufactured and used in various fields such as automobiles, home appliances, and architecture.
【0003】このように鋼板に溶融亜鉛めっきを行った
後に加熱処理を施した場合、合金化が進むにつれて鉄と
亜鉛の相互拡散により、ζ相(FeZn13),δ1相
(FeZn7),Γ相(Fe5Zn21)が順次生成す
る。[0003] When a steel sheet is heat-treated after being hot-dip galvanized in this way, as alloying progresses, mutual diffusion of iron and zinc causes the formation of ζ phase (FeZn13), δ1 phase (FeZn7), Γ phase ( Fe5Zn21) is sequentially generated.
【0004】このような合金化溶融亜鉛めっき鋼板にお
いて、その加工性と合金化めっき層構造とに関する従来
からの研究の結果から、次のことが判明している。即ち
、合金化めっき層表面にη相又はζ相が存在すると、こ
れらの相は比較的柔らかいためプレス成形時に金型との
摺動抵抗が大きくなり鋼板の金型への滑り込みが阻害さ
れて鋼板の切断や金型へのめっき層の焼付けを招く恐れ
がある。一方、Γ相が厚く成長すると、Γ相は硬く脆い
ためにプレス成形時にめっき層が剥離するいわゆるパウ
ダリング現象を起こすようになり、このパウダリング現
象が著しい場合には合金化めっき層の耐食性が低下する
ばかりでなくプレス作業性にも悪影響を及ぼすことにな
る。更に、Γ相が比較的薄い場合でもめっき層表面にζ
相が存在すると、柔らかいζ相がプレス加工時にカジリ
を生成し、この剪断応力によって硬くて脆いΓ相がフレ
ーク状に剥離するいわゆるフレーキング現象となる。
従って理想的には鋼板界面から合金化めっき層表面まで
均一なδ1相であることが望ましいが、熱拡散処理によ
って合金化する限り事実上不可能である。As a result of conventional research on the workability and alloying layer structure of such alloyed hot-dip galvanized steel sheets, the following has been found. In other words, if the η phase or ζ phase exists on the surface of the alloyed plating layer, these phases are relatively soft, so the sliding resistance with the die during press forming becomes large, preventing the steel plate from sliding into the die, and causing the steel plate to deteriorate. This may lead to cutting or burning of the plating layer to the mold. On the other hand, when the Γ phase grows thickly, the Γ phase is hard and brittle, which causes the so-called powdering phenomenon in which the plating layer peels off during press forming.If this powdering phenomenon is significant, the corrosion resistance of the alloyed plating layer deteriorates. Not only will this decrease, but it will also have an adverse effect on press workability. Furthermore, even when the Γ phase is relatively thin, ζ is present on the surface of the plating layer.
If such a phase is present, the soft ζ phase will cause galling during press working, and this shear stress will cause the hard and brittle Γ phase to peel off into flakes, resulting in a so-called flaking phenomenon. Ideally, therefore, it is desirable to have a uniform δ1 phase from the steel plate interface to the surface of the alloyed plating layer, but this is virtually impossible as long as alloying is performed by thermal diffusion treatment.
【0005】[0005]
【発明が解決しようとする課題】従来、このようなδ1
単相に近い合金化めっき層を得るための技術として、例
えば特開昭64−68456号公報等に開示されている
方法があるが、この方法でη相,ζ相が残存しないよう
に合金化するためにはめっき浴中の有効Al量を0.1
0%以下とし且つ鋼板のめっき浴中への浸漬時間を3秒
以下好ましくは2秒以下という非常に高速な通板速度と
することが必要であり、しかも本発明者等の研究による
と500℃以上の加熱温度が必要である。しかし、この
温度ではΓ相の成長が速く充分にΓ相を抑制できず、6
0g/m2以上の付着量では例えばΓ相が0.5〜3.
0μmとなり耐パウダリング性が充分でなくなる。[Problem to be solved by the invention] Conventionally, such δ1
As a technique for obtaining an alloyed plating layer that is close to a single phase, there is a method disclosed in, for example, Japanese Patent Application Laid-Open No. 64-68456, etc., but with this method, alloying is performed so that the η phase and ζ phase do not remain. In order to do this, the effective amount of Al in the plating bath should be 0.1
0% or less, and the steel plate must be immersed in the plating bath at a very high speed of 3 seconds or less, preferably 2 seconds or less, and according to research by the present inventors A heating temperature higher than that is required. However, at this temperature, the growth of the Γ phase is rapid and the Γ phase cannot be suppressed sufficiently;
For example, when the coating amount is 0 g/m2 or more, the Γ phase is 0.5 to 3.
