[go: up one dir, main page]

JPH04297426A - Production of methyl chloride - Google Patents

Production of methyl chloride

Info

Publication number
JPH04297426A
JPH04297426A JP3086085A JP8608591A JPH04297426A JP H04297426 A JPH04297426 A JP H04297426A JP 3086085 A JP3086085 A JP 3086085A JP 8608591 A JP8608591 A JP 8608591A JP H04297426 A JPH04297426 A JP H04297426A
Authority
JP
Japan
Prior art keywords
reaction
methyl chloride
methanol
carbon tetrachloride
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3086085A
Other languages
Japanese (ja)
Other versions
JPH07106995B2 (en
Inventor
Toshihiro Ochika
尾近 敏博
Takaaki Shimizu
孝明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3086085A priority Critical patent/JPH07106995B2/en
Priority to DE69203481T priority patent/DE69203481T2/en
Priority to EP92103434A priority patent/EP0501501B1/en
Priority to US07/843,848 priority patent/US5196618A/en
Publication of JPH04297426A publication Critical patent/JPH04297426A/en
Publication of JPH07106995B2 publication Critical patent/JPH07106995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はメチルクロライドの製造
方法、とくには反応系に分離の困難な二酸化炭素とメチ
ルクロライドの混合ガスを存在させずに、四塩化炭素と
メタノールからメチルクロライドを経済的に製造する方
法に関する。
[Industrial Application Field] The present invention provides a method for producing methyl chloride, and in particular, an economical method for producing methyl chloride from carbon tetrachloride and methanol without the presence of a mixed gas of carbon dioxide and methyl chloride, which is difficult to separate, in the reaction system. Relating to a method of manufacturing.

【0002】0002

【従来の技術】近年、オゾン層の破壊が大きな社会問題
となっており、1990年6月のロンドン会議において
オゾン層破壊物質の今世紀中の全廃が決定され、産業界
もこれに従う計画を進めている。このオゾン層破壊物質
の1つに四塩化炭素(CCl4)がある。この四塩化炭
素の最も代表的な工業的製法としては、メタンまたは塩
化メチルの塩素化法がある。この方法は下式に示すよう
に、CH4 →CH3Cl →CH2Cl2→CCl4
と経由してCCl4が作られる逐次併発反応であり、そ
の生成物は未反応メタンまたはメチルクロライド(CH
3Cl )から四塩化炭素に至るクロロメタン類の混合
物となる。 CH4 +  Cl2 →  CH3Cl + HCl
CH3Cl   +  Cl2 →  CH2Cl2 
 + HClCH2Cl2  +  Cl2 →  C
HCl3+ HClCHCl3 +  Cl2 →  
CCl4+  HClこのため四塩化炭素の副生なしに
、この反応を行なわせることは不可能である。しかし、
部分塩素化メタンはそれぞれ大きく有用なマーケットを
もっているので、この製造法を廃止した場合の他に及ぼ
す影響は極めて大きい。それ故、副生する四塩化炭素を
速やかに他の無害な有用物質に転換する手段が望まれて
いる。
[Background Art] In recent years, the depletion of the ozone layer has become a major social problem, and the London conference in June 1990 decided to completely eliminate ozone-depleting substances by the end of this century, and the industry is also proceeding with plans to follow this. There is. One of these ozone layer depleting substances is carbon tetrachloride (CCl4). The most typical industrial method for producing carbon tetrachloride is the chlorination method of methane or methyl chloride. This method is as shown in the formula below: CH4 → CH3Cl → CH2Cl2 → CCl4
It is a sequential simultaneous reaction in which CCl4 is produced via
It becomes a mixture of chloromethanes ranging from 3Cl) to carbon tetrachloride. CH4 + Cl2 → CH3Cl + HCl
CH3Cl + Cl2 → CH2Cl2
+ HClCH2Cl2 + Cl2 → C
HCl3+ HClCHCl3 + Cl2 →
CCl4+ HCl It is therefore impossible to carry out this reaction without the by-product of carbon tetrachloride. but,
Partially chlorinated methane each has a large and useful market, so the impact on others if this production method were abolished would be extremely large. Therefore, there is a need for a means to quickly convert the by-product carbon tetrachloride into other harmless useful substances.

【0003】そこで本発明者らは、その方法の一つとし
て塩化亜鉛等の金属塩化物等を活性炭に担持させた触媒
を用いる四塩化炭素、メタノール等の気相反応法を先に
提案した。この反応を熱化学反応式を用いて表わすと、
CCl4+4MeOH  →  4CH3Cl + C
O2+2H2O +70kcal/mol−CCl4 
となる。しかし、この方法を触媒を充填した固定層反応
器で一気に行なわせると、反応器内の伝熱の悪さから、
その発熱により部分的に高温域が発生する恐れがある。
[0003] As one of the methods, the present inventors have previously proposed a gas phase reaction method for carbon tetrachloride, methanol, etc. using a catalyst in which a metal chloride such as zinc chloride is supported on activated carbon. This reaction can be expressed using a thermochemical reaction equation:
CCl4+4MeOH → 4CH3Cl + C
O2+2H2O +70kcal/mol-CCl4
becomes. However, if this method is carried out all at once in a fixed bed reactor filled with catalyst, due to poor heat transfer within the reactor,
The heat generated may cause a high temperature region to occur in some areas.

【0004】他方、反応生成物から二酸化炭素を分離す
るための従来最もよく行なわれている方法は次の通りで
ある。 1)アルカノールアミン法:これはアルカノールアミン
[(HOR)nNH3−n]と被吸収ガスとを、50℃
、ほぼ大気圧下で接触させ、下記化1式に示す二酸化炭
素とアルカノールアミンとの化学平衡を用いて二酸化炭
素を除去する方法である。
On the other hand, the most conventional method for separating carbon dioxide from the reaction product is as follows. 1) Alkanolamine method: In this method, alkanolamine [(HOR)nNH3-n] and gas to be absorbed are heated at 50°C.
This is a method of removing carbon dioxide by bringing them into contact at approximately atmospheric pressure and using the chemical equilibrium between carbon dioxide and alkanolamine shown in Formula 1 below.

【化1】 この方法ではメチルクロライドがアルカノールアミンと
反応して塩化メチルアルカノールアンモニウム[ Me
(HOR)nNH3−nCl]を形成するため、この共
存下では二酸化炭素の吸収に適用できない。 2)熱炭酸カリ法:下記化2式に示すように、炭酸カリ
ウム溶液と被吸収ガスを 120℃、20kg/cm2
G 程度の圧力下で接触させて二酸化炭素を除去する方
法である。
In this method, methyl chloride reacts with alkanolamine to form methylalkanol ammonium chloride [Me
(HOR)nNH3-nCl], so it cannot be applied to carbon dioxide absorption under this coexistence. 2) Thermal potassium carbonate method: As shown in formula 2 below, a potassium carbonate solution and an absorbed gas are heated at 120°C and 20kg/cm2.
This is a method of removing carbon dioxide by contacting under pressure of about G.

【化2】 高温の炭酸カリのようなアルカリの存在下では、水とメ
チルクロライドは反応してしまう。低温で二酸化炭素の
吸収を行なうときは、この反応は起こらなくなるが、二
酸化炭素の吸収速度が低下するため、吸収塔を非常に高
くする必要が生じ不経済になる。 3)水酸化ナトリウムによる吸収低温、低圧ではメチル
クロライドと水酸化ナトリウムとは反応しないが、水酸
化ナトリウムと二酸化炭素との反応が不可逆反応のため
、原料の四塩化炭素の使用量の増加に伴ない消費する水
酸化ナトリウムの量も増加しコスト高となる。このよう
にメチルクロライドの共存する系での安価な二酸化炭素
の除去手段はこれまでのところ提案されていない。
[Chemical 2] In the presence of alkali such as potassium carbonate at high temperature, water and methyl chloride react. When carbon dioxide is absorbed at low temperatures, this reaction does not occur, but the absorption rate of carbon dioxide decreases, making it necessary to make the absorption tower very high, which becomes uneconomical. 3) Absorption by sodium hydroxide Methyl chloride and sodium hydroxide do not react at low temperature and low pressure, but because the reaction between sodium hydroxide and carbon dioxide is an irreversible reaction, the amount of carbon tetrachloride used as a raw material increases. The amount of sodium hydroxide consumed also increases, resulting in higher costs. Thus far, no inexpensive means for removing carbon dioxide in a system in which methyl chloride coexists has been proposed.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明は
反応器中での局所的な高温の発生を抑制すると共に、分
離の困難なメチルクロライドと二酸化炭素の混合ガスを
発生させずに、簡単なプロセスで二酸化炭素の除去を可
能にした、四塩化炭素とメタノールからのメチルクロラ
イドの製造方法を提供するものである。
[Problems to be Solved by the Invention] Therefore, the present invention suppresses the generation of local high temperatures in the reactor, and also eliminates the generation of a mixed gas of methyl chloride and carbon dioxide, which is difficult to separate. The present invention provides a method for producing methyl chloride from carbon tetrachloride and methanol, which allows the removal of carbon dioxide in the process.

【0006】[0006]

【課題を解決するための手段】本発明によるメチルクロ
ライドの製造方法は、1)周期律表の1B族、2A族、
2B族、6B族、7B族および8族の内の少なくとも1
種の元素のハロゲン化物および/または酸化物を活性炭
に担持させた触媒を用いて、気相で四塩化炭素を加水分
解し、得られる二酸化炭素と塩化水素とを分離する第1
の工程と、2)前記塩化水素をメタノールと反応させて
メチルクロライドを製造する第2の工程とからなり、好
ましくは、この第2の工程における反応を第1の工程と
同一の触媒の存在下に気相で行うことを特徴とするもの
である。
[Means for Solving the Problems] The method for producing methyl chloride according to the present invention comprises: 1) groups 1B and 2A of the periodic table;
At least one of Group 2B, Group 6B, Group 7B and Group 8
The first step is to hydrolyze carbon tetrachloride in the gas phase using a catalyst in which halides and/or oxides of certain elements are supported on activated carbon, and to separate the resulting carbon dioxide and hydrogen chloride.
and 2) a second step of producing methyl chloride by reacting the hydrogen chloride with methanol. Preferably, the reaction in the second step is carried out in the presence of the same catalyst as in the first step. It is characterized by being carried out in the gas phase.

【0007】以下、本発明のメチルクロライドの製造工
程の一実施態様を例示した図1に基づいて説明する。第
1反応工程Aでは,少なくとも四塩化炭素と水を含む原
料(以下、第一原料とする)を受け入れて、上記触媒の
存在下気相で四塩化炭素を加水分解し、得られる反応ガ
ス中の二酸化炭素と塩化水素とを分離する。第2反応工
程Bでは、第1反応工程Aで得られた塩化水素と少なく
ともメタノールを含む原料(以下、第二原料とする)と
からメチルクロライドを製造する。本発明は、分離困難
な二酸化炭素とメチルクロライドとを混合させずに、反
応を四塩化炭素の加水分解反応と塩化水素とメタノール
とからのメチルクロライドの合成反応とに分割すること
で、反応器内の温度コントロールを容易にしたもので、
第一原料にメタノールを含まないことを前提としている
。また、本発明の方法では第2反応工程Bで他の工程で
産出された塩化水素をメタノールと反応させることもで
きる。この場合供給する塩化水素はガス状塩化水素、濃
塩酸、稀塩酸のいずれの形態でも採用可能である。塩化
水素は第一原料、第二原料のいずれとも混合して供給す
ることができる。
[0007] An embodiment of the methyl chloride production process of the present invention will be described below with reference to FIG. 1 illustrating it. In the first reaction step A, a raw material containing at least carbon tetrachloride and water (hereinafter referred to as the first raw material) is received, carbon tetrachloride is hydrolyzed in the gas phase in the presence of the catalyst, and the resulting reaction gas is carbon dioxide and hydrogen chloride are separated. In the second reaction step B, methyl chloride is produced from the hydrogen chloride obtained in the first reaction step A and a raw material containing at least methanol (hereinafter referred to as a second raw material). The present invention enables the reaction to be separated into a hydrolysis reaction of carbon tetrachloride and a synthesis reaction of methyl chloride from hydrogen chloride and methanol without mixing carbon dioxide and methyl chloride, which are difficult to separate. This makes it easy to control the temperature inside.
It is assumed that the first raw material does not contain methanol. Furthermore, in the method of the present invention, hydrogen chloride produced in another step can be reacted with methanol in the second reaction step B. In this case, the hydrogen chloride to be supplied may be in the form of gaseous hydrogen chloride, concentrated hydrochloric acid, or diluted hydrochloric acid. Hydrogen chloride can be supplied mixed with either the first raw material or the second raw material.

【0008】第1反応工程Aでは気相触媒反応により四
塩化炭素を加水分解する。用いられる触媒は周期律表の
1B族、2A族、2B族、6B族、7B族および8族の
うちの少なくとも1種のハロゲン化物および/または酸
化物を活性炭に担持させたものである。反応器内の温度
は 150〜 250℃程度に保つのが望ましい。これ
が 150℃未満では四塩化炭素の反応速度が低下し反
応率の低下を招く。 250℃を超えると、反応速度は
増すが、高温になるにつれて反応ガスによる腐食性が増
し、恒久的材料の選定が困難となる。反応圧力が高いほ
ど反応器の容量は少なくてすむが、腐食を考慮した強度
から5kg/cm2G 程度以下で行なうのが好ましい
。供給する四塩化炭素と水のモル比は、この反応が下式
にしたがって行われることから、この量論比としては 
H2O/CCl4=2.0 であるが、四塩化炭素の反
応率を上げるために水を多少過剰に H2O/CCl4
=2.2 以上で供給するのが好ましい。 CCl4+2H2O → CO2+4HClしかし、大
過剰の水の供給は反応に関与しない成分を供給すること
にもなり、装置の大型化を招き経済的に不利となる。こ
れらの条件下では工程内の滞留時間が5〜10秒で、供
給した四塩化炭素のほぼ全量が反応する。第1反応工程
Aの反応ガスは二酸化炭素、塩化水素および水(過剰分
)からなっており、この際の二酸化炭素と他の成分の分
離は、これまで公知のいずれの方法を用いてもよい。最
も簡単には、例えばコンデンサーもしくはコンデンサー
と水スクラバーを用いることで、塩化水素は塩酸水とし
て回収され、二酸化炭素はガスのまま放出される。
In the first reaction step A, carbon tetrachloride is hydrolyzed by a gas phase catalytic reaction. The catalyst used is one in which at least one halide and/or oxide of groups 1B, 2A, 2B, 6B, 7B and 8 of the periodic table is supported on activated carbon. It is desirable to maintain the temperature inside the reactor at about 150 to 250°C. If the temperature is lower than 150°C, the reaction rate of carbon tetrachloride decreases, leading to a decrease in the reaction rate. When the temperature exceeds 250° C., the reaction rate increases, but as the temperature increases, the corrosivity caused by the reaction gas increases, making it difficult to select a permanent material. The higher the reaction pressure, the smaller the capacity of the reactor, but from the viewpoint of strength in consideration of corrosion, it is preferable to conduct the reaction at a pressure of about 5 kg/cm2G or less. Since this reaction is carried out according to the following formula, the molar ratio of carbon tetrachloride and water to be supplied is the stoichiometric ratio.
H2O/CCl4 = 2.0, but in order to increase the reaction rate of carbon tetrachloride, water is added in excess H2O/CCl4
=2.2 or more is preferable. CCl4 + 2H2O → CO2 + 4HCl However, supplying a large excess of water also supplies components that do not participate in the reaction, leading to an increase in the size of the apparatus, which is economically disadvantageous. Under these conditions, the residence time in the process is 5 to 10 seconds, and almost all of the supplied carbon tetrachloride reacts. The reaction gas in the first reaction step A consists of carbon dioxide, hydrogen chloride, and water (excess), and any known method may be used to separate the carbon dioxide and other components. . Most simply, the hydrogen chloride is recovered as aqueous hydrochloric acid and the carbon dioxide is released as a gas, for example using a condenser or condenser and water scrubber.

【0009】四塩化炭素の気相加水分解反応に関しては
、米国特許第 4,423,024号明細書に記載され
た耐酸性モレキュラーシーブを用いる方法がよく知られ
ている。 しかしここで用いられている触媒は本発明で用いる触媒
より活性が低いため、四塩化炭素の反応率を低下させな
いためには本発明より高い温度( 220〜 310℃
が好ましい)を必要とする。実際に、四塩化炭素を用い
た実施例では 240〜 332℃となっている。この
耐酸性モレキュラーシーブを本発明の第1反応工程Aに
用い、本発明におけるように反応ガスによる腐食を抑え
るために、反応温度を 200℃ほどにすると、第1反
応工程Aでは四塩化炭素の加水分解反応が完結しなくな
る。この反応ガスより二酸化炭素を除去した残りの反応
生成物を、前記触媒を用いた第2反応工程Bに送れば、
第2反応工程Bで四塩化炭素の加水分解反応と、塩化水
素とメタノールとからのメチルクロライドの合成反応と
が同時に起こり、二酸化炭素とC1 の混合ガスが発生
したり温度制御が困難になるなどの不都合を生ずる。ま
た、第2反応工程Bが下記液相無触媒反応で行われる場
合には、第1反応工程Aからの未反応四塩化炭素は、こ
こで加水分解されずにそのまま未反応物として排出され
てしまう。
Regarding the gas phase hydrolysis reaction of carbon tetrachloride, a method using an acid-resistant molecular sieve described in US Pat. No. 4,423,024 is well known. However, the catalyst used here has lower activity than the catalyst used in the present invention, so in order not to reduce the reaction rate of carbon tetrachloride, a temperature higher than that of the present invention (220 to 310°C) is required.
(preferably). In fact, in an example using carbon tetrachloride, the temperature is 240 to 332°C. When this acid-resistant molecular sieve is used in the first reaction step A of the present invention and the reaction temperature is set to about 200°C in order to suppress corrosion by the reaction gas as in the present invention, carbon tetrachloride is removed in the first reaction step A. The hydrolysis reaction will not be completed. If the remaining reaction product after removing carbon dioxide from this reaction gas is sent to the second reaction step B using the catalyst,
In the second reaction step B, the hydrolysis reaction of carbon tetrachloride and the synthesis reaction of methyl chloride from hydrogen chloride and methanol occur simultaneously, resulting in the generation of a mixed gas of carbon dioxide and C1, making temperature control difficult, etc. causing inconvenience. In addition, when the second reaction step B is carried out in the liquid phase non-catalytic reaction described below, the unreacted carbon tetrachloride from the first reaction step A is not hydrolyzed here and is discharged as an unreacted product. Put it away.

【0010】第2反応工程Bでは第1反応工程Aで得ら
れた塩化水素とメタノールからメチルクロライドを製造
する。ここでの反応形式には従来公知のメタノールと塩
化水素からのメチルクロライドの合成法のいづれを用い
てもよい。例えば、これには第1反応工程Aと同様の触
媒を用いた気相反応あるいは液相無触媒反応等があげら
れる。これらのうちでも、メタノールおよび塩化水素の
反応効率の点から気相触媒反応が好ましい。第1反応工
程Aで得られた塩化水素の第2反応工程Bへの供給形態
は、第2反応工程Bでの反応様式により適宜選択され得
る。例えば、第2反応工程Bで気相触媒法を用いた場合
は、第1反応工程Aで得られた塩酸水より塩化水素を放
散して第2反応工程Bへ供給してもよく、塩酸水を全量
蒸発して第2反応工程Bへ供給してもよい。第2反応工
程Bでの反応条件についても、ここでの反応様式により
適宜選択される。例えば第2反応工程Bで第1反応工程
Aと同様の触媒を用いた気相反応を行なう場合、反応器
内温度は 150〜 250℃程度に保つのが望ましい
。これが 150℃未満ではメタノールの反応速度が低
下して反応率の低下を招き、 250℃を超えると反応
速度は増すが、高温になるにつれて反応ガスの腐食性が
増し恒久的材質の選定が困難となる。反応圧力は高いほ
ど反応器の容量が少なくてすむが、腐食を考慮した強度
から5kg/cm2G 程度以下で行なうのが好ましい
。供給するメタノールと塩化水素の割合については、メ
タノールを過剰に供給すると副生するジメチルエーテル
[(CH3)2O ]が増加するため、供給比率:HC
l/MeOH(モル比)を1.01以上というように、
若干塩化水素を過剰に供給するのが好ましい。この量を
あまり大きくすると未反応塩化水素が増え、塩素のメチ
ルクロライドへの転換が非効率的となる。上記条件のも
とでは、平均滞留時間が5〜10秒程度で、供給したメ
タノールの95%以上が反応する。また第2反応工程B
で液相無触媒反応を用いた場合、反応温度は70℃程度
以上が好ましい。これが70℃未満ではメタノールの反
応速度が低下する。反応圧力は反応成績を上げるために
加圧状態が好ましい。供給するメタノールと塩化水素の
比率は、この系の反応速度が上記気相反応より遅いため
、塩化水素を例えば、HCl/MeOH>2.0 のよ
うに過剰にすることで良好な結果が得られる。
In the second reaction step B, methyl chloride is produced from the hydrogen chloride obtained in the first reaction step A and methanol. Any of the conventional methods for synthesizing methyl chloride from methanol and hydrogen chloride may be used as the reaction method here. For example, this may include a gas phase reaction using the same catalyst as in the first reaction step A or a liquid phase non-catalytic reaction. Among these, gas phase catalytic reaction is preferred from the viewpoint of reaction efficiency of methanol and hydrogen chloride. The manner in which hydrogen chloride obtained in the first reaction step A is supplied to the second reaction step B can be appropriately selected depending on the reaction mode in the second reaction step B. For example, when a gas phase catalyst method is used in the second reaction step B, hydrogen chloride may be diffused from the hydrochloric acid water obtained in the first reaction step A and then supplied to the second reaction step B. The entire amount may be evaporated and supplied to the second reaction step B. The reaction conditions in the second reaction step B are also appropriately selected depending on the reaction mode here. For example, when performing a gas phase reaction using the same catalyst as in the first reaction step A in the second reaction step B, it is desirable to maintain the temperature inside the reactor at about 150 to 250°C. If this temperature is lower than 150℃, the reaction rate of methanol decreases, leading to a decrease in the reaction rate, and if the temperature exceeds 250℃, the reaction rate increases, but as the temperature increases, the corrosivity of the reaction gas increases, making it difficult to select a permanent material. Become. The higher the reaction pressure, the smaller the capacity of the reactor, but from the viewpoint of strength considering corrosion, it is preferable to conduct the reaction at a pressure of about 5 kg/cm2G or less. Regarding the ratio of methanol and hydrogen chloride to be supplied, the supply ratio: HC
such as l/MeOH (molar ratio) of 1.01 or more,
It is preferable to supply a slight excess of hydrogen chloride. If this amount is too large, unreacted hydrogen chloride will increase, and the conversion of chlorine to methyl chloride will become inefficient. Under the above conditions, more than 95% of the supplied methanol reacts with an average residence time of about 5 to 10 seconds. Also, the second reaction step B
When liquid phase non-catalytic reaction is used, the reaction temperature is preferably about 70°C or higher. When this temperature is lower than 70°C, the reaction rate of methanol decreases. The reaction pressure is preferably a pressurized state in order to improve reaction results. Since the reaction rate of this system is slower than the above gas phase reaction, good results can be obtained by using an excess of hydrogen chloride, for example, HCl/MeOH > 2.0. .

【0011】[0011]

【実施例】以下、本発明を実施例により具体的に説明す
る。図2に示した製造プロセスを用いて下記の反応を行
なった。まず、第1気化器1に、原料の四塩化炭素7を
 538g/時、水スクラバー戻り塩酸水8(組成:水
80.0重量%、塩化水素20.0重量%)を 709
g/時の割合でそれぞれ供給し、 150℃に気化、昇
温した。これを、直径50mmφ×高さ1000mmの
外部ヒーター巻きのガラス製で、内部に30重量%の塩
化亜鉛を担持させた活性炭が充填されている、第1反応
器2に供給した。供給したH2O/CCl4のモル比は
 9.0、空塔での平均滞留時間は 8.1秒であった
。 器内の温度は 195〜 225℃に制御した。第1反
応器2より排出されたガスはコンデンサー3で凝縮され
、そこでの未凝縮分9は塩酸水を循環している水スクラ
バー4に導かれて、溶解分を取り除かれ排気された(1
2)。コンデンサー3での凝縮液10は 629g/時
で、その組成は塩化水素33.3重量%、水66.7重
量%であった。水スクラバー4では純水11を1779
g/時で供給し、排気ガス12は 185g/時で、そ
の組成は二酸化炭素83.4重量%、水16.6重量%
であった。水スクラバー4での溶解液13は2213g
/時(塩化水素20.0重量%)で2分割され、一方の
 709g/時は水スクラバー戻り塩酸水8として前記
第1気化器1に送られ、他方(14)の1504g/時
は前記凝縮液10と一緒になって第2気化器5に供給さ
れる。第2気化器5には別の原料としてメタノール15
を 407g/時で供給した。第2気化器5では受け入
れられたこれらの原料を 150℃に昇温し、第2反応
器6に供給した。第2反応器6は直径70mmφ×高さ
1600mmの外部ヒーター巻きガラス製で、内部に第
1反応器2と同じ触媒が充填されている。供給した塩化
水素とメタノールのモル比はHCl/MeOH= 1.
1、平均滞留時間は 8.5秒である。ここでの反応温
度は 200〜 220℃で制御した。第2反応器6よ
り排出されたガス16は2540g/時で、その組成は
メチルクロライド:24.6重量%、塩化水素: 2.
3重量%、メタノール: 0.3重量%、ジメチルエー
テル:0.08重量%、水:72.7重量%であった。 四塩化炭素は第1反応器2で 100%反応した。メタ
ノールの反応率は98.2%、メチルクロライドの選択
率は99.3%であった。
[Examples] The present invention will be specifically explained below using examples. The following reaction was carried out using the manufacturing process shown in FIG. First, 538 g/hour of raw material carbon tetrachloride 7 and 709 g/hour of hydrochloric acid water 8 (composition: water 80.0% by weight, hydrogen chloride 20.0% by weight) returned from the water scrubber were added to the first vaporizer 1.
They were each supplied at a rate of g/hour, and the temperature was vaporized and raised to 150°C. This was supplied to the first reactor 2, which was made of glass and was wrapped with an external heater and had a diameter of 50 mmφ and a height of 1000 mm, and was filled with activated carbon carrying 30% by weight of zinc chloride. The molar ratio of H2O/CCl4 supplied was 9.0, and the average residence time in the column was 8.1 seconds. The temperature inside the vessel was controlled at 195-225°C. The gas discharged from the first reactor 2 was condensed in a condenser 3, and the uncondensed content 9 there was led to a water scrubber 4 circulating hydrochloric acid water to remove dissolved content and exhaust (1
2). The condensate 10 in condenser 3 was 629 g/hour and had a composition of 33.3% by weight of hydrogen chloride and 66.7% by weight of water. Water scrubber 4 uses pure water 11 at 1779
The exhaust gas 12 is 185 g/hour and has a composition of 83.4% carbon dioxide and 16.6% water by weight.
Met. Dissolved solution 13 in water scrubber 4 is 2213g
/hour (hydrogen chloride 20.0% by weight), one 709g/hour is sent to the first vaporizer 1 as hydrochloric acid water 8 returned from the water scrubber, and the other (14) 1504g/hour is the condensed water. It is supplied to the second vaporizer 5 together with the liquid 10. The second vaporizer 5 has methanol 15 as another raw material.
was supplied at a rate of 407 g/hour. These raw materials received in the second vaporizer 5 were heated to 150° C. and supplied to the second reactor 6. The second reactor 6 is made of glass wrapped with an external heater and has a diameter of 70 mmφ and a height of 1600 mm, and is filled with the same catalyst as the first reactor 2. The molar ratio of hydrogen chloride and methanol supplied was HCl/MeOH=1.
1. Average residence time is 8.5 seconds. The reaction temperature here was controlled at 200-220°C. The gas 16 discharged from the second reactor 6 was 2540 g/hour, and its composition was methyl chloride: 24.6% by weight, hydrogen chloride: 2.
3% by weight, methanol: 0.3% by weight, dimethyl ether: 0.08% by weight, and water: 72.7% by weight. 100% of the carbon tetrachloride reacted in the first reactor 2. The methanol reaction rate was 98.2%, and the methyl chloride selectivity was 99.3%.

【0012】0012

【発明の効果】本発明によれば、四塩化炭素とメタノー
ルとからのメチルクロライドの製造において、分離が困
難なメチルクロライドと二酸化炭素との混合ガスを発生
させないので、簡単なプロセスでの二酸化炭素の除去が
可能となる。また反応を2段に分割することで除熱が難
かしい固定層触媒反応器内での局所的高温部の発生を防
止する。
According to the present invention, in the production of methyl chloride from carbon tetrachloride and methanol, a mixed gas of methyl chloride and carbon dioxide, which is difficult to separate, is not generated, so that carbon dioxide can be produced in a simple process. can be removed. Furthermore, by dividing the reaction into two stages, it is possible to prevent the generation of localized high temperature areas within the fixed bed catalytic reactor where heat removal is difficult.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の方法を実施する反応工程の概略を示す
説明図である。
FIG. 1 is an explanatory diagram showing an outline of reaction steps for carrying out the method of the present invention.

【図2】本発明の方法を実施する反応工程の別の態様を
示す説明図である。
FIG. 2 is an explanatory diagram showing another embodiment of the reaction process for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1…第1気化器、2…第1反応器、3…コンデンサー、
4…水スクラバー、 5…第2気化器、6…第2反応器。
1... First vaporizer, 2... First reactor, 3... Condenser,
4...Water scrubber, 5...Second vaporizer, 6...Second reactor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】1)周期律表の1B族、2A族、2B族、
6B族、7B族および8族の内の少なくとも1種の元素
のハロゲン化物および/または酸化物を活性炭に担持さ
せた触媒を用いて、気相で四塩化炭素を加水分解し、得
られる二酸化炭素と塩化水素とを分離する第1の工程と
、2)前記塩化水素をメタノールと反応させてメチルク
ロライドを製造する第2の工程とからなることを特徴と
する四塩化炭素とメタノールからのメチルクロライドの
製造方法。
Claim 1: 1) Group 1B, Group 2A, Group 2B of the periodic table,
Carbon dioxide obtained by hydrolyzing carbon tetrachloride in the gas phase using a catalyst in which a halide and/or oxide of at least one element from Group 6B, Group 7B, and Group 8 is supported on activated carbon. and 2) a second step of producing methyl chloride by reacting the hydrogen chloride with methanol.Methyl chloride from carbon tetrachloride and methanol. manufacturing method.
【請求項2】前記第2の工程における反応が、第1の工
程と同一の触媒の存在下に気相で行われる請求項1記載
のメチルクロライド製造方法。
2. The method for producing methyl chloride according to claim 1, wherein the reaction in the second step is carried out in the gas phase in the presence of the same catalyst as in the first step.
JP3086085A 1991-03-01 1991-03-26 Method for producing methyl chloride Expired - Fee Related JPH07106995B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3086085A JPH07106995B2 (en) 1991-03-26 1991-03-26 Method for producing methyl chloride
DE69203481T DE69203481T2 (en) 1991-03-01 1992-02-28 Process for the production of methyl chloride from carbon tetrachloride and methyl alcohol.
EP92103434A EP0501501B1 (en) 1991-03-01 1992-02-28 Method for the preparation of methyl chloride from carbon tetrachloride and methyl alcohol
US07/843,848 US5196618A (en) 1991-03-01 1992-02-28 Method for the preparation of methyl chloride from carbon tetrachloride and methyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3086085A JPH07106995B2 (en) 1991-03-26 1991-03-26 Method for producing methyl chloride

Publications (2)

Publication Number Publication Date
JPH04297426A true JPH04297426A (en) 1992-10-21
JPH07106995B2 JPH07106995B2 (en) 1995-11-15

Family

ID=13876870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3086085A Expired - Fee Related JPH07106995B2 (en) 1991-03-01 1991-03-26 Method for producing methyl chloride

Country Status (1)

Country Link
JP (1) JPH07106995B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423024A (en) 1980-03-11 1983-12-27 The Dow Chemical Company Selective conversion of chlorinated alkanes to hydrogen chloride and carbon dioxide

Also Published As

Publication number Publication date
JPH07106995B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US5334777A (en) Conversion of alkanes to alkanols and glycols
TW388751B (en) Process for the production of difluoromethane
US5895825A (en) Preparation of 1,1,1,3,3-pentafluoropropane
US5811603A (en) Gas phase fluorination of 1230za
US7084308B1 (en) Manufacture of formaldehyde from methyl bromide
JP2008523092A (en) Direct one-step synthesis of CF3-I
JPS6351972B2 (en)
JP4192354B2 (en) Chlorine production method
EP0501501B1 (en) Method for the preparation of methyl chloride from carbon tetrachloride and methyl alcohol
US3131028A (en) Catalytic oxidation reaction of a hydrogen halide to produce the corresponding halogen in a single stage, homogeneous, vapor phase using no as a catalyst
JPH0659331B2 (en) Treatment method of carbon tetrachloride
JPH04297426A (en) Production of methyl chloride
JPS6123776B2 (en)
JPS59204149A (en) Method for purifying hexafluoroacetone hydrate
US5177271A (en) Production of vinylidene fluoride
JPS60345B2 (en) Method for recovering active ingredients from methionine synthesis exhaust gas
JPH03294237A (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH0621004B2 (en) Chlorine dioxide manufacturing method
JPH09208509A (en) Method for producing ethylene glycol
JP2007509056A (en) Method for producing hydrofluorocarbon
CN102666451A (en) Process for producing allyl chloride and dichloropropanol
JP3932791B2 (en) Method for producing vinylidene chloride
US3062902A (en) Nitrosyl fluoride as a fluorinating agent
JPH0672916A (en) Production of vinylidene fluoride
US1697105A (en) Manufacture of oxidation products of hydrocarbons

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees