[go: up one dir, main page]

JPH04296314A - Production of propylene block copolymer - Google Patents

Production of propylene block copolymer

Info

Publication number
JPH04296314A
JPH04296314A JP10631991A JP10631991A JPH04296314A JP H04296314 A JPH04296314 A JP H04296314A JP 10631991 A JP10631991 A JP 10631991A JP 10631991 A JP10631991 A JP 10631991A JP H04296314 A JPH04296314 A JP H04296314A
Authority
JP
Japan
Prior art keywords
compound
tank
polymerization
propylene
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10631991A
Other languages
Japanese (ja)
Other versions
JP3005944B2 (en
Inventor
Hideo Funabashi
英雄 船橋
Akinobu Sugawara
菅原 昭伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14430633&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04296314(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP3106319A priority Critical patent/JP3005944B2/en
Publication of JPH04296314A publication Critical patent/JPH04296314A/en
Application granted granted Critical
Publication of JP3005944B2 publication Critical patent/JP3005944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To prevent adhesion of polymer to inner wall of device, etc., and to reduce operation load of purifying recycling system of unreacted monomer in carrying out a two-stage polymerization using a polymerization catalyst having high stereoregularity by using a specific method. CONSTITUTION:First, a catalyst having high stereoregularity obtained at least from (A) a solid catalytic component containing Mg, Ti and a halogen and (B) an organoaluminum is used and the first-stage polymerization is carried out in a homopolymerization tank to give a crystalline propylene homopolymer or copolymer. Then, when the reaction product is transported from the homopolymerization tank to a random polymerization tank, the reaction product is provided with an electron donative compound in the transportation channel. Finally, in the polymerization tank, an alpha-olefin is randomly copolymerized in the presence of the propylene (co)polymer, namely, the aforesaid reaction product. Preferably the electron donative compound is previously diluted with an inert solvent, etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高立体規則性重合触媒
を用いてプロピレンブロック共重合体を製造する方法の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for producing propylene block copolymers using highly stereoregular polymerization catalysts.

【0002】0002

【従来の技術】第1段階で゛プロピレンの結晶性重合体
または共重合体を製造し、第2段階でプロピレンと他の
α−オレフィンとをランダム共重合した組成物は、一般
にはプロピレンブロック共重合体と称せられている。こ
のようなブロック共重合体は、ポリプロピレンの特性で
ある優れた剛性,耐熱性をあまり損なうことなく低温衝
撃強度を大幅に改善したものである。従来、プロピレン
ブロック共重合体の製造は、一般に、高立体規則性触媒
を用い、ホモ重合槽における前段の重合段階でプロピレ
ンの結晶性重合体又は共重合体を製造した後、ランダム
共重合槽における後段の重合段階で上記重合体又は共重
合体の存在下にプロピレンと他のα−オレフィンとをラ
ンダム共重合することによって行なわれている。
[Prior Art] Compositions in which a crystalline propylene polymer or copolymer is produced in the first step, and propylene and other α-olefins are randomly copolymerized in the second step are generally produced by propylene block copolymerization. It is called a polymer. Such a block copolymer has significantly improved low-temperature impact strength without significantly impairing the excellent rigidity and heat resistance that are characteristics of polypropylene. Conventionally, the production of propylene block copolymers has generally used a highly stereoregular catalyst to produce a crystalline propylene polymer or copolymer in an earlier polymerization step in a homopolymerization tank, and then in a random copolymerization tank. This is carried out by random copolymerization of propylene and other α-olefins in the presence of the above polymer or copolymer in the latter polymerization step.

【0003】この場合、プロピレンブロック共重合体の
衝撃強度を改善するためには、一般に、ゴム状共重合体
の生成割合を増加させる方法が有力であるが、それに伴
って重合体粒子同士の付着、重合体粒子の装置内壁への
付着などが起こり、長期にわたる連続運転を安定に行な
うことが困難となる。これに対し、重合体の粒子同士の
付着や装置内壁への付着を防止する目的で、種々の化合
物をランダム共重合槽に添加する方法が提案されている
。例えば、特開昭63−25611号では芳香族カルボ
ン酸エステル、特開昭61−69821号では活性水素
化合物、特開昭61−215613 号ではSi−O−
C結合を含有するケイ素化合物をそれぞれランダム共重
合槽に供給することが提案され、重合体粒子同士の付着
や装置内壁への付着の防止に一定の効果をあげている。
[0003] In this case, in order to improve the impact strength of propylene block copolymers, it is generally effective to increase the proportion of rubber-like copolymers formed, but this also reduces the adhesion of polymer particles to each other. , adhesion of polymer particles to the inner walls of the device, etc. occur, making it difficult to perform stable continuous operation over a long period of time. In contrast, methods have been proposed in which various compounds are added to a random copolymerization tank in order to prevent polymer particles from adhering to each other or to the inner walls of the apparatus. For example, JP-A No. 63-25611 discloses aromatic carboxylic acid esters, JP-A No. 61-69821 discloses active hydrogen compounds, and JP-A No. 61-215613 discloses Si-O-
It has been proposed to supply each silicon compound containing a C bond to a random copolymerization tank, and this method has achieved a certain effect in preventing adhesion of polymer particles to each other and to the inner walls of the apparatus.

【0004】0004

【発明が解決しようとする課題】しかしながら、特定の
化合物を直接ランダム共重合槽に供給する上述した方法
では、該化合物と触媒成分とが反応する十分な接触時間
をもつことができず、化合物の一部がどうしても未反応
のままランダム共重合槽から流出してしまう。これら未
反応の化合物は、同じく未反応のモノマーとともにモノ
マーの精製循環系に同伴されるが、これら化合物はいず
れも触媒活性を低下させる化合物であるため、モノマー
の精製循環系で除去する必要がある。その結果、モノマ
ー精製循環系の運転負荷の増加、例えば精製塔の充填物
の再生頻度の増加などが生じ、好ましくない。本発明は
、上記事情に鑑みなされたもので、重合体の粒子同士の
付着や装置内壁への付着を防止するとともに、未反応モ
ノマーの精製循環系の運転負荷の低減を図り、剛性,衝
撃強度等の機械的特性や製品外観が良好なプロピレンブ
ロック共重合体を生産性良く製造する方法を提供するこ
とを目的とする。
[Problems to be Solved by the Invention] However, in the above-mentioned method of directly supplying a specific compound to a random copolymerization tank, it is not possible to provide sufficient contact time for the compound to react with the catalyst component. A part of it inevitably flows out of the random copolymerization tank unreacted. These unreacted compounds are entrained in the monomer purification circulation system along with unreacted monomers, but all of these compounds reduce catalyst activity, so they must be removed in the monomer purification circulation system. . As a result, the operating load on the monomer purification circulation system increases, for example, the frequency of regeneration of the packing in the purification column increases, which is undesirable. The present invention was developed in view of the above circumstances, and aims to prevent polymer particles from adhering to each other and to the inner wall of the equipment, and to reduce the operating load on the purification circulation system for unreacted monomers, thereby improving rigidity and impact strength. An object of the present invention is to provide a method for producing a propylene block copolymer with good productivity and good mechanical properties and product appearance.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意研究を行なった結果、重合体のパ
ウダー粒子同士の付着や装置内壁への付着を防止する化
合物を、ホモ重合槽からランダム重合槽への移送流路に
供給することにより、上記化合物と触媒成分との反応を
この移送流路中でほぼ完結させることができ、モノマー
の精製循環系へ同伴される未反応の上記化合物を実質上
問題とならない程度まで低減することが可能であること
を知見し、本発明をなすに至った。
[Means for Solving the Problem] As a result of intensive research to achieve the above object, the present inventors have developed a homogeneous compound that prevents polymer powder particles from adhering to each other and from adhering to the inner wall of the device. By supplying the compound to the transfer channel from the polymerization tank to the random polymerization tank, the reaction between the above-mentioned compound and the catalyst component can be almost completed in this transfer channel, and unreacted monomers are entrained in the monomer purification circulation system. The present inventors have discovered that it is possible to reduce the amount of the above-mentioned compounds to such an extent that they do not pose a substantial problem, leading to the present invention.