When the particle diameter becomes 0 μm, the powdering resistance becomes insufficient.
【0006】一方、Γ相を抑制するためにはより低い温
度で合金化することが望ましく、例えば500℃未満で
合金化するとΓ相の成長は充分抑制されるが、ζ相が残
存し易くプレス成形性及び耐フレーキング性が低下する
。
このように、ζ相とΓ相とを抑制できる温度域が相反す
るためにいずれか片方しか抑制できず、両方とも抑制し
た合金化溶融亜鉛めっき鋼板を製造するためには合金化
度を測定しながら厳しく管理する必要がある。しかし、
現在の方法では合金化めっき層表面にζ相を存在させず
且つΓ相も耐パウリング性が充分なレベルまで抑制でき
る手段が存在していない。On the other hand, in order to suppress the Γ phase, it is desirable to perform alloying at a lower temperature. For example, when alloying at a temperature below 500°C, the growth of the Γ phase is sufficiently suppressed, but the ζ phase tends to remain and it is difficult to press. Moldability and flaking resistance decrease. In this way, the temperature ranges in which the ζ phase and Γ phase can be suppressed are contradictory, so only one of them can be suppressed, and in order to produce an alloyed hot-dip galvanized steel sheet that suppresses both, it is necessary to measure the degree of alloying. However, it needs to be strictly managed. but,
In the current methods, there is no means for preventing the presence of the ζ phase on the surface of the alloyed plating layer and suppressing the Γ phase to a sufficient level for the powling resistance.
【0007】本発明はこのような従来技術の問題点を解
決し、合金化めっき層表面にη相のみならずζ相も存在
させず且つΓ相も耐パウダリング性が充分なレベルまで
抑制できた加工性に優れた合金化溶融亜鉛めっき鋼板と
その製造方法を提供することを課題とする。[0007] The present invention solves the problems of the prior art, and eliminates not only the η phase but also the ζ phase on the surface of the alloyed plating layer, and suppresses the Γ phase to a sufficient level of powdering resistance. An object of the present invention is to provide an alloyed hot-dip galvanized steel sheet with excellent workability and a method for manufacturing the same.
【0008】[0008]
【課題を解決するための手段】本発明者等は上記課題を
解決すべく鋭意研究の結果、めっき浴中にMnを添加す
ることにより450〜500℃というΓ相を充分抑制で
きる温度でもζ相が抑制されることを究明し、地鉄界面
のΓ相の厚さが0.5μm以下であり、合金化めっき層
表面をX線回折で測定してもη,ζ相が存在せず、且つ
付着量が45〜90g/m2の合金化めっき層を、少な
くとも片面に有する加工性に優れた合金化溶融亜鉛めっ
き鋼板とその製造方法の開発に成功したのである。[Means for Solving the Problems] As a result of intensive research to solve the above problems, the present inventors have found that by adding Mn to the plating bath, the ζ phase can be achieved even at a temperature of 450 to 500°C, which can sufficiently suppress the Γ phase. It was found that the thickness of the Γ phase at the base metal interface is 0.5 μm or less, and when the surface of the alloyed plating layer is measured by X-ray diffraction, there are no η and ζ phases, and They succeeded in developing an alloyed hot-dip galvanized steel sheet with excellent workability, which has an alloyed plating layer with a coating weight of 45 to 90 g/m2 on at least one side, and a method for manufacturing the same.
【0009】即ち、本発明に係る加工性に優れた合金化
溶融亜鉛めっき鋼板は、Fe:8〜13重量%、Al:
0.5重量%未満、Mn:0.02〜2.0重量%を含
有し残部がZn及び不可避的不純物より成る組成であっ
て、地鉄界面のΓ相の厚さが0.5μm以下でありめっ
き層表面にη,ζ相が存在せず且つ付着量が45〜90
g/m2の合金化めっき層を少なくとも、片面に有する
ことを特徴とする。また本発明に係る加工性に優れた合
金化溶融亜鉛めっき鋼板の製造方法は、Al:0.2重
量%未満、Mn:0.01〜1.0重量%を含有し、残
部がZn及び不可避的不純物より成る溶融亜鉛めっき浴
を用いて少なくとも片面の付着量が45〜90g/m2
となる溶融亜鉛めっきを行った後、450〜500℃で
2〜40秒間加熱して地鉄界面のΓ相の厚さが0.5μ
m以下であり且つめっき層表面にη,ζ相が存在しない
ように合金化処理することを特徴とする。That is, the alloyed hot-dip galvanized steel sheet with excellent workability according to the present invention contains Fe: 8 to 13% by weight, Al:
less than 0.5% by weight, Mn: 0.02 to 2.0% by weight, with the remainder consisting of Zn and unavoidable impurities, and the thickness of the Γ phase at the interface of the base metal is 0.5 μm or less. There is no η or ζ phase on the surface of the plating layer, and the amount of adhesion is 45 to 90.
It is characterized by having an alloyed plating layer of g/m2 on at least one side. In addition, the method for producing an alloyed hot-dip galvanized steel sheet with excellent workability according to the present invention contains Al: less than 0.2% by weight, Mn: 0.01 to 1.0% by weight, and the remainder is Zn and unavoidable The amount of coating on at least one side is 45 to 90 g/m2 using a hot dip galvanizing bath consisting of impurities.
After hot-dip galvanizing, heat at 450-500℃ for 2-40 seconds to reduce the thickness of the Γ phase at the interface of the base metal to 0.5μ.
m or less and alloying treatment is performed so that η and ζ phases are not present on the surface of the plating layer.
【0010】0010
【作用】以下、本発明で用いる溶融亜鉛めっき浴の組成
、合金化処理温度及びめっき層の組成の限定理由につい
て説明する。Al:Alは鋼板−めっき層界面にFe−
Al金属間化合物の層を形成してめっき層中のZn−F
e相互拡散を抑制し、且つ溶融亜鉛めっき浴の粘度を引
き下げるのに有効に作用する。しかしながら、溶融亜鉛
めっき浴のAl濃度が0.2重量%以上になると、Zn
−Fe相互拡散が極めて抑制されるために合金化反応が
著しく遅滞し、本発明方法におけるような低い合金化温
度では事実上インラインの合金化炉で合金化処理が不可
能となる。よって本発明方法では、溶融亜鉛めっき浴中
へのAlの添加量は0.2重量%未満とした。[Function] The reasons for limiting the composition of the hot-dip galvanizing bath used in the present invention, the alloying treatment temperature, and the composition of the plating layer will be explained below. Al: Al is Fe- at the steel plate-plating layer interface.
Zn-F in the plating layer is formed by forming a layer of Al intermetallic compound.
e Effectively suppresses mutual diffusion and lowers the viscosity of the hot-dip galvanizing bath. However, when the Al concentration in the hot-dip galvanizing bath becomes 0.2% by weight or more, Zn
Since the -Fe interdiffusion is extremely suppressed, the alloying reaction is significantly retarded, making alloying in an in-line alloying furnace virtually impossible at low alloying temperatures as in the method of the invention. Therefore, in the method of the present invention, the amount of Al added to the hot-dip galvanizing bath is less than 0.2% by weight.
【0011】次いで、合金化めっき層中のAlの組成範
囲について述べる。一般に、Alを含む溶融亜鉛めっき
浴によって鋼板に溶融亜鉛めっきを行った場合には、鋼
板−めっき層界面にFe−Al金属間化合物の層が優先
析出し、溶融亜鉛めっき浴のAl濃度と比べてめっき層
中のAl濃度が高くなる傾向があることが知られている
。本発明における溶融亜鉛めっき処理においても全く同
じ傾向が認められる。前記Al濃度の溶融亜鉛めっき浴
によって溶融亜鉛めっきを行った場合に生成するめっき
層のAl濃度は、0.5重量%未満となる。従って、本
発明に係る合金化溶融亜鉛めっき鋼板における合金化め
っき層中のAl濃度は0.5重量%未満とした。Next, the composition range of Al in the alloyed plating layer will be described. Generally, when a steel sheet is hot-dip galvanized using a hot-dip galvanizing bath containing Al, a layer of Fe-Al intermetallic compound preferentially precipitates at the steel sheet-plating layer interface, compared to the Al concentration of the hot-dip galvanizing bath. It is known that the Al concentration in the plating layer tends to increase. Exactly the same tendency is observed in the hot-dip galvanizing treatment in the present invention. When hot-dip galvanizing is performed using a hot-dip galvanizing bath having the above-mentioned Al concentration, the Al concentration of the plating layer produced is less than 0.5% by weight. Therefore, the Al concentration in the alloyed plating layer in the alloyed hot-dip galvanized steel sheet according to the present invention was set to be less than 0.5% by weight.
【0012】Mn:Mnはζ相の生成を抑制し且つ50
0℃以下の低い温度で合金化処理を行うために添加する
。Mnの溶融亜鉛めっき浴中への添加量が0.01重量
%未満では、ζ相の生成抑制効果が充分でなく、500
℃以下で合金化した場合にζ相が残存し易く、また1.
0重量%を超えて添加しようとすると、めっき浴温度を
高くしなければならないためにΓ相を0.5μm以下に
抑制することが事実上不可能となる。よって、本発明方
法では溶融亜鉛めっき浴中へのMnの添加量は0.01
〜1.0重量%に限定した。Mn: Mn suppresses the formation of ζ phase and
Added to perform alloying treatment at a low temperature of 0°C or lower. If the amount of Mn added to the hot-dip galvanizing bath is less than 0.01% by weight, the effect of suppressing the formation of the ζ phase will not be sufficient;
When alloyed at temperatures below ℃, the ζ phase tends to remain, and 1.
If more than 0% by weight is added, the plating bath temperature must be raised, making it virtually impossible to suppress the Γ phase to 0.5 μm or less. Therefore, in the method of the present invention, the amount of Mn added to the hot dip galvanizing bath is 0.01
It was limited to ~1.0% by weight.
【0013】次いで、合金化めっき層中のMnの組成範
囲について述べる。Mnは、めっき層中に優先的に析出
してめっき浴中の濃度よりも高くなる傾向を示す。前記
のMn添加量の溶融亜鉛めっき浴によって溶融亜鉛めっ
きを行った場合に生成するめっき層のMn濃度は、0.
02〜2.0重量%となる。従って、本発明合金化溶融
亜鉛めっき鋼板における合金化めっき層中のMn濃度は
、0.02〜2.0重量%とする。Next, the composition range of Mn in the alloyed plating layer will be described. Mn tends to precipitate preferentially in the plating layer and become higher in concentration than in the plating bath. When hot-dip galvanizing is performed using a hot-dip galvanizing bath with the above-mentioned amount of Mn added, the Mn concentration of the plating layer produced is 0.
02 to 2.0% by weight. Therefore, the Mn concentration in the alloyed plating layer in the alloyed hot-dip galvanized steel sheet of the present invention is 0.02 to 2.0% by weight.
【0014】Fe:本発明に係る加工性に優れた合金化
溶融亜鉛めっき鋼板のめっき層構造では、めっき層表面
にη,ζ層が存在せず且つ地鉄界面のΓ層の厚さが0.
5μm以下であり、このような構成の合金化めっき層中
のFe濃度は8〜13重量%であるので8〜13重量%
とした。Fe: In the coating layer structure of the alloyed hot-dip galvanized steel sheet with excellent workability according to the present invention, there are no η and ζ layers on the surface of the coating layer, and the thickness of the Γ layer at the base metal interface is 0. ..
5 μm or less, and the Fe concentration in the alloyed plating layer with such a configuration is 8 to 13% by weight, so it is 8 to 13% by weight.
And so.
【0015】合金化処理温度及び加熱時間:溶融亜鉛め
っき鋼板のめっき層を500℃を超えて加熱して合金化
するとΓ層が生成し易く、地鉄界面のΓ層が0.5μm
を超えるので好ましくない。一方、450℃未満で合金
化すると、前記組成のMn濃度ではζ層の生成を抑制す
る効果が薄くなってめっき層表面にζ層が残存し易く、
本発明に係る合金化溶融亜鉛めっき鋼板のめっき層構造
の特徴であるめっき層表面にη相,ζ相が存在せず且つ
地鉄界面のΓ相が0.5μm以下の合金層を形成させる
ことができない。従って、本発明方法における合金化温
度は450〜500℃とした。しかしながら、この45
0〜500℃という合金化処理温度であっても、加熱時
間が短いとめっき層表面にη相やζ相が残存し、また加
熱時間が長すぎると地鉄界面のΓ相が0.5μm以上形
成されるので本発明者等は種々検討した結果、2〜40
秒の範囲で地鉄界面のΓ相の厚さが0.5μm以下であ
りめっき層表面にη,ζ相が存在しないように加熱する
ことが必要である。[0015] Alloying treatment temperature and heating time: When the plating layer of a hot-dip galvanized steel sheet is alloyed by heating above 500°C, a Γ layer is likely to be formed, and the Γ layer at the interface of the base metal is 0.5 μm thick.
It is not preferable because it exceeds. On the other hand, when alloyed at a temperature below 450°C, the effect of suppressing the formation of the ζ layer becomes weaker at the Mn concentration of the above composition, and the ζ layer tends to remain on the surface of the plating layer.
The plating layer structure of the alloyed hot-dip galvanized steel sheet according to the present invention is characterized by the formation of an alloy layer in which η phase and ζ phase do not exist on the surface of the plating layer and the Γ phase at the base metal interface is 0.5 μm or less. I can't. Therefore, the alloying temperature in the method of the present invention was set at 450 to 500°C. However, this 45
Even at an alloying temperature of 0 to 500°C, if the heating time is short, the η phase and ζ phase will remain on the surface of the plating layer, and if the heating time is too long, the Γ phase at the base metal interface will be 0.5 μm or more thick. As a result of various studies, the inventors found that 2 to 40
It is necessary to heat the substrate in such a way that the thickness of the Γ phase at the substrate interface is 0.5 μm or less and the η and ζ phases are not present on the surface of the plating layer.
【0016】合金化溶融亜鉛めっき層の厚さ:本発明に
係る合金化溶融亜鉛めっき鋼板において、付着量として
は45〜90g/m2が適用できる範囲である。45g
/m2未満では従来の技術で耐パウダリング性,耐フレ
ーキング性及びプレス成形性を共に満足できる合金化溶
融亜鉛めっき鋼板は製造可能であり、本発明鋼板が特に
有利という訳ではない。また90g/m2を超えると耐
フレーキング性及びプレス成形性は満足できるが耐パウ
ダリング性が低下するので、本発明に係る合金化溶融亜
鉛めっき鋼板の適用できる付着量を45〜90g/m2
とした。但し、耐フレーキング性及びプレス成形性を満
足していれば良い場合には45〜150g/m2まで適
用できる。めっき付着量が150g/m2を超えると地
鉄界面のΓ相が0.5μm以下でめっき表面にη,ζ相
が存在しないめっき層は実際上製造できなくなる。その
他の合金化めっき層の組成:合金化めっき層の組成とし
てFe,Al,Mnのみを規定したが、他の成分例えば
Pb,Sbなどを少量添加されても本発明の効果は変わ
らないものである。[0016] Thickness of alloyed hot-dip galvanized layer: In the alloyed hot-dip galvanized steel sheet according to the present invention, the applicable coating weight is 45 to 90 g/m2. 45g
/m2, it is possible to produce an alloyed hot-dip galvanized steel sheet that satisfies powdering resistance, flaking resistance, and press formability using conventional techniques, and the steel sheet of the present invention is not particularly advantageous. Moreover, if it exceeds 90 g/m2, the flaking resistance and press formability will be satisfactory, but the powdering resistance will decrease, so the applicable coating weight of the alloyed hot-dip galvanized steel sheet according to the present invention is set at 45 to 90 g/m2.
And so. However, if flaking resistance and press formability are satisfied, it can be applied up to 45 to 150 g/m2. When the coating weight exceeds 150 g/m2, it becomes practically impossible to produce a coating layer in which the Γ phase at the substrate interface is 0.5 μm or less and the η and ζ phases are not present on the plated surface. Other compositions of the alloyed plating layer: Although only Fe, Al, and Mn are specified as the composition of the alloyed plating layer, the effects of the present invention will not change even if small amounts of other components such as Pb and Sb are added. be.
【0017】[0017]
【実施例】次に本発明に係る加工性に優れた合金化溶融
亜鉛めっき鋼板の実施例を比較例と共に更に具体的に説
明する。ゼンジマー型の無酸化炉方式の連続溶融亜鉛め
っきラインのめっき浴中に投入するAl量,Mn量を種
々変化させて、0.7mm厚×1,000mm幅の低炭
素冷延鋼板をめっき原板として、めっき付着量が本発明
における合金化溶融亜鉛めっき層の付着量の範囲である
45〜90g/m2内にある種々の溶融亜鉛めっき鋼板
を製造し、続いてこれらの溶融亜鉛めっき鋼板を合金化
処理炉により種々の時間加熱して合金化処理して合金層
のFe濃度が異なる種々の合金化溶融亜鉛めっき鋼板に
ついて、次に述べるめっき層の加工性試験方法によって
試験を行った。その結果を表1及び表2に記載する。EXAMPLES Next, examples of alloyed hot-dip galvanized steel sheets with excellent workability according to the present invention will be described in more detail together with comparative examples. By varying the amounts of Al and Mn introduced into the plating bath of a continuous hot-dip galvanizing line using a Sendzimer-type non-oxidizing furnace, low-carbon cold-rolled steel sheets with a thickness of 0.7 mm and a width of 1,000 mm were used as base plates for plating. , various hot-dip galvanized steel sheets having a coating weight within the range of 45 to 90 g/m2, which is the range of the coating weight of the alloyed hot-dip galvanized layer in the present invention, were then alloyed. Various alloyed hot-dip galvanized steel sheets were heated and alloyed for various times in a processing furnace to have different Fe concentrations in the alloy layers, and were tested using the method for testing the workability of the plating layer described below. The results are shown in Tables 1 and 2.
【0018】(1)η,ζ相の有無
X線回折で測定して、η,ζ相の存在を示すピーク値が
表われるか否かで判断した。(1) Presence or absence of η, ζ phase The measurement was made by X-ray diffraction, and judgment was made based on whether or not a peak value indicating the presence of η, ζ phase appeared.
【0019】(2)耐パウダリング性試験:試験面を内
側にして、図1に示す如く試験片の板厚tの6倍の直径
の円弧部が試験面に構成されるように180度曲げを行
った後に曲げ戻しを行い、その試験面にセロハン粘着テ
ープを貼着した後にそのセロハン粘着テープを引き剥が
してセロハン粘着テープに付着したパウダー状のめっき
金属量を目視により、以下の基準により判断した。
5:付着めっき金属なし
4:付着めっき金属量小
3:付着めっき金属量中
2:付着めっき金属量大
1:テープなしで多量の粉状めっき金属剥離この基準に
おいて評価5〜3が実用上問題がない範囲である。(2) Powdering resistance test: With the test surface facing inside, bend the test piece 180 degrees so that the test surface has a circular arc portion with a diameter six times the thickness t of the test piece, as shown in Figure 1. After bending back, apply cellophane adhesive tape to the test surface, then peel off the cellophane adhesive tape and visually check the amount of powdered plating metal that adheres to the cellophane adhesive tape, judging according to the following criteria. did. 5: No adhering plating metal 4: Small amount of adhering plating metal 3: Medium amount of adhering plating metal 2: Large amount of adhering plating metal 1: A large amount of powdery plated metal peeling off without tape Based on this standard, a rating of 5 to 3 is a practical problem There is no range.
【0020】(3)プレス成形性試験:同一防錆油を使
用して図2に示す条件でのカップ絞り試験による外径比
によって評価したものである。試験片絞り成形前円板の
直径(D0):75mm絞り成形に使用する鋼板の板厚
:tmm金型
絞り成形に使用するポンチ直径(d):40mm絞り成
形に使用するポンチ先端半径:5mm絞り成形に使用す
るダイス肩部半径:5tmm絞り成形時のしわ押え力:
1,000kgf試験後の状態
絞り成形により絞り込む深さ:20mm絞り成形後のフ
ランジ分の直径:D1mm外径比:D1/D0
この外径比0.734〜0.743が冷延鋼板レベルで
ある。(3) Press formability test: Evaluation was made by the outer diameter ratio in a cup drawing test under the conditions shown in FIG. 2 using the same rust preventive oil. Diameter of disk before test piece drawing (D0): 75mm Thickness of steel plate used for drawing: tmm Diameter of punch used for mold drawing (d): 40mm Punch tip radius used for drawing: 5mm Drawing Die shoulder radius used for forming: 5tmm Wrinkle holding force during drawing:
Condition after 1,000 kgf test Depth of drawing by drawing: 20 mm Diameter of flange after drawing: D1 mm Outer diameter ratio: D1/D0 This outer diameter ratio of 0.734 to 0.743 is at the level of cold rolled steel plate. .
【0021】(4)耐フレーキング性試験:図3に示す
如く幅300mm×長さ260mmのサンプルSを内径
42mmの貫通孔を有するダイス1と高さ3mmのビー
ド付きのしわ押え2とでしわ押え力500kgfで挾持
し、直径40mmのポンチ3により成形高さ50mmの
絞り成形を行ったときの目視によるめっき金属の剥離状
態により以下の基準により評価した。
4:剥離せず
3:剥離量小
2:剥離量中
1:剥離量大
この基準において評価4〜3が実用上問題がない範囲で
ある。(4) Flaking resistance test: As shown in Fig. 3, a sample S of 300 mm width x 260 mm length was wrinkled using a die 1 having a through hole with an inner diameter of 42 mm and a wrinkle presser 2 with a bead of 3 mm height. The specimen was clamped with a pressing force of 500 kgf and drawn to a molding height of 50 mm using a punch 3 with a diameter of 40 mm, and the peeling state of the plated metal was visually observed and evaluated according to the following criteria. 4: No peeling 3: Small amount of peeling 2: Medium amount of peeling 1: Large amount of peeling Based on this standard, an evaluation of 4 to 3 is within a range that causes no practical problems.
【0022】[0022]
【表1】[Table 1]
【0023】[0023]
【表2】[Table 2]
【0024】[0024]
【発明の効果】以上詳述した如く、本発明に係る加工性
に優れた合金化溶融亜鉛めっき鋼板は付着量が45〜9
0g/m2という厚めっきでも優れた加工性を有してい
るので合金化溶融亜鉛めっき鋼板の用途の拡大を期待で
き、また本発明に係る加工性に優れた合金化溶融亜鉛め
っき鋼板の製造方法はこのように優れた特性を有する合
金化溶融亜鉛めっき鋼板を前記した従来技術のように高
速で通板すること無く工業的に安定して連続的に製造で
きる画期的な方法であり、その工業的価値が非常に大き
なものである。Effects of the Invention As detailed above, the alloyed hot-dip galvanized steel sheet with excellent workability according to the present invention has a coating weight of 45 to 9.
Since it has excellent workability even when coated as thick as 0 g/m2, the use of alloyed hot-dip galvanized steel sheets can be expected to expand, and the method for producing alloyed hot-dip galvanized steel sheets with excellent workability according to the present invention This is an innovative method that can industrially stably and continuously manufacture alloyed hot-dip galvanized steel sheets with excellent properties without the need for high-speed threading as in the conventional technology described above. It has great industrial value.
【図1】耐パウダリング性の試験方法を説明する図であ
る。FIG. 1 is a diagram illustrating a powdering resistance test method.
【図2】プレス成形性の試験方法を説明する図である。FIG. 2 is a diagram illustrating a press formability test method.
【図3】耐フレーキング性の試験方法を説明する図であ
る。FIG. 3 is a diagram illustrating a test method for flaking resistance.
1 ダイス 2 しわ押え 3 ポンチ S サンプル 1 Dice 2 Wrinkle presser 3 Punch S sample
Claims (2)
重量%未満、Mn:0.02〜2.0重量%を含有し残
部がZn及び不可避的不純物より成る組成であって、地
鉄界面のΓ相の厚さが0.5μm以下でありめっき層表
面にη,ζ相が存在せず且つ付着量が45〜90g/m
2の合金化めっき層を、少なくとも片面に有することを
特徴とする加工性に優れた合金化溶融亜鉛めっき鋼板。[Claim 1] Fe: 8 to 13% by weight, Al: 0.5
less than % by weight, Mn: 0.02 to 2.0% by weight, with the remainder consisting of Zn and unavoidable impurities, and the thickness of the Γ phase at the base metal interface is 0.5 μm or less, and the plating layer No η and ζ phases exist on the surface and the amount of adhesion is 45 to 90 g/m
1. An alloyed hot-dip galvanized steel sheet with excellent workability, characterized in that it has an alloyed plating layer of No. 2 on at least one side.
01〜1.0重量%を含有し、残部がZn及び不可避的
不純物より成る溶融亜鉛めっき浴を用いて少なくとも片
面の付着量が45〜90g/m2となる溶融亜鉛めっき
を行った後、450〜500℃で2〜40秒間加熱して
地鉄界面のΓ相の厚さが0.5μm以下であり且つめっ
き層表面にη,ζ相が存在しないように合金化処理する
ことを特徴とする加工性に優れた合金化溶融亜鉛めっき
鋼板の製造方法。Claim 2: Al: less than 0.2% by weight, Mn: 0.
After performing hot-dip galvanizing with a coating weight of 45-90 g/m2 on at least one side using a hot-dip galvanizing bath containing 01-1.0% by weight and the remainder consisting of Zn and unavoidable impurities, Processing characterized by alloying treatment by heating at 500°C for 2 to 40 seconds so that the thickness of the Γ phase at the substrate interface is 0.5 μm or less and the η and ζ phases are not present on the surface of the plating layer. A method for manufacturing alloyed hot-dip galvanized steel sheets with excellent properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8586091A JP2798520B2 (en) | 1991-03-27 | 1991-03-27 | Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8586091A JP2798520B2 (en) | 1991-03-27 | 1991-03-27 | Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04297563A true JPH04297563A (en) | 1992-10-21 |
JP2798520B2 JP2798520B2 (en) | 1998-09-17 |
Family
ID=13870636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8586091A Expired - Lifetime JP2798520B2 (en) | 1991-03-27 | 1991-03-27 | Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2798520B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049239A (en) * | 2001-02-26 | 2003-02-21 | Nippon Steel Corp | High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same |
JP2009521596A (en) * | 2005-12-24 | 2009-06-04 | ポスコ | A high manganese hot-dip steel sheet having excellent corrosion resistance and a method for producing the same. |
-
1991
- 1991-03-27 JP JP8586091A patent/JP2798520B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049239A (en) * | 2001-02-26 | 2003-02-21 | Nippon Steel Corp | High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same |
JP2009521596A (en) * | 2005-12-24 | 2009-06-04 | ポスコ | A high manganese hot-dip steel sheet having excellent corrosion resistance and a method for producing the same. |
US9580786B2 (en) | 2005-12-24 | 2017-02-28 | Posco | High Mn steel sheet for high corrosion resistance and method of manufacturing galvanizing the steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2798520B2 (en) | 1998-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6128748B2 (en) | ||
JP2804167B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same | |
JP2003253416A (en) | Hot-dip zincing steel sheet | |
JP4702974B2 (en) | Alloyed hot-dip galvanized high-tensile steel plate with excellent workability and method for producing the same | |
JP3503594B2 (en) | Hot-dip Zn-Al alloy coated steel sheet excellent in blackening resistance and method for producing the same | |
WO1992012271A1 (en) | Method of manufacturing alloyed hot dip zinc plated steel sheet having excellent moldability in pressing work and resistance to powdering | |
JPH04297563A (en) | Galvannealed steel sheet excellent in workability and its production | |
JPH0688192A (en) | Galvannealed steel sheet having excellent workability and its production | |
JPS63312960A (en) | Manufacturing method of hot-dip galvanized steel plate with good workability | |
JP3838277B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent powdering resistance | |
JP2978297B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same | |
JP4508378B2 (en) | Manufacturing method of galvannealed steel sheet with excellent press formability | |
JP3016122B2 (en) | Galvannealed steel sheet with excellent paintability and its manufacturing method | |
JP2783457B2 (en) | Manufacturing method of hot-dip Zn-Al plated steel sheet | |
JP2938449B1 (en) | Hot-dip Sn-Zn plated steel sheet | |
JP3724390B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JPH04360A (en) | Alloyed hot-dip galvanized steel sheet with excellent workability | |
JPH0544006A (en) | Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance | |
JPH04235266A (en) | Manufacture of alloying galvannealed steel sheet excellent in workability and corrosion resistance | |
JP3262061B2 (en) | Hot-dip galvanizing method | |
JP4600951B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and its manufacturing method | |
JPH04157145A (en) | Galvannealed steel sheet | |
JPH04157146A (en) | Galvannealed steel sheet | |
JPH04314848A (en) | Manufacture of high tensile strength galvannealed steel sheet excellent in workability | |
JPH04218655A (en) | Method for manufacturing alloyed hot-dip galvanized steel sheet with excellent workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980623 |