【0006】従って、本発明は、少なくとも(A)マグ
ネシウム、チタン及びハロゲンを含む固体触媒成分と(
B)有機アルミニウム化合物とを用いて得られる高立体
規則性触媒を用い、ホモ重合槽における前段の重合段階
でプロピレンの結晶性単独重合体又は共重合体を製造し
た後、ランダム重合槽における後段の重合段階で上記重
合体又は共重合体の存在下にプロピレンと他のα−オレ
フィンとをランダム共重合するプロピレンブロック共重
合体の製造方法であって、上記ホモ重合槽からランダム
重合槽に至る反応生成物の移送流路において該反応生成
物に電子供与性化合物を供給することを特徴とするプロ
ピレンブロック共重合体の製造方法を提供する。
Therefore, the present invention provides a solid catalyst component containing at least (A) magnesium, titanium and halogen;
B) After producing a crystalline homopolymer or copolymer of propylene in the first stage polymerization stage in a homopolymerization tank using a highly stereoregular catalyst obtained using an organoaluminum compound, the second stage stage polymerization stage in a random polymerization tank is used. A method for producing a propylene block copolymer, comprising random copolymerization of propylene and another α-olefin in the presence of the above polymer or copolymer in the polymerization step, the reaction leading from the above homopolymerization tank to the random polymerization tank. A method for producing a propylene block copolymer is provided, which comprises supplying an electron-donating compound to the reaction product in a product transfer channel.

【0007】以下、本発明につき更に詳しく説明する。 本発明においては、重合触媒として、(A)少なくとも
マグネシウム原子、チタン原子及びハロゲン原子を含む
固体触媒成分と、(B)有機アルミニウム化合物とを含
有する高立体規則性触媒を用いる。このような触媒とし
て、例えば下記(A)成分及び(B)成分を用いて得ら
れる高立体規則性触媒が挙げられる。。 (A)(a)マグネシウム化合物と (b)チタン化合物と を用いて得られる固体触媒成分 (B)有機アルミニウム化合物 また、より好ましくは、下記(A)成分,(B)成分及
び(C)成分を用いて得られる高立体規則性触媒が挙げ
られる。 (A)(a)マグネシウム化合物と (b)チタン化合物と (c)電子供与性化合物と を用いて得られる固体触媒成分 (B)有機アルミニウム化合物 (C)電子供与性化合物
The present invention will be explained in more detail below. In the present invention, a highly stereoregular catalyst containing (A) a solid catalyst component containing at least a magnesium atom, a titanium atom, and a halogen atom, and (B) an organoaluminum compound is used as a polymerization catalyst. Examples of such catalysts include highly stereoregular catalysts obtained using the following components (A) and (B). . (A) A solid catalyst component obtained using (a) a magnesium compound and (b) a titanium compound. Examples include highly stereoregular catalysts obtained using (A) Solid catalyst component obtained using (a) a magnesium compound, (b) a titanium compound, and (c) an electron-donating compound (B) an organoaluminum compound (C) an electron-donating compound

【0008】ここで、上記各化合物としては以下に述べ
るものを用いることができる。 (a)マグネシウム化合物 マグネシウム化合物としては、特に制限はないが、酸化
マグネシウム、水酸化マグネシウム、ジアルキルマグネ
シウム、アルキルマグネシウムハライド、ジハロゲン化
マグネシウム、マグネシウムジアルコキシド等が好まし
く、具体的には三塩化マグネシウム、マグネシウムジエ
トキシド、マグネシウムジメトキシド等を好適に用いる
ことができる。また、マグネシウム化合物としては、金
属マグネシウムとハロゲンとアルコールとを反応させて
得られる固体生成物を好適に使用することができる。こ
の場合、金属マグネシウムの形状等は特に限定されない
。従って、任意の粒径の金属マグネシウム、例えば顆粒
状、リボン状、粉末状等の金属マグネシウムを用いるこ
とができる。また、金属マグネシウムの表面状態も特に
限定されないが、表面に酸化マグネシウム等の被膜が生
成されていないものが好ましい。また、アルコールとし
ては任意のものを用いることができるが、炭素原子数1
〜6の低級アルコールを用いることが好ましい。特に、
エタノールを用いると、触媒性能の発現を著しく向上さ
せる固体生成物(マグネシウム化合物(a))が得られ
るので好ましい。アルコールの純度及び含水量も限られ
ないが、含水量の多いアルコールを用いると金属マグネ
シウム表面に水酸化マグネシウム[Mg(OH)2]が
生成されるので、含水量が1%以下、特に2000pp
m以下のアルコールを用いることが好ましい。更に、よ
り良好なモルフォロジーを有する固体生成物(a)を得
るためには、水分は少なければ少ないほど好ましく、一
般的には200ppm以下が望ましい。
[0008] Here, as each of the above-mentioned compounds, the following can be used. (a) Magnesium Compound The magnesium compound is not particularly limited, but magnesium oxide, magnesium hydroxide, dialkylmagnesium, alkylmagnesium halide, magnesium dihalide, magnesium dialkoxide, etc. are preferred, and specifically magnesium trichloride, magnesium Diethoxide, magnesium dimethoxide, etc. can be suitably used. Moreover, as the magnesium compound, a solid product obtained by reacting metallic magnesium, a halogen, and an alcohol can be suitably used. In this case, the shape of magnesium metal is not particularly limited. Therefore, metallic magnesium of any particle size can be used, for example, metallic magnesium in the form of granules, ribbons, powders, etc. Further, the surface condition of magnesium metal is not particularly limited, but it is preferable that a coating of magnesium oxide or the like is not formed on the surface. Further, as the alcohol, any alcohol can be used, but the number of carbon atoms is 1
It is preferable to use a lower alcohol of 6 to 6. especially,
It is preferable to use ethanol because it provides a solid product (magnesium compound (a)) that significantly improves the performance of the catalyst. The purity and water content of the alcohol are not limited either, but if alcohol with a high water content is used, magnesium hydroxide [Mg(OH)2] will be generated on the surface of magnesium metal, so the water content should be 1% or less, especially 2000 pp.
It is preferable to use an alcohol of m or less. Furthermore, in order to obtain a solid product (a) with better morphology, the lower the water content, the more preferable it is, and generally 200 ppm or less is desirable.

【0009】ハロゲンの種類については特に制限されな
いが、塩素、臭素又はヨウ素、特にヨウ素が好適に使用
される。これらの状態、形状、粒度等は特に限定されず
、任意のものでよく、例えばアルコール系溶媒(例えば
、エタノール)中の溶液の形で用いることができる。 アルコールの量については問わないが、金属マグネシウ
ム1モルに対して好ましくは2〜100モル、特に好ま
しくは5〜50モルである。アルコール量が多すぎる場
合、モルフォロジーの良好な固体生成物(a)の収率が
低下するおそれがあり、少なすぎる場合は、反応槽での
攪拌がスムーズに行なわれなくなるおそれがある。しか
し、そのモル比に限定されるものではない。ハロゲンの
使用量は、金属マグネシウム1モルに対して、0.00
01グラム原子以上、好ましくは0.0005グラム原
子以上、更に好ましくは0.001グラム原子以上であ
る。0.0001グラム原子未満の場合、ハロゲンを反
応開始剤として用いる量と大差なく、得られた固体生成
物(a)を粉砕することなく用いた場合、担持量、活性
、立体規則性、生成ポリマーのモルフォロジー等すべて
において不良となる。そのため、固体生成物(a)の粉
砕処理が不可欠なものとなる。ハロゲン使用量の上限に
ついては特に限定されないが、一般的には、0.06グ
ラム原子未満の範囲で選ばれる。また、ハロゲンの使用
量を適宜選択することにより、固体生成物(a)の粒径
を自由にコントロールすることが可能である。
The type of halogen is not particularly limited, but chlorine, bromine or iodine, particularly iodine, is preferably used. Their state, shape, particle size, etc. are not particularly limited and may be arbitrary. For example, they can be used in the form of a solution in an alcoholic solvent (eg, ethanol). Although the amount of alcohol is not limited, it is preferably 2 to 100 mol, particularly preferably 5 to 50 mol, per 1 mol of magnesium metal. If the amount of alcohol is too large, the yield of the solid product (a) with good morphology may decrease, and if it is too small, stirring in the reaction tank may not be carried out smoothly. However, the molar ratio is not limited to this. The amount of halogen used is 0.00 per mole of metal magnesium.
0.01 gram atom or more, preferably 0.0005 gram atom or more, more preferably 0.001 gram atom or more. When the amount is less than 0.0001 gram atom, there is no significant difference from the amount using halogen as a reaction initiator, and when the obtained solid product (a) is used without pulverization, the supported amount, activity, stereoregularity, and formed polymer are It becomes defective in all aspects such as morphology. Therefore, pulverization of the solid product (a) is essential. The upper limit of the amount of halogen used is not particularly limited, but is generally selected within a range of less than 0.06 gram atom. Furthermore, by appropriately selecting the amount of halogen used, it is possible to freely control the particle size of the solid product (a).

【0010】金属マグネシウムとアルコールとハロゲン
との反応それ自体は、公知の方法と同様に実施すること
ができる。即ち、金属マグネシウムとアルコールとハロ
ゲンとを、還流下(約79℃)で、水素ガスの発生が認
められなくなるまで(通常、約20〜30時間)反応さ
せて固体生成物(a)を得る方法である。具体的には、
例えばハロゲンとしてヨウ素を用いる場合、金属マグネ
シウム、アルコール中に固体状のヨウ素を投入し、しか
る後に加熱し還流する方法、金属マグネシウム、アルコ
ール中にヨウ素のアルコール溶液を滴下投入後加熱し還
流する方法や、金属マグネシウム、アルコール溶液を加
熱しつつヨウ素のアルコール溶液を滴下する方法などが
挙げられる。いずれの方法も、不活性ガス(例えば、窒
素ガス、アルゴンガス)雰囲気下で、場合により不活性
有機溶媒(例えば、n−ヘキサン等の飽和炭化水素)を
用いて行なうことが好ましい。金属マグネシウム、アル
コール、ハロゲンの投入については、最初から各々全量
を反応槽に投入しておく必要はなく、分割して投入して
もよい。特に好ましい形態は、アルコールを最初から全
量投入しておき、金属マグネシウムを数回に分割して投
入する方法である。このようにした場合、水素ガスの一
時的な大量発生を防ぐことができ、安全面から非常に望
ましい。また、反応槽も小型化することが可能となる。 更には、水素ガスの一時的な大量発生により引き起こさ
れるアルコールやハロゲンの飛沫同伴を防ぐことも可能
となる。分割する回数は、反応槽の規模を勘案して決め
ればよく、特に問わないが、操作の煩雑さを考えると通
常5〜10回が好適である。
The reaction itself between magnesium metal, alcohol and halogen can be carried out in the same manner as known methods. That is, a method of obtaining solid product (a) by reacting metallic magnesium, alcohol, and halogen under reflux (about 79°C) until no hydrogen gas is generated (usually for about 20 to 30 hours). It is. in particular,
For example, when using iodine as a halogen, there is a method in which solid iodine is poured into metallic magnesium and alcohol, and then heated and refluxed, or an alcoholic solution of iodine is dropped into metallic magnesium and alcohol, and then heated and refluxed. Examples include a method of dropping an alcoholic solution of iodine while heating a metallic magnesium or alcoholic solution. Both methods are preferably carried out under an inert gas (eg, nitrogen gas, argon gas) atmosphere, optionally using an inert organic solvent (eg, a saturated hydrocarbon such as n-hexane). Regarding the charging of metallic magnesium, alcohol, and halogen, it is not necessary to charge the entire amount of each into the reaction tank from the beginning, and they may be charged in portions. A particularly preferred method is to add the entire amount of alcohol from the beginning, and then add metallic magnesium in several portions. In this case, it is possible to prevent temporary generation of a large amount of hydrogen gas, which is very desirable from a safety standpoint. Furthermore, the reaction tank can also be downsized. Furthermore, it is also possible to prevent entrainment of alcohol and halogen droplets caused by the temporary generation of a large amount of hydrogen gas. The number of times of division may be determined by taking into account the scale of the reaction tank and is not particularly limited, but in view of the complexity of the operation, 5 to 10 times is usually suitable.

【0011】また、反応自体は、バッチ式、連続式のい
ずれでもよいことは言うまでもないさらには、変法とし
て、最初から全量投入したアルコール中に金属マグネシ
ウムを先ず少量投入し、反応により生成した生成物を別
の槽に分離して除去した後、再び金属マグネシウムを少
量投入するという操作を繰り返すということも可能であ
る。こうして得た固体生成物を、次の固体触媒組成物の
合成に用いる場合、乾燥させたものを用いてもよく、ま
た瀘別後ヘプタン等の不活性溶媒で洗浄したものを用い
てもよい。いずれの場合においても、得られた固体生成
物(a)は、粉砕あるいは粒度分布をそろえるための分
級操作をすることなく以下の工程に用いることができる
[0011] It goes without saying that the reaction itself may be carried out either batchwise or continuously.Furthermore, as a modified method, a small amount of metallic magnesium is first added to the alcohol, which has been entirely added from the beginning, and the product produced by the reaction is It is also possible to repeat the operation of separating the substances into another tank and removing them, and then adding a small amount of metallic magnesium again. When the solid product thus obtained is used for the next synthesis of a solid catalyst composition, it may be dried or washed with an inert solvent such as heptane after filtration. In either case, the obtained solid product (a) can be used in the following steps without pulverization or classification operations to make the particle size distribution uniform.

【0012】(b)チタン化合物 本発明では、任意のチタン化合物を、チタン化合物(b
)として用いることができる。それらのチタン化合物は
、例えば、一般式(I) TiX1n(OR1)4−n         …(I
)(式中、X1はハロゲン原子、特に塩素原子であり、
R1は炭素原子数1〜10の炭化水素基、特に直鎖また
は分岐鎖のアルキル基であり、基R1が複数存在する場
合にはそれらは互に同じでも異なっていてもよい。nは
0〜4の整数である。)で表わされるチタン化合物であ
る。 具体的には、Ti(O−i−C3H7)4、Ti(O−
C4H9)4、TiCl(O−C2H5)3、TiCl
(O−i−C3H7)3、TiCl(O−C4H9)3
、TiCl2(O−C4H9)2、TiCl2(O−i
−C3H7)2、TiCl4等を挙げることができる。
(b) Titanium compound In the present invention, any titanium compound can be used as a titanium compound (b)
) can be used as Those titanium compounds, for example, have the general formula (I) TiX1n(OR1)4-n...(I
) (wherein, X1 is a halogen atom, especially a chlorine atom,
R1 is a hydrocarbon group having 1 to 10 carbon atoms, especially a straight-chain or branched alkyl group, and when a plurality of groups R1 are present, they may be the same or different. n is an integer from 0 to 4. ) is a titanium compound represented by Specifically, Ti(O-i-C3H7)4, Ti(O-
C4H9)4, TiCl(O-C2H5)3, TiCl
(O-i-C3H7)3, TiCl(O-C4H9)3
, TiCl2(O-C4H9)2, TiCl2(O-i
-C3H7)2, TiCl4, and the like.

【0013】(c)電子供与性化合物 本発明の固体触媒成分(A)では、必要に応じて任意の
電子供与性化合物(c)を用いることができる。それら
の電子供与性化合物(c)は、通常は、酸素、窒素、リ
ンあるいは硫黄を含有する有機化合物である。具体的に
は、アミン類、アミド類、ケトン類、ニトリル類、ホス
フィン類、ホスミルアミド類、エステル類、エーテル類
、チオエーテル類、アルコール類、チオエステル類、酸
無水物類、酸ハライド類、アルデヒド類、有機酸類、S
i−O−C結合を有する有機ケイ素化合物等を挙げるこ
とができ、より具体的には下記のものを挙げることがで
きる。
(c) Electron-donating compound In the solid catalyst component (A) of the present invention, any electron-donating compound (c) can be used as required. These electron-donating compounds (c) are usually organic compounds containing oxygen, nitrogen, phosphorus or sulfur. Specifically, amines, amides, ketones, nitriles, phosphines, fosmylamides, esters, ethers, thioethers, alcohols, thioesters, acid anhydrides, acid halides, aldehydes, organic acids, S
Examples include organosilicon compounds having an i-O-C bond, and more specifically the following compounds.

【0014】芳香族カルボン酸、例えば、安息香酸、p
−オキシ安息香酸;酸無水物、例えば、無水コハク酸、
無水安息香酸、無水p−トルイル酸;炭素原指数3〜1
5のケトン類、例えば、アセトン、メチルエチルケトン
、メチルイソブチルケトン、アセトフェノン、ベンゾフ
ェノン、ベンゾキノン;炭素原子数2〜15のアルデヒ
ド類、例えば、アセトアルデヒド、プロピオンアルデヒ
ド、オクチルアルデヒド、ベンズアルデド、ナフトアル
デヒド;炭素原子数2〜18のエステル類、例えば、ギ
酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸
ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキ
シル、プロプオン酸エチル、酪酸メチル、酪酸エチル、
吉草酸エチル、クロル酢酸メチル、ジクロル酢酸エチル
、メタクリル酸メチル、クロトン酸エチル、ピバリン酸
エチル、マレイン酸ジメチル、シクロヘキサンカルボン
酸エチル、安息香酸メチル、安息香酸エチル、安息香酸
プロピル、安息香酸ブチル、安息香酸オクチル、安息香
酸シクロヘキシル、安息香酸フェニル、安息香酸ベンジ
ル、トルイル酸メチル、トルイル酸エチル、トルイル酸
アミル、エチル安息香酸エチル、アニス酸メチル、アニ
ス酸エチル、エトキシ安息香酸エチル、p−ブトキシ安
息香酸エチル、o−クロル安息香酸エチル、ナフトエ酸
エチル、γ−ブチロラクトン、δ−バレロラクトン、ク
マリン、フタリド、炭酸エチレン;芳香族ジカルボン酸
のモノ及びジエステル、例えばフタル酸のモノエステル
及びジエステルが好ましく、例えば、モノメチルフタレ
ート、ジメチルフタレート、モノメチルテレフタレート
、ジメチルテレフタレート、モノエチルフタレート、ジ
エチルフタレート、モノエチルテレフタレート、ジエチ
ルテレフタレート、モノプロピルフタレート、ジプロピ
ルフタレート、モノプロピルテレフタレート、ジプロピ
ルテレレート、モノブチルフタレート、ジブチルフタレ
ート、モノブチルテレフタレート、ジブチルテフタレー
ト、モノイソブチルフタレート、ジイソブチルフタレー
ト、モノアミルフタレート、ジアミルフタレート、モノ
イソアミルフタレート、ジイソアミルフタレート、エチ
ルブチルフタレート、エチルイソブチルフタレート、エ
チルプロピルフタレート、
Aromatic carboxylic acids such as benzoic acid, p
- oxybenzoic acid; acid anhydrides, such as succinic anhydride;
Benzoic anhydride, p-toluic anhydride; carbon origin index 3-1
Ketones of 5, such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, benzoquinone; Aldehydes having 2 to 15 carbon atoms, such as acetaldehyde, propionaldehyde, octyl aldehyde, benzaldede, naphthaldehyde; 2 carbon atoms -18 esters, such as methyl formate, ethyl formate, methyl acetate, ethyl acetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, ethyl propionate, methyl butyrate, ethyl butyrate,
Ethyl valerate, methyl chloroacetate, ethyl dichloroacetate, methyl methacrylate, ethyl crotonate, ethyl pivalate, dimethyl maleate, ethyl cyclohexanecarboxylate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, benzoate Octyl acid, cyclohexyl benzoate, phenyl benzoate, benzyl benzoate, methyl toluate, ethyl toluate, amyl toluate, ethyl ethylbenzoate, methyl anisate, ethyl anisate, ethyl ethoxybenzoate, p-butoxybenzoic acid Ethyl, ethyl o-chlorobenzoate, ethyl naphthoate, γ-butyrolactone, δ-valerolactone, coumarin, phthalide, ethylene carbonate; mono- and diesters of aromatic dicarboxylic acids, such as mono- and diesters of phthalic acid, are preferred, e.g. , monomethyl phthalate, dimethyl phthalate, monomethyl terephthalate, dimethyl terephthalate, monoethyl phthalate, diethyl phthalate, monoethyl terephthalate, diethyl terephthalate, monopropyl phthalate, dipropyl phthalate, monopropyl terephthalate, dipropyl terelate, monobutyl phthalate, dibutyl phthalate , monobutyl terephthalate, dibutyl terephthalate, monoisobutyl phthalate, diisobutyl phthalate, monoamyl phthalate, diamyl phthalate, monoisoamyl phthalate, diisoamyl phthalate, ethyl butyl phthalate, ethyl isobutyl phthalate, ethylpropyl phthalate,

【0015】炭素原子数2〜20の酸ハロゲン化物類、
この酸ハロゲン化物の酸部分(アシル基部分)としては
、炭素数2〜20程度の脂肪族(脂環族等の環を有する
ものも含む)系の一塩基性、二塩基性または三塩基性酸
からそれぞれの水酸基を引き抜いた1価〜3価のアシル
酸、あるいは炭素数7〜20程度の芳香族(アルカリ−
ル型やアラルキル型のものも含む。)系の一塩基性、二
塩基性または三塩基性酸からそれぞれの水酸基を引き抜
いた1価〜3価のアシル基などが好ましい。また、前記
酸ハロゲン化物中のハロゲン原子としては、塩素原子、
臭素原子などが好ましく、特に塩素原子が好ましい。本
発明において、好適に使用することのできる酸ハロゲン
化物としては、例えば、アセチルクロリド、アセチルブ
ロミド、プロピオニルクロリド、ブチリルクロリド、イ
ソブチリルクロリド、2−メチルプロピオニルクロリド
、バレリルクロリド、イソバレリルクロリド、ヘキサノ
イルクロリド、メチルヘキサノイルクロリド、2−エチ
ルヘキサノイルクロリド、オクタノイルクロリド、デカ
ノイルクロリド、ウンデカノイルクロリド、ヘキサデカ
ノイルクロリド、オクタデカノイルクロリド、ヘンジル
カルボニルクロリド、ジクロヘキサンカルボニルクロリ
ド、マロニルジクロリド、スクシニルジクロリド、ペン
タンジオイルジクロリド、ヘキサンジオイルジクロリド
、ジクロヘキサンジカルボニルジクロリド、ベンゾイル
クロリド、ベンゾイルブロミド、メチルベンゾイルクロ
リド、フタロイルクロリド、イソフタロイルクロリド、
テレフタロイルクロリド、ベンゼン−1,2,4−トリ
カルボニルトリクロリドなどを挙げることができる。こ
れらの中でも、特にフタロイルクロリド、イソフタロイ
ルクロリド、テレフタロイルクロリドなどが好ましく、
特にフタロイルクロリドが好ましい。なお、これらの酸
ハロゲン化物は、一種を単独で使用してもよいし、二種
以上を併用してもよい。
Acid halides having 2 to 20 carbon atoms;
The acid moiety (acyl group moiety) of this acid halide is a monobasic, dibasic, or tribasic aliphatic (including those having rings such as alicyclics) having about 2 to 20 carbon atoms. Monovalent to trivalent acylic acid obtained by extracting each hydroxyl group from an acid, or aromatic (alkali) having about 7 to 20 carbon atoms.
It also includes le-type and aralkyl-type. ) is preferably a monovalent to trivalent acyl group obtained by extracting each hydroxyl group from a monobasic, dibasic or tribasic acid. Further, as the halogen atom in the acid halide, chlorine atom,
A bromine atom is preferred, and a chlorine atom is particularly preferred. In the present invention, acid halides that can be suitably used include, for example, acetyl chloride, acetyl bromide, propionyl chloride, butyryl chloride, isobutyryl chloride, 2-methylpropionyl chloride, valeryl chloride, isovaleryl Chloride, hexanoyl chloride, methylhexanoyl chloride, 2-ethylhexanoyl chloride, octanoyl chloride, decanoyl chloride, undecanoyl chloride, hexadecanoyl chloride, octadecanoyl chloride, henzyl carbonyl chloride, dichlorohexane carbonyl chloride , malonyl dichloride, succinyl dichloride, pentanedioyl dichloride, hexanedioyl dichloride, dichlorohexane dicarbonyl dichloride, benzoyl chloride, benzoyl bromide, methylbenzoyl chloride, phthaloyl chloride, isophthaloyl chloride,
Examples include terephthaloyl chloride and benzene-1,2,4-tricarbonyl trichloride. Among these, phthaloyl chloride, isophthaloyl chloride, terephthaloyl chloride, etc. are particularly preferred.
Particularly preferred is phthaloyl chloride. In addition, these acid halides may be used individually by 1 type, and may use 2 or more types together.

【0016】炭素原子数2〜20のエーテル類、例えば
、メチルエーテル、エチルエーテル、イソプロピルエー
テル、n−ブチルエーテル、アミルエーテル、テトラヒ
ドロフラン、アニソール、ジフェニルエーテル、エチレ
ングリコールブチルエーテル;酸アミド、例えば、酢酸
アミド、安息香酸アミド、トルイル酸アミド;アミン類
、例えば、トリブチルアミン、N、N’−ジメチルピペ
ラジン、トリベンジルアミン、アニリン、ピリジン、ピ
ロリン、テトラメチルエチレンジアミン;ニトリル類、
例えば、アセトニトリル、ベンゾニトリル、トルニトリ
ル;テトラメチル尿素、ニトロベンゼン、リチウムブチ
レート;Si−O−C結合を有する有機ケイ素化合物、
例えば、トリメチルメトキシシラン、トリメチルエトキ
シシラン、ジメチルジメトキシシラン、ジメチルジエト
キシシラン、ジフェニルジメトキシシラン、メチルフェ
ニルジメトキシシラン、ジフェニルジエトキシシラン、
フェニルトリメトキシシラン、γ−クロルプロピルトト
リメトキシシラン、メチルトリエトキシシラン、エチル
トリエトキシシラン、ビニルトリエトキシシラン、ブチ
ルトリエトキシシラン、フェニルトリエトキシシラン、
γ−アミノプロピルトリエトキシシラン、クロルトリエ
トキシシラン、エチルトリイソプロポキシシラン、ビニ
ルトリブトキシシラン、ケイ酸エチル、ケイ酸ブチル、
トリメチルフェノキシシラン、メチルトリアリロキシシ
ラン、ビニルトリス(β−メトキシエトキシ)シラン、
ビニルトリアセトキシシラン、ジメチルテトラエトキシ
ジシロキサン等を挙げることができる。これらのうち、
好ましいものは、エステル類、エーテル類、ケトン類、
酸無水物等である。
Ethers having 2 to 20 carbon atoms, such as methyl ether, ethyl ether, isopropyl ether, n-butyl ether, amyl ether, tetrahydrofuran, anisole, diphenyl ether, ethylene glycol butyl ether; acid amides, such as acetate amide, benzoic Acid amide, toluic acid amide; Amines, such as tributylamine, N,N'-dimethylpiperazine, tribenzylamine, aniline, pyridine, pyrroline, tetramethylethylenediamine; Nitriles,
For example, acetonitrile, benzonitrile, tolnitrile; tetramethylurea, nitrobenzene, lithium butyrate; organosilicon compounds having Si-O-C bonds,
For example, trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane, diphenyldiethoxysilane,
Phenyltrimethoxysilane, γ-chloropropyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, butyltriethoxysilane, phenyltriethoxysilane,
γ-aminopropyltriethoxysilane, chlortriethoxysilane, ethyltriisopropoxysilane, vinyltributoxysilane, ethyl silicate, butyl silicate,
Trimethylphenoxysilane, methyltriaryloxysilane, vinyltris(β-methoxyethoxy)silane,
Examples include vinyltriacetoxysilane and dimethyltetraethoxydisiloxane. Of these,
Preferred are esters, ethers, ketones,
acid anhydrides, etc.

【0017】固体触媒成分(A)の調製方法固体触媒成
分(A)は、マグネシウム化合物(a)と、チタン化合
物(b)と、必要に応じて電子供与性化合物(c)とを
用い、公知の方法で調製することができる。 例えば、マグネシウム化合物(a)と電子供与性化合物
(c)とを接触させた後、チタン化合物(b)と接触さ
せることが好ましい。マグネシウム化合物(a)に電子
供与性化合物(c)を接触させる際の条件には特に制限
はなく、各種の事情に応じて適宜定めればよい。通常は
、マグネシウム原子換算でマグネシウム化合物(a)1
モルに対して電子供与性化合物(c)0.01〜10モ
ル、好ましくは0.05〜5モルを加え、0〜200℃
にて5分〜10時間の条件、好ましくは30〜150℃
にて30分〜3時間の条件で接触反応を行なえばよい。 なお、この反応系には、ペンタン、ヘキサン、ヘプタン
またはオクタン等の不活性炭化水素を溶媒として加える
こともできる。マグネシウム化合物(a)に、またはそ
れと電子供与性化合物(c)との接触生成物に、チタン
化合物(b)を接触させる際の条件には特に制限はない
が、通常は生成物中のマグネシウム1モルに対して、チ
タン化合物(b)を1〜50モル、好ましくは2〜20
モルの範囲で加え、0〜200℃にて5分〜10時間、
好ましくは30〜150℃にて30分〜5時間反応させ
る。チタン化合物(b)との接触は、液体状のチタン化
合物(例えば、四塩化チタン)はそれ単独で、それ以外
のチタン化合物は任意の不活性炭化水素溶媒(例えば、
ヘキサン、ヘプタン、灯油)に溶解させた状態で行なう
ことができる。また、マグネシウム化合物(a)とチタ
ン化合物(b)と、必要に応じて電子供与性化合物(c
)との前記の接触の前に、例えば、ハロゲン化炭化水素
、ハロゲン含有ケイ素化合物、ハロゲンガス、塩化水素
、ヨウ化水素等をマグネシウム化合物(a)に接触させ
ることもできる。なお、反応終了後は、不活性炭化水素
(例えば、n−ヘキサン、n−ヘプタン)で、生成物を
洗浄するのが好ましい。
Method for preparing solid catalyst component (A) Solid catalyst component (A) is prepared using a magnesium compound (a), a titanium compound (b) and, if necessary, an electron-donating compound (c). It can be prepared by the following method. For example, it is preferable to bring the magnesium compound (a) into contact with the electron-donating compound (c) and then bring them into contact with the titanium compound (b). The conditions for bringing the electron donating compound (c) into contact with the magnesium compound (a) are not particularly limited and may be appropriately determined depending on various circumstances. Usually, magnesium compound (a) 1 in terms of magnesium atom
Add 0.01 to 10 mol, preferably 0.05 to 5 mol, of the electron donating compound (c) per mol, and heat at 0 to 200°C.
for 5 minutes to 10 hours, preferably at 30 to 150°C.
The contact reaction may be carried out for 30 minutes to 3 hours. Incidentally, an inert hydrocarbon such as pentane, hexane, heptane or octane can also be added to this reaction system as a solvent. There are no particular restrictions on the conditions under which the titanium compound (b) is brought into contact with the magnesium compound (a) or the contact product of it and the electron-donating compound (c), but usually the magnesium 1 in the product is 1 to 50 mol, preferably 2 to 20 mol of titanium compound (b) per mol
Add in a molar range and heat at 0 to 200°C for 5 minutes to 10 hours.
Preferably, the reaction is carried out at 30 to 150°C for 30 minutes to 5 hours. The liquid titanium compound (e.g., titanium tetrachloride) is brought into contact with the titanium compound (b) alone, and the other titanium compounds are brought into contact with any inert hydrocarbon solvent (e.g.,
It can be carried out in a state dissolved in hexane, heptane, kerosene). In addition, a magnesium compound (a), a titanium compound (b), and an electron donating compound (c) as needed.
) The magnesium compound (a) can also be brought into contact with, for example, a halogenated hydrocarbon, a halogen-containing silicon compound, a halogen gas, hydrogen chloride, hydrogen iodide, etc., before the above-mentioned contact with the magnesium compound (a). In addition, after the reaction is completed, it is preferable to wash the product with an inert hydrocarbon (for example, n-hexane, n-heptane).

【0018】(B)有機アルミニウム化合物有機アルミ
ウム化合物(B)としては、特に限定はないが、下記一
般式(II) AlR2mX23−m               
…(II)(式中、R2は炭素原子数1〜10のアルキ
ル基、シクロアルキル基、またはアリール基であり、m
は1〜3の整数であり、X2はハロゲン原子例えば塩素
原子または臭素原子である)で表わされる化合物が広く
用いられる。具体的には、トリアルキルアルミニウム化
合物、例えば、トリメチルアルミニウム、トリエチルア
ルミニウム、トリイソプロピルアルミニウム、トリイソ
ブチルアルミニウムまたはトリオクチルアルミニウム;
あるいは、ジアルキルアルミニウムモノハライド化合物
、例えば、ジエチルアルミニウムモノクロリド、ジプロ
ピルアルミニウムモノクロリドまたはジオクチルアルミ
ニウムモノクロリド等を挙げることができる。
(B) Organic aluminum compound The organic aluminum compound (B) is not particularly limited, but has the following general formula (II) AlR2mX23-m
...(II) (wherein R2 is an alkyl group, cycloalkyl group, or aryl group having 1 to 10 carbon atoms, m
is an integer from 1 to 3, and X2 is a halogen atom, such as a chlorine atom or a bromine atom), which is widely used. Specifically, trialkylaluminium compounds, such as trimethylaluminum, triethylaluminum, triisopropylaluminium, triisobutylaluminum or trioctylaluminum;
Alternatively, dialkyl aluminum monohalide compounds such as diethylaluminum monochloride, dipropylaluminum monochloride or dioctyl aluminum monochloride can be mentioned.

【0019】(C)電子供与性化合物 本発明製造方法においては、必要に応じて電子供与性化
合物(C)を併用することができる。この場合、電子供
与性化合物(C)としては、前記の固体触媒成分(A)
の調製の際に用いた電子供与性化合物(c)と同様のも
のを用いることができる。この際、電子供与性化合物(
C)は、前記の固体触媒成分(A)の調製の際に用いた
電子供与性化合物(c)と同じものであっても、異なる
ものであってもよい。好ましい電子供与性化合物(C)
は、Si−OC結合を有するシラン化合物であり、特に
下記式(III)で表わされる化合物である。     R3pSi(OR4)4−p        
                 …(III)(式
中、R3は直鎖状若しくは分岐鎖状炭化水素残基、芳香
族炭化水素残基又は環状飽和炭化水素残基の中から選ば
れるもので、p≧2の場合、上記化合物の任意のものの
組合せであってよい。R4は直鎖状又は分岐鎖状炭化水
素残基である。pは0≦p≦3である)(III)式の
化合物として、具体的には、tert−ブチルシクロヘ
キシルジメトキシシラン、メチルシクロヘキシルジメト
キシシラン、ジ−tert−ブチルジメトキシシラン、
ジシクロヘキシルジメトキシシラン、ジフェニルジメト
キシシラン、ジメチルジエトキシシラン、トリメチルエ
トキシシラン、メチルフェニルジメトキシシラン等を挙
げることができる。
(C) Electron-donating compound In the production method of the present invention, an electron-donating compound (C) can be used in combination, if necessary. In this case, the electron donating compound (C) is the solid catalyst component (A).
The same electron-donating compound (c) used in the preparation of can be used. At this time, an electron-donating compound (
C) may be the same as or different from the electron-donating compound (c) used in preparing the solid catalyst component (A). Preferred electron donating compound (C)
is a silane compound having a Si--OC bond, particularly a compound represented by the following formula (III). R3pSi(OR4)4-p
...(III) (wherein R3 is selected from linear or branched hydrocarbon residues, aromatic hydrocarbon residues, or cyclic saturated hydrocarbon residues, and when p≧2, the above (III) (R4 is a linear or branched hydrocarbon residue; p is 0≦p≦3), specifically, tert-butylcyclohexyldimethoxysilane, methylcyclohexyldimethoxysilane, di-tert-butyldimethoxysilane,
Examples include dicyclohexyldimethoxysilane, diphenyldimethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, and methylphenyldimethoxysilane.

【0020】本発明においては、前述した高立体規則性
触媒を用い、図1に例示するように、前段のホモ重合槽
から後段のランダム重合槽に至る反応生成物の移送流路
において、該反応生成物に電子供与性化合物を供給する
。移送流路に供給する電子供与性化合物としては、前記
の固体触媒成分(A)の調製の際に用いた電子供与性化
合物(c)及び触媒の調製に用いた電子供与性化合物(
C)と同様のものを用いることができる。この際、移送
流路に供給する電子供与性化合物は、前記の電子供与性
化合物(c)あるいは(C)と同じものであってもよく
、異なるものであってもよい。
In the present invention, the above-mentioned highly stereoregular catalyst is used, and as illustrated in FIG. Supplying the product with an electron-donating compound. Examples of the electron-donating compound supplied to the transfer channel include the electron-donating compound (c) used in preparing the solid catalyst component (A) and the electron-donating compound (c) used in preparing the catalyst.
The same one as C) can be used. At this time, the electron-donating compound supplied to the transfer channel may be the same as or different from the electron-donating compound (c) or (C).

【0021】移送流路への電子供与性化合物の供給方法
に特に制限はなく、例えば直接移送流路に供給する方法
も採用できるが、電子供与性化合物を予め不活性ガスあ
るいはヘプタン、ヘキサン等の不活性溶媒に稀釈して供
給する方法が特に好適である。  電子供与性化合物の
添加量は有機アルミニウム化合物1molに対して0.
01〜1.5mol、好ましくは0.1〜1.3mol
である。0.01molより少ないと重合体粒子の付着
防止効果が得られないことがあり、1.5molより多
いと触媒の活性が低下しすぎることがある。
There is no particular restriction on the method of supplying the electron-donating compound to the transfer channel. For example, a method of directly supplying the electron-donating compound to the transfer channel can be adopted; Particularly preferred is a method in which the solution is supplied diluted in an inert solvent. The amount of electron-donating compound added is 0.000000000000000 yen per 1 mol of organoaluminum compound.
01-1.5 mol, preferably 0.1-1.3 mol
It is. If it is less than 0.01 mol, the effect of preventing adhesion of polymer particles may not be obtained, and if it is more than 1.5 mol, the activity of the catalyst may be reduced too much.

【0022】本発明においては、前段階においてプロピ
レンの結晶性重合体もしくは共重合体を製造するが、こ
の段階において重合を二以上の工程に分けて行なっても
よい。また、本格的な重合に先立って、触媒活性の向上
、嵩密度の向上、流動性の改善などの目的のために、触
媒を予め少量のプロピレンと接触させる前重合処理を行
なってもよい。前重合処理の一例としては、例えば特公
昭57−45244号に示されている処理を例示できる
。前段階の重合は、不活性溶媒の存在下又は不存在下、
液相又は気相で行なうことができる。各触媒成分の好適
な使用量は、その種類等によって適当に選択できる。前
段階の重合では、剛性の高いブロック共重合体を得るた
め、プロピレンの結晶性重合体もしくは共重合体を製造
する。 共重合体を製造する場合の共重合成分としては、プロピ
レン以外のα−オレフィン、例えばエチレン、1−ブテ
ン、1−ペンテン、1−ヘキセン、4−メチル−1−ペ
ンテン、1−オクテン、1−デセンなどの炭素数2ない
し10のものを例示できる。
In the present invention, a propylene crystalline polymer or copolymer is produced in the preliminary step, but the polymerization may be carried out in two or more steps in this step. Further, prior to full-scale polymerization, a prepolymerization treatment may be performed in which the catalyst is brought into contact with a small amount of propylene in advance for the purpose of improving catalyst activity, bulk density, fluidity, and the like. An example of the prepolymerization treatment is the treatment disclosed in Japanese Patent Publication No. 57-45244. The pre-stage polymerization is carried out in the presence or absence of an inert solvent,
It can be carried out in liquid phase or gas phase. A suitable amount of each catalyst component to be used can be appropriately selected depending on the type thereof. In the pre-stage polymerization, a crystalline propylene polymer or copolymer is produced in order to obtain a highly rigid block copolymer. As a copolymerization component when producing a copolymer, α-olefins other than propylene, such as ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1- Examples include those having 2 to 10 carbon atoms such as decene.

【0023】該重合体もしくは共重合体として、135
℃のデカリン中で測定した極限粘度[η]が例えば約1
ないし約10dl/g、特に約1ないし約5dl/g程
度のものを製造するのが好ましく、そのために重合系に
分子量調整剤、好ましくは水素を共存させてもよい。重
合温度は、適宜に選択することができ、例えば約50な
いし約100℃、好ましくは約60ないし約90℃を例
示できる。又、重合圧力も適当に選択でき、例えば約1
ないし約200Kg/cm2G、好ましくは約1ないし
約100Kg/cm2Gの重合圧力を例示できる。液相
重合を行なう場合には、プロピレンを液媒に用いてもよ
く、あるいは不活性溶媒を液媒に用いてもよい。このよ
うな不活性溶媒の例としては、例えばプロパン、ブタン
、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、
灯油などを代表例として示すことができる。
[0023] As the polymer or copolymer, 135
For example, if the intrinsic viscosity [η] measured in decalin at ℃ is about 1
to about 10 dl/g, particularly about 1 to about 5 dl/g, and for this purpose a molecular weight regulator, preferably hydrogen, may be present in the polymerization system. The polymerization temperature can be selected appropriately, for example, about 50 to about 100°C, preferably about 60 to about 90°C. In addition, the polymerization pressure can be selected appropriately, for example, about 1
Examples include polymerization pressures of from about 1 to about 200 Kg/cm2G, preferably from about 1 to about 100 Kg/cm2G. When carrying out liquid phase polymerization, propylene may be used as a liquid medium, or an inert solvent may be used as a liquid medium. Examples of such inert solvents include, for example, propane, butane, pentane, hexane, heptane, octane, decane,
A typical example is kerosene.

【0024】本発明においては、後の重合段階において
、前段階で得られる触媒含有のプロピレン結晶性重合体
又は共重合体の共存下、プロピレンと他のα−オレフィ
ンとのランダム共重合を行なう。このランダム共重合は
、通常、前段階のプロピレンの結晶性重合体又は共重合
体を製造する重合段階に引続いて行なわれる。ランダム
共重合も液相もしくは気相で行なうことができる。特に
気相重合を採用すれば、共重合体が全てブロック共重合
体中に採り込まれるので、消費オレフィンに対する収率
が高く、工業上有利である。ランダム共重合に使用され
る他のα−オレフィンとしては、エチレン、1−ブテン
、1−ペンテン、1−ヘキセン、4−メチル−1−ペン
テン、1−オクテン、1−デセンなどが例示できる。 好ましくはエチレン、又はエチレンとC4〜C8のα−
オレフィンとの組合せである。プロピレンと他のα−オ
レフィンの共重合比はモル比で10/90ないし90/
10、好ましくは20/80ないし80/20である。
In the present invention, in the subsequent polymerization step, propylene and other α-olefins are randomly copolymerized in the presence of the catalyst-containing propylene crystalline polymer or copolymer obtained in the previous step. This random copolymerization is usually carried out following a previous polymerization step to produce a crystalline propylene polymer or copolymer. Random copolymerization can also be carried out in the liquid or gas phase. In particular, if gas phase polymerization is employed, all of the copolymer is incorporated into the block copolymer, resulting in a high yield relative to the consumed olefin, which is industrially advantageous. Examples of other α-olefins used in random copolymerization include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, and 1-decene. Preferably ethylene or ethylene and C4 to C8 α-
It is a combination with olefin. The copolymerization ratio of propylene and other α-olefins is 10/90 to 90/
10, preferably 20/80 to 80/20.

【0025】[0025]

【実施例】以下、実施例によって本発明を更に具体的に
説明するが、これらは本発明の範囲を限定するものでは
ない。なお、以下の実施例においては、下記の試薬を用
いた。 エタノール:和光純薬(株)製、試薬特級。 ヨウ素:和光純薬(株)製、試薬特級。 金属マグネシウム:顆粒状(平均粒度350μm)。 実施例1 (1)マグネシウム化合物(a)の調製攪拌機付きのガ
ラス製反応器(内容積約12リットル)を窒素ガスで充
分に置換し、エタノール約4860g、ヨウ素32g及
び金属マグネシウム320gを投入し、攪拌しながら還
流条件下で系内から水素ガスの発生がなくなるまで、加
熱下で反応させ、固体状反応生成物を得た。この固体状
生成物を含む反応液を減圧下乾燥させることによりマグ
ネシウム化合物(固体生成物)(a)を得た。 (2)固体触媒成分(A)の調製 窒素ガスで充分に置換したガラス製三ツ口フラスコ(内
容積5リットル)に、前記マグネシウム化合物(a)(
粉砕していないもの)160g、精製ヘプタン800m
l、四塩化ケイ素24ml、及びフタル酸ジエチル23
mlを加えた。系内を90℃に保ち、攪拌しながら四塩
化チタン770mlを投入して110℃で2時間反応さ
せた後、固体成分を分離して80℃の精製ヘプタンで洗
浄した。更に、四塩化チタン1220mlを加え、11
0℃で2時間反応させた後、精製ヘプタンで充分に洗浄
し、固体触媒成分(A)を得た。
[Examples] The present invention will be explained in more detail with reference to Examples below, but these are not intended to limit the scope of the present invention. In addition, in the following examples, the following reagents were used. Ethanol: Manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent. Iodine: Manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent. Metallic magnesium: granular (average particle size 350 μm). Example 1 (1) Preparation of magnesium compound (a) A glass reactor (inner volume: about 12 liters) equipped with a stirrer was sufficiently purged with nitrogen gas, and about 4,860 g of ethanol, 32 g of iodine, and 320 g of metallic magnesium were charged. The reaction was carried out under heating under reflux conditions with stirring until no hydrogen gas was generated from the system, to obtain a solid reaction product. The reaction solution containing this solid product was dried under reduced pressure to obtain a magnesium compound (solid product) (a). (2) Preparation of solid catalyst component (A) The magnesium compound (a) (
(unpulverized) 160g, purified heptane 800m
1, 24 ml of silicon tetrachloride, and 23 ml of diethyl phthalate.
ml was added. The inside of the system was kept at 90°C, and 770ml of titanium tetrachloride was added while stirring, and the mixture was reacted at 110°C for 2 hours.The solid components were separated and washed with purified heptane at 80°C. Furthermore, 1220 ml of titanium tetrachloride was added, and 11
After reacting at 0° C. for 2 hours, the mixture was thoroughly washed with purified heptane to obtain a solid catalyst component (A).

【0026】(3)重合 ・前処理 内容積500リットルの攪拌翼付反応槽にn−ヘプタン
230リットルを投入し、前記の固体触媒成分を25K
g、トリエチルアルミニウムを固体触媒成分中のTi原
子に対し0.6モル/1g原子、ジフェニルジメトキシ
シランを固体触媒成分中のTi原子に対し0.4モル/
1g原子の割合で供給した後、プロピレンをプロピレン
分圧で0.3Kg/cm2Gになるまで導入し、55℃
で4時間反応させた。反応終了後、固体触媒成分をn−
ヘプタンで数回洗浄し、二酸化炭素を供給し24時間攪
拌した。 ・本重合 前段として、内容積200リットルの攪拌翼付重合槽(
ホモ重合槽)に、前記処理済みの固体触媒成分を成分中
のTi原子に換算して3mmol/Hrで、トリエチル
アルミニウムを600mmol/Hrで、ジフェニルジ
メトキシシランを15mmol/Hrでそれぞれ供給し
、重合温度70℃、プロピレン圧力28Kg/cm2G
で反応させた。このとき、所定の分子量になるように水
素にて調整した。ついでホモ重合槽から連続的にパウダ
ーを抜き出しランダム共重合槽へ移送する。このとき、
パウダーの抜き出し配管(移送流路)に対し、n−ヘプ
タンにて稀釈したエタノールを700mmolで供給し
た。この供給量はエタノール/有機アルミニウム化合物
モル比として1.17mol/molであった。ランダ
ム共重合槽では、後段として、重合温度55℃において
プロピレン及びエチレンを供給し、ランダム共重合を実
施した。このとき、所定のエチレン含量になるように、
プロピレンとエチレンとの供給比を調整した。ランダム
共重合槽から連続的に抜き出したパウダーを造粒し、評
価した。また、ランダム重合槽にて未反応モノマーの循
環ラインよりガスを採取し、その中に含まれている添加
電子供与性化合物量を測定した。結果を表1に示す。
(3) Polymerization/pretreatment 230 liters of n-heptane was charged into a reaction tank with stirring blades having an internal volume of 500 liters, and the solid catalyst component was heated to 25K.
g, triethylaluminum at 0.6 mol/1g atom per Ti atom in the solid catalyst component, and diphenyldimethoxysilane at 0.4 mol/1g atom per Ti atom in the solid catalyst component.
After supplying at a rate of 1 g atom, propylene was introduced until the propylene partial pressure reached 0.3 Kg/cm2G, and the mixture was heated at 55°C.
The mixture was allowed to react for 4 hours. After the reaction is completed, the solid catalyst component is
Washed several times with heptane, supplied with carbon dioxide and stirred for 24 hours.・As the first stage of main polymerization, a polymerization tank with an internal volume of 200 liters and equipped with stirring blades (
The treated solid catalyst component was fed into the homopolymerization tank at a rate of 3 mmol/Hr, triethylaluminum at a rate of 600 mmol/Hr, and diphenyldimethoxysilane at a rate of 15 mmol/Hr in terms of Ti atoms in the component, and the polymerization temperature was 70℃, propylene pressure 28Kg/cm2G
I reacted with At this time, hydrogen was used to adjust the molecular weight to a predetermined value. Then, the powder is continuously extracted from the homopolymerization tank and transferred to a random copolymerization tank. At this time,
700 mmol of ethanol diluted with n-heptane was supplied to the powder extraction pipe (transfer channel). The amount supplied was 1.17 mol/mol as an ethanol/organoaluminum compound molar ratio. In the random copolymerization tank, propylene and ethylene were supplied at a polymerization temperature of 55° C. to perform random copolymerization. At this time, in order to achieve the specified ethylene content,
The feed ratio of propylene and ethylene was adjusted. The powder continuously extracted from the random copolymerization tank was granulated and evaluated. In addition, gas was collected from the unreacted monomer circulation line in the random polymerization tank, and the amount of the added electron-donating compound contained therein was measured. The results are shown in Table 1.

【0027】実施例2 パウダーの抜き出し配管への電子供与性化合物としてエ
タノールを120mmol/Hrで供給したこと以外は
、実施例1と同様に行なった。この供給量はエタノール
/有機アルミニウム化合物モル比として0.2mol/
molである。結果を表1に示す。 実施例3 パウダーの抜き出し配管への電子供与性化合物としてメ
タノールを400mmol/Hrで供給したこと以外は
、実施例1と同様に行なった。この供給量はメタノール
/有機アルミニウム化合物モル比として0.67mol
/molである。結果を表1に示す。 実施例4 パウダーの抜き出し配管への電子供与性化合物としてイ
ソプロピルアルコールを700mmol/Hrで供給し
たこと以外は、実施例1と同様に行なった。この供給量
はエタノール/有機アルミニウム化合物モル比として1
.17mol/molである。結果を表1に示す。 比較例1 電子供与性化合物を直接ランダム共重合槽に供給したこ
と以外は実施例1と同様に行なった。結果を表1に示す
。なお、上記実施例及び比較例のいずれにおいても、装
置の連続運転に支障はなかった。
Example 2 The same procedure as in Example 1 was carried out except that ethanol was supplied at 120 mmol/Hr as an electron-donating compound to the powder extraction pipe. This supply amount is 0.2 mol/as an ethanol/organoaluminum compound molar ratio.
It is mol. The results are shown in Table 1. Example 3 The same procedure as in Example 1 was conducted except that methanol was supplied as an electron-donating compound to the powder extraction pipe at a rate of 400 mmol/Hr. This supply amount is 0.67 mol as methanol/organoaluminum compound molar ratio.
/mol. The results are shown in Table 1. Example 4 The same procedure as in Example 1 was conducted except that isopropyl alcohol was supplied as an electron donating compound to the powder extraction pipe at a rate of 700 mmol/Hr. This supply amount is 1 as an ethanol/organoaluminum compound molar ratio.
.. It is 17 mol/mol. The results are shown in Table 1. Comparative Example 1 The same procedure as in Example 1 was carried out except that the electron-donating compound was directly supplied to the random copolymerization tank. The results are shown in Table 1. In addition, in both the above examples and comparative examples, there was no problem in continuous operation of the apparatus.

【0028】表1におけるMI(1)は前段の重合段階
における生成物のメルトインデックス、MI(2)は後
段で生成したプロピレンブロック共重合体のメルトイン
デックスである。また、他の物性は後段で生成したプロ
ピレンブロック共重合体の物性である。また、表1の各
物性は下記方法で測定した。 引張弾性率:JIK  K  6738に準拠して測定
した。 アイゾット衝撃強度:JISK  6738に準拠して
測定した。但し、測定温度は−20℃とした。
In Table 1, MI(1) is the melt index of the product in the first polymerization stage, and MI(2) is the melt index of the propylene block copolymer produced in the second stage. Further, other physical properties are those of the propylene block copolymer produced in the latter stage. Moreover, each physical property in Table 1 was measured by the following method. Tensile modulus: Measured according to JIK K 6738. Izod impact strength: Measured according to JISK 6738. However, the measurement temperature was -20°C.

【0029】[0029]

【表1】[Table 1]

【0030】[0030]

【発明の効果】以上説明したように、本発明の製造方法
によれば、重合体の粒子同士の付着や装置内壁への付着
を効果的に防止することができると共に、未反応モノマ
ーの精製循環系の運転負荷を低減させることができ、し
たがって剛性,衝撃強度等の機械的特性に優れ、かつ製
品外観が良好なプロピレンブロック共重合体を生産性良
く製造することができる。
As explained above, according to the production method of the present invention, it is possible to effectively prevent polymer particles from adhering to each other and to the inner wall of the apparatus, and to purify and circulate unreacted monomers. The operating load on the system can be reduced, and therefore a propylene block copolymer with excellent mechanical properties such as rigidity and impact strength, and a good product appearance can be produced with high productivity.

【0031】[0031]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明製造方法の一実施態様を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing one embodiment of the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  少なくとも(A)マグネシウム、チタ
ン及びハロゲンを含む固体触媒成分と(B)有機アルミ
ニウム化合物とを用いて得られる高立体規則性触媒を用
い、ホモ重合槽における前段の重合段階でプロピレンの
結晶性単独重合体又は共重合体を製造した後、ランダム
重合槽における後段の重合段階で上記重合体又は共重合
体の存在下にプロピレンと他のα−オレフィンとをラン
ダム共重合するプロピレンブロック共重合体の製造方法
であって、上記ホモ重合槽からランダム重合槽に至る反
応生成物の移送流路において該反応生成物に電子供与性
化合物を供給することを特徴とするプロピレンブロック
共重合体の製造方法。
Claim 1: Using a highly stereoregular catalyst obtained using at least (A) a solid catalyst component containing magnesium, titanium, and a halogen and (B) an organoaluminum compound, propylene is After producing a crystalline homopolymer or copolymer, propylene and another α-olefin are randomly copolymerized in the presence of the above polymer or copolymer in a subsequent polymerization step in a random polymerization tank. A method for producing a propylene block copolymer, the method comprising supplying an electron-donating compound to the reaction product in a flow path for transferring the reaction product from the homopolymerization tank to the random polymerization tank. manufacturing method.
JP3106319A 1991-03-26 1991-03-26 Method for producing propylene block copolymer Expired - Fee Related JP3005944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3106319A JP3005944B2 (en) 1991-03-26 1991-03-26 Method for producing propylene block copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3106319A JP3005944B2 (en) 1991-03-26 1991-03-26 Method for producing propylene block copolymer

Publications (2)

Publication Number Publication Date
JPH04296314A true JPH04296314A (en) 1992-10-20
JP3005944B2 JP3005944B2 (en) 2000-02-07

Family

ID=14430633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3106319A Expired - Fee Related JP3005944B2 (en) 1991-03-26 1991-03-26 Method for producing propylene block copolymer

Country Status (1)

Country Link
JP (1) JP3005944B2 (en)

Also Published As

Publication number Publication date
JP3005944B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
JP3239184B2 (en) Manufacturing method of linear low density polyethylene
US6770586B2 (en) Solid catalyst component and catalyst for olefins polymerization
EP0546191B1 (en) Polypropylene resin and its composition
JP3204688B2 (en) Method for producing ethylene polymer
US5354820A (en) Process for the preparation of olefin polymer
JP3485806B2 (en) Method for producing propylene-ethylene block copolymer
JP2509767B2 (en) Process for producing olefin polymer
CA1339239C (en) Process for the preparation of olefin polymer
JPH04296313A (en) Production of propylene block copolymer
JPH04296314A (en) Production of propylene block copolymer
JP2521382B2 (en) Polypropylene resin
JP2582192B2 (en) Olefin polymerization catalyst component and method for producing polyolefin
JP2534414B2 (en) Polypropylene resin
JPH0532723A (en) Polypropylene resin and composition thereof
JP2534415B2 (en) Polypropylene resin
JP3399067B2 (en) Electron Donor Combined with Ziegler-Natta Catalyst for Controlling Polyolefin Polydispersity
JP2539114B2 (en) Method for producing polyolefin
JPH01149806A (en) Production of olefin polymer
JP4843188B2 (en) Polyolefin production method and gas phase polymerization apparatus
JPH059219A (en) Polypropylene resin and its composition
JP2797489B2 (en) Method for producing polypropylene
JP2540645B2 (en) Process for producing olefin polymer
JPH059225A (en) Polypropylene resin and its compositon
JPH0354125B2 (en)
KR820002156B1 (en) Process of preparing pololefins having widely distributed molecular weights

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees