JPH04295121A - Filter for internal combustion engine and filter regeneration device - Google Patents
Filter for internal combustion engine and filter regeneration deviceInfo
- Publication number
- JPH04295121A JPH04295121A JP3061576A JP6157691A JPH04295121A JP H04295121 A JPH04295121 A JP H04295121A JP 3061576 A JP3061576 A JP 3061576A JP 6157691 A JP6157691 A JP 6157691A JP H04295121 A JPH04295121 A JP H04295121A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- sealing plug
- internal combustion
- combustion engine
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 41
- 230000008929 regeneration Effects 0.000 title claims abstract description 31
- 238000011069 regeneration method Methods 0.000 title claims abstract description 31
- 239000012530 fluid Substances 0.000 claims abstract description 18
- 238000007789 sealing Methods 0.000 claims description 31
- 238000005192 partition Methods 0.000 claims description 25
- 239000000919 ceramic Substances 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 8
- 230000037431 insertion Effects 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 17
- 230000005855 radiation Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/027—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
- F01N3/028—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using microwaves
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、内燃機関の排気ガス中
の炭素を含む微粒子(パティキュレート)を除去するた
めのフィルタおよびフィルタの再生装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter and a filter regeneration device for removing particulates containing carbon from exhaust gas of an internal combustion engine.
【0002】0002
【従来の技術】従来より内燃機関(特にディーゼルエン
ジン)の排気ガス内のパティキュレートを捕集するため
のフィルタ及び、フィルタに蓄積したパティキュレート
を除去再生する装置に関しては、大気汚染を防止し環境
保全に努めるために排気ガスの規制が年々厳しくなるに
従って種々検討がおこなわれており、フィルタについて
もその構成によりフォームタイプやモノリシスタイプ等
があり、また再生装置の熱源についても石油バーナー、
電気ヒーターに加え、マイクロ波を用いる考案もなされ
ているが実用化には至っていない。[Prior Art] Conventionally, filters for collecting particulates in the exhaust gas of internal combustion engines (particularly diesel engines) and devices for removing and regenerating particulates accumulated in the filters have been used to prevent air pollution and to protect the environment. As exhaust gas regulations become stricter year by year, various studies are being carried out in an effort to maintain safety, and filters are available in foam types and monolithic types, depending on their configuration, and the heat source for regenerators is oil burners, oil burners, etc.
In addition to electric heaters, ideas have been made to use microwaves, but these have not been put to practical use.
【0003】以下図5とともに熱源にマイクロ波を用い
た従来例(特開平1−290910号公報)について説
明する。同図において1はエンジン、2,3はTM01
p モードが励振される円筒状の空胴共振器、4はマイ
クロ波放射アンテナ、5は導波管、6はマイクロ波発生
手段、7は多孔質セラミック隔壁にパティキュレートを
捕集するフィルタ、8は排気ガス流の切換弁である。こ
の様な構成においてフィルタは空胴共振器の管軸方向の
略中心部に配設されたフィルタ7と空胴共振器2,3の
両端面との間にそれぞれ空間9,10が設けられている
。A conventional example (Japanese Unexamined Patent Publication No. 1-290910) using microwaves as a heat source will be described below with reference to FIG. In the same figure, 1 is the engine, 2 and 3 are TM01
A cylindrical cavity resonator in which the p-mode is excited; 4, a microwave radiation antenna; 5, a waveguide; 6, a microwave generating means; 7, a filter for collecting particulates on a porous ceramic partition wall; 8; is the exhaust gas flow switching valve. In such a configuration, spaces 9 and 10 are provided between the filter 7, which is disposed approximately at the center of the cavity resonator in the tube axis direction, and both end surfaces of the cavity resonators 2 and 3, respectively. There is.
【0004】マイクロ波発生手段6が発生するマイクロ
波は導波管5を通って上記空間9,10内に突出した放
射アンテナ4より空胴共振器2または3に給電される。
フィルタ7の多孔質セラミック隔壁に捕集されたパティ
キュレートは給電されたマイクロ波によって誘電加熱さ
れ600℃程度になると着火し燃焼してフィルタ7は再
生される。Microwaves generated by the microwave generating means 6 pass through the waveguide 5 and are fed to the cavity resonator 2 or 3 from the radiation antenna 4 protruding into the spaces 9 and 10. The particulates collected on the porous ceramic partition walls of the filter 7 are dielectrically heated by the supplied microwaves, and when the temperature reaches about 600° C., they are ignited and burned, and the filter 7 is regenerated.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、この構
成において単一のマイクロ波発生手段6から導波管5を
経由して放射アンテナ4により空胴共振器2に2ヶ所よ
りマイクロ波を給電しているため、フィルタ7のパティ
キュレートの付着状態(燃焼によるパティキュレートの
減少も含む)によって負荷の比誘電率および誘電正接が
変化することにより、空胴共振器2の等価寸法が変わり
安定してTM01p モードが励振しえなかった。[Problem to be Solved by the Invention] However, in this configuration, microwaves are fed from a single microwave generating means 6 to the cavity resonator 2 from two locations via the waveguide 5 and the radiation antenna 4. Therefore, as the relative dielectric constant and dielectric loss tangent of the load change depending on the adhesion state of particulates on the filter 7 (including the reduction of particulates due to combustion), the equivalent dimensions of the cavity resonator 2 change and stabilize TM01p. The mode could not be excited.
【0006】更に、フィルタ7の前面はエンジン1が運
転され排気ガス流が直接あたるためパティキュレートが
より多く堆積しているにもかかわらず再生時に与えられ
るマイクロ波電力が空胴共振器2,3部とパティキュレ
ート堆積面との境界でのインピーダンスの変化が著しい
ためマイクロ波が反射して昇温が少ないうえにパティキ
ュレートの表面より熱が黒体放射するため着火温度に達
しなかったり、長時間マイクロ波を供給して強制的に着
火温度に昇温させてもフィルタ前面は隣接するセルに交
互に設けられた通気性のない閉塞用プラグによりフィル
タの機能を果たさないため燃焼用空気を与えても当該箇
所でパティキュレートにたいして酸素の拡散がおきず燃
焼の成長もないため未再生となる恐れがあり、再生後の
パティキュレート捕集の際前面の未再生部分でフィルタ
の圧力損失が増大し、エンジンの良好運転の障害になる
ばかりでなく極まっては前面部で目詰まりをおこし、ま
ったくフィルタ機能を失ってしまう危険性があった。ま
た、フィルタ7は微粒子物質を濾過するため多孔質であ
り、比較的硬度が低いため不均一な排気ガス流により前
面プラグ部が損傷する恐れもあった。Furthermore, the front surface of the filter 7 is directly exposed to the exhaust gas stream when the engine 1 is running, so even though more particulates are deposited on the front surface of the filter 7, the microwave power applied during regeneration is not directly applied to the cavity resonators 2 and 3. Because there is a significant change in impedance at the boundary between the surface of the particulates and the surface where the particulates are deposited, microwaves are reflected and the temperature rise is small, and heat is radiated from the surface of the particulates by the black body, so the ignition temperature may not be reached or the temperature may not reach the ignition temperature for a long time. Even if microwaves are supplied to forcibly raise the temperature to the ignition temperature, the front surface of the filter will not function as a filter due to the non-ventilating blocking plugs installed alternately in adjacent cells, so combustion air must be supplied. However, there is a risk that the particulates will not be regenerated because there is no diffusion of oxygen to the particulates and no growth of combustion, and the pressure loss of the filter will increase in the unregenerated part at the front when collecting particulates after regeneration. Not only would this impede the proper operation of the engine, but there was a danger that the front section would become clogged and the filter function would be completely lost. Further, since the filter 7 is porous to filter particulate matter and has relatively low hardness, there is a risk that the front plug portion may be damaged due to uneven exhaust gas flow.
【0007】そこで、本発明は、フィルタ内に堆積した
パティキュレートの量に関係なく短時間でかつ確実に燃
焼できる加熱効率が良く再生能力を継続的に維持できる
信頼性の高い内燃機関用フィルタおよびフィルタ再生装
置を提供することを目的としている。Therefore, the present invention provides a highly reliable internal combustion engine filter that can burn particulates reliably in a short period of time regardless of the amount of particulates accumulated in the filter, has high heating efficiency, and can continuously maintain regeneration ability. The purpose of the present invention is to provide a filter regeneration device.
【0008】[0008]
【課題を解決するための手段】そこで目的を達成するた
めに本発明の内燃機関用フィルタ再生装置は、マイクロ
波発振器の出力アンテナをフィルタの流体通路方向の中
心軸上に位置させるとともに前記出力アンテナのキャビ
ティへの挿入部と前記キャビティ内の前記フィルタ保持
前面部との連結部を傾斜させる構成としている。[Means for Solving the Problems] In order to achieve the object, the filter regeneration device for an internal combustion engine of the present invention locates the output antenna of the microwave oscillator on the central axis in the fluid passage direction of the filter, and the output antenna A connecting portion between an insertion portion into the cavity and the filter holding front portion in the cavity is inclined.
【0009】また、本発明の内燃機関用フィルタは多孔
質セラミック隔壁により形成される多数の貫通孔を有す
るハニカム構造体の前記貫通孔の一端を隣接する隔個毎
に気孔のない第一の封止栓で閉塞し他端は前記第一の封
止栓の施されていない前記貫通孔の端面より少なくとも
前記貫通孔の直径寸法だけ離れた位置に気孔のない第二
の封止栓で閉塞し前記隔壁と前記封止栓により流体通路
を形成する構成としている。Further, in the internal combustion engine filter of the present invention, one end of the through hole of a honeycomb structure having a large number of through holes formed by porous ceramic partition walls is sealed with a pore-free first seal for each adjacent partition. The other end of the through-hole is closed with a second sealing plug that has no pores and is located at least the diameter of the through-hole from the end surface of the through-hole where the first sealing plug is not provided. The partition wall and the sealing plug form a fluid passage.
【0010】また、本発明の内燃機関用フィルタは端面
より離れた位置に施す第二の封止栓の端面よりの距離を
フィルタの中心部より外周部へ至るにしたがって長くす
る構成としている。Further, in the internal combustion engine filter of the present invention, the distance from the end face of the second sealing plug provided at a position remote from the end face increases from the center to the outer periphery of the filter.
【0011】また、本発明の内燃機関用フィルタは多孔
質セラミック隔壁により形成される多数の貫通孔を有す
るハニカム構造体の前記貫通孔の一端を隣接する隔個毎
に気孔のない第一の封止栓で閉塞し他端は前記第一の封
止栓の施されていない前記貫通孔の端面を気孔のない第
二の封止栓で閉塞して前記隔壁と前記封止栓により流体
通路を形成するとともに少なくとも前記ハニカム構造体
の一端が流体通路方向に対して垂直でない構成としてい
る。Further, in the internal combustion engine filter of the present invention, one end of the through hole of a honeycomb structure having a large number of through holes formed by porous ceramic partition walls is sealed with a pore-free first seal for each adjacent partition. The other end of the through-hole is closed with a stopper, and the other end is closed with a second sealing plug having no pores, so that a fluid passage is formed between the partition wall and the sealing plug. At least one end of the honeycomb structure is not perpendicular to the fluid passage direction.
【0012】また、本発明の内燃機関用フィルタは封止
栓を前記貫通孔の端面より少なくとも前記貫通孔の直径
寸法だけ離れた位置に設けるとともに少なくとも前記ハ
ニカム構造体の一端が流体通路方向に対して垂直でない
構成としている。Further, in the internal combustion engine filter of the present invention, the sealing plug is provided at a position away from the end face of the through hole by at least the diameter of the through hole, and at least one end of the honeycomb structure It has a non-vertical configuration.
【0013】[0013]
【作用】本発明の内燃機関用フィルタ再生装置は、マイ
クロ波発振器の出力アンテナをフィルタの流体通路方向
の中心軸上に位置させるとともに前記出力アンテナのキ
ャビティへの挿入部と前記キャビティ内の前記フィルタ
保持前面部との連結部を傾斜させる構成であるので、マ
イクロ波発振器よりのマイクロ波は傾斜させた連結部を
経由してキャビティ内のフィルタに照射されるため負荷
(パティキュレートを含むフィルタ)が変動してもマイ
クロ波発振器インピーダンスと負荷インピーダンスとの
整合が連結部で漸次おこなわれるので効率よくマイクロ
波放射がおこなえる。[Operation] The filter regeneration device for an internal combustion engine of the present invention positions the output antenna of the microwave oscillator on the central axis of the filter in the fluid passage direction, and also connects the insertion portion of the output antenna into the cavity and the filter within the cavity. Since the connecting part with the holding front part is tilted, the microwave from the microwave oscillator is irradiated to the filter in the cavity via the tilted connecting part, which reduces the load (filter containing particulates). Even if the impedance of the microwave oscillator changes, matching between the impedance of the microwave oscillator and the load impedance is gradually performed at the connecting portion, so that microwave radiation can be performed efficiently.
【0014】また、本発明の内燃機関用フィルタは多孔
質セラミック隔壁により形成される多数の貫通孔を有す
るハニカム構造体の前記貫通孔の一端を隣接する隔個毎
に気孔のない第一の封止栓で閉塞し他端は前記第一の封
止栓の施されていない前記貫通孔の端面より少なくとも
前記貫通孔の直径寸法だけ離れた位置に気孔のない第二
の封止栓で閉塞し前記隔壁と前記封止栓により流体通路
を形成する構成であるので、流体通路の一端(第二の封
止栓が施されている側)は前面に渡ってフィルタ機能が
あるため再生時燃焼用空気が充分拡散され前面端部まで
燃焼するため再生率が向上する。Further, in the internal combustion engine filter of the present invention, one end of the through hole of a honeycomb structure having a large number of through holes formed by porous ceramic partition walls is sealed with a pore-free first seal for each adjacent partition. The other end of the through-hole is closed with a second sealing plug that has no pores and is located at least the diameter of the through-hole from the end surface of the through-hole where the first sealing plug is not provided. Since the structure is such that a fluid passage is formed by the partition wall and the sealing plug, one end of the fluid passage (the side where the second sealing plug is provided) has a filter function across the front, so it is used for combustion during regeneration. The regeneration rate is improved because the air is sufficiently diffused and burns to the front end.
【0015】また、本発明の内燃機関用フィルタは端面
より離れた位置に施す第二の封止栓の端面よりの距離を
フィルタの中心部より外周部へ至るにしたがって長くす
る構成であるので、再生時に昇温しにくい外周部におい
てより多くの燃焼用空気が拡散されるとともに当該部の
パティキュレート捕集量が増えるため再生率が更に向上
するばかりでなくフィルタの熱分布がよく熱歪によるク
ラック等が回避できる。Furthermore, since the internal combustion engine filter of the present invention is configured such that the distance from the end surface of the second sealing plug provided at a position remote from the end surface increases from the center of the filter to the outer periphery, More combustion air is diffused in the outer periphery, where the temperature is difficult to rise during regeneration, and the amount of particulates collected in this area increases, which not only further improves the regeneration rate, but also improves the heat distribution of the filter to prevent cracks caused by thermal strain. etc. can be avoided.
【0016】また、本発明の内燃機関用フィルタは多孔
質セラミック隔壁により形成される多数の貫通孔を有す
るハニカム構造体の前記貫通孔の一端を隣接する隔個毎
に気孔のない第一の封止栓で閉塞し他端は前記第一の封
止栓の施されていない前記貫通孔の端面を気孔のない第
二の封止栓で閉塞して前記隔壁と前記封止栓により流体
通路を形成するとともに少なくとも前記ハニカム構造体
の一端が流体通路方向に対して垂直でない構成であるの
で再生されにくい端面部の有効表面積が拡大され目詰り
しにくいだけでなくマイクロ波加熱時にキャビティ内の
フィルタの負荷インピーダンスが端面部で漸次変化する
ので効率よくマイクロ波放射がおこなえ再生率も向上す
る。Further, in the internal combustion engine filter of the present invention, one end of the through hole of the honeycomb structure having a large number of through holes formed by porous ceramic partition walls is sealed with a pore-free first seal for each adjacent partition. The other end of the through-hole is closed with a stopper, and the other end is closed with a second sealing plug having no pores, so that a fluid passage is formed between the partition wall and the sealing plug. Since at least one end of the honeycomb structure is not perpendicular to the fluid passage direction, the effective surface area of the end face portion, which is difficult to regenerate, is expanded, which not only prevents clogging but also prevents the filter inside the cavity during microwave heating. Since the load impedance of the microwave gradually changes at the end face, microwave radiation can be performed efficiently and the regeneration rate can also be improved.
【0017】[0017]
【実施例】以下本発明の一実施例における内燃機関用フ
ィルタおよび、フィルタ再生装置について、図面ととも
に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An internal combustion engine filter and a filter regeneration device according to an embodiment of the present invention will be described below with reference to the drawings.
【0018】図1のシステム及び主要部の断面図におい
て、11はエンジン、12はエンジンの排気をキャビテ
ィ13に導入する排気導入管、14はキャビティ13内
に設けられたパティキュレートを捕集するためのフィル
タでありハニカム形状で隣接する貫通孔を交互に風上,
風下側で閉塞しており、隔壁を排気ガスが通過する際に
パティキュレートが隔壁に堆積する。15はフィルタ1
4を断熱および緩衝するためのスペーサーである。16
はパティキュレートの加熱源のマイクロ波発振器である
マグネトロン、17はマグネトロン16を駆動するため
の高電圧を発生させる駆動電源、18はマグネトロン1
6の出力アンテナであり、フィルタ14の流体通路方向
(X−X’軸)の略中心軸上に位置している。19は耐
熱性低誘電損失材料よりなるアンテナカバーである。2
0はマグネトロン16よりのマイクロ波出力をキャビテ
ィ13に搬送する連結部であり出力アンテナ18の結合
部よりキャビティ13にかけ傾斜がもうけてある。連結
部20の傾斜の寸法的なものはインピーダンスの整合が
とれフィルタ14を均一に加熱できるように幾何学的対
称性を保ちつつ決定すればよい。なお、キャビティ13
を方形としてもよい。エンジン11が運転されている間
は、パティキュレートを含む排気ガスは排気導入管12
よりキャビティ13内のフィルタ14に流入し、フィル
タ14の隔壁でパティキュレートが除去され外部排気管
21より大気中に放出される。一定時間エンジン11が
運転されるとパティキュレートの堆積によりフィルタ1
4の圧力損失が増大し、エンジン11の良好な運転が維
持できなくなるため、前述の圧力損失を検知してフィル
タ14の再生を行なう。再生サイクルにおいて、エンジ
ン11よりの排気ガスを弁(図示せず)等で排気導入管
12へ導入することは停止され、駆動電源17で加勢さ
れたマグネトロン16より発振されたマイクロ波は出力
アンテナ18より連結部20を伝送してキャビティ13
に放射され、対向するフィルタ前面近傍のパティキュレ
ート加熱昇温させる。パティキュレートが着火温度に達
するとエアーポンプ22より燃焼用空気を吐出し始める
。フィルタ前面近傍ではじまったパティキュレートの燃
焼は空気中の酸素と反応し次第に風下側に広がってゆき
、やがて燃焼は終了しフィルタ14は再生される。マイ
クロ波の供給はパティキュレートが着火したことを検出
した後速やかに停止させればよい。このようにして再生
が終了すれば再び排気ガスをフィルタに導入しパティキ
ュレートの捕集を再開する。In the sectional view of the system and main parts in FIG. 1, 11 is an engine, 12 is an exhaust introduction pipe for introducing engine exhaust gas into the cavity 13, and 14 is a pipe provided in the cavity 13 for collecting particulates. It is a honeycomb-shaped filter with adjacent through holes arranged alternately upwind and
It is closed on the leeward side, and particulates accumulate on the partition wall when exhaust gas passes through the partition wall. 15 is filter 1
This is a spacer for insulating and buffering 4. 16
17 is a drive power source that generates a high voltage to drive the magnetron 16; 18 is the magnetron 1;
6, and is located approximately on the central axis of the filter 14 in the fluid passage direction (X-X' axis). Reference numeral 19 denotes an antenna cover made of a heat-resistant, low dielectric loss material. 2
0 is a connecting portion that conveys the microwave output from the magnetron 16 to the cavity 13, and is inclined from the connecting portion of the output antenna 18 to the cavity 13. The dimension of the inclination of the connecting portion 20 may be determined while maintaining geometrical symmetry so that the impedance can be matched and the filter 14 can be heated uniformly. In addition, cavity 13
may be a square. While the engine 11 is operating, exhaust gas containing particulates is transferred to the exhaust introduction pipe 12.
The particulates flow into the filter 14 in the cavity 13, where the particulates are removed by the partition wall of the filter 14, and then released into the atmosphere through the external exhaust pipe 21. When the engine 11 is operated for a certain period of time, particulates accumulate in the filter 1.
Since the pressure loss of the filter 14 increases and it becomes impossible to maintain good operation of the engine 11, the aforementioned pressure loss is detected and the filter 14 is regenerated. In the regeneration cycle, the exhaust gas from the engine 11 is stopped from being introduced into the exhaust introduction pipe 12 by a valve (not shown), etc., and the microwaves oscillated by the magnetron 16 energized by the drive power source 17 are transmitted to the output antenna 18. Connecting portion 20 is transmitted to cavity 13.
The particulates near the front face of the opposing filter are heated and heated. When the particulates reach the ignition temperature, the air pump 22 begins to discharge combustion air. Combustion of particulates that starts near the front of the filter reacts with oxygen in the air and gradually spreads toward the leeward side, and eventually the combustion ends and the filter 14 is regenerated. The supply of microwaves may be stopped immediately after it is detected that particulates are ignited. When regeneration is completed in this manner, exhaust gas is introduced into the filter again and particulate collection is resumed.
【0019】図2は本発明の一実施例における内燃機関
用フィルタの平面図および断面図である。図2において
外枠23にかこまれた円筒空間に多孔質セラミック隔壁
24により貫通孔をもつハニカム構造体が構成されてい
る。25は貫通孔の一端を隣接する隔個毎(市松模様状
)に設けられた気孔のない第一の封止栓であり、26は
第一の封止栓の施されていない貫通孔のもう一方の端面
側に設けられた第二の封止栓である。第二の封止栓26
の施されている位置が排気ガスの流入方向(図中A)よ
りハニカム構造体の中心部より外周部に至るにつれて端
面よりの距離が長くなっている。したがって排気ガスが
フィルタに流入しパティキュレート捕集時にハニカム構
造体の中心部より外周部に至るにつれてパティキュレー
トの捕集量が増加し、再生時にパティキュレートの燃焼
による外周部の昇温が大きくなる。また、排気ガスの流
入方向の前面部全てが多孔質セラミックで構成されてい
るのでフィルタ機能を有し、再生時の燃焼用空気の拡散
が行なわれ端面部も確実に再生できる。FIG. 2 is a plan view and a sectional view of a filter for an internal combustion engine according to an embodiment of the present invention. In FIG. 2, a honeycomb structure having through holes formed by porous ceramic partition walls 24 is formed in a cylindrical space surrounded by an outer frame 23. Reference numeral 25 indicates first sealing plugs without air holes provided at every adjacent end of the through-hole (in a checkerboard pattern), and reference numeral 26 indicates the other end of the through-hole without the first sealing plug. This is a second sealing plug provided on one end surface side. Second sealing plug 26
The distance from the end face becomes longer as the position where the mark is applied goes from the center of the honeycomb structure to the outer periphery in the exhaust gas inflow direction (A in the figure). Therefore, when exhaust gas flows into the filter and collects particulates, the amount of particulates collected increases from the center to the outer periphery of the honeycomb structure, and the temperature rise at the outer periphery due to combustion of particulates during regeneration increases. . Furthermore, since the entire front surface in the exhaust gas inflow direction is made of porous ceramic, it has a filter function, and combustion air is diffused during regeneration, so that the end surface can also be regenerated reliably.
【0020】図3,図4は本発明の他の実施例における
内燃機関用フィルタの正面図および側面図である。図3
,図4においてハニカム構造体を持つフィルタ14は排
気ガスの流入方向(図中A)に対面する端部27,28
が流体通路に対して垂直以外の一つ以上の角度をもって
構成されている。したがって排気ガスが直接当たる部分
表面積が大きくなり目詰まりしにくくなる。また、フィ
ルタ14がキャビティ内に収納されマイクロ波加熱され
る場合は端部27,28の傾斜は負荷インピーダンスを
漸次変化できるのでマイクロ波の反射が少ない。また、
傾斜部を持つフィルタに前述の端面より距離をもたせた
第二の封止栓を組み合わせればさらに再生率は向上する
。FIGS. 3 and 4 are a front view and a side view of an internal combustion engine filter according to another embodiment of the present invention. Figure 3
, in FIG. 4, the filter 14 having a honeycomb structure has ends 27 and 28 facing the exhaust gas inflow direction (A in the figure).
is configured at one or more angles other than perpendicular to the fluid passageway. Therefore, the partial surface area that is directly hit by the exhaust gas becomes larger, making it less likely to become clogged. Further, when the filter 14 is housed in a cavity and heated by microwaves, the slopes of the ends 27 and 28 can gradually change the load impedance, so that there is little reflection of microwaves. Also,
The regeneration rate can be further improved by combining a filter with an inclined portion with a second sealing plug that is spaced apart from the end face.
【0021】[0021]
【発明の効果】以上のように、本発明の内燃機関用フィ
ルタおよび、フィルタ再生装置によれば、下記の効果を
得ることが出来る。
(1)マイクロ波発振器の出力アンテナをフィルタの流
体通路方向の中心軸上に位置させるとともに前記出力ア
ンテナのキャビティへの挿入部と前記キャビティ内の前
記フィルタ保持前面部との連結部を傾斜させる構成とし
ているので、負荷(捕集量の違うパティキュレートを含
むフィルタ)が変動してもマイクロ波発振器インピーダ
ンスと負荷インピーダンスとの整合が連結部で漸次おこ
なわれるので簡単な構成でエネルギー効率のよいマイク
ロ波加熱再生がおこなえる。
(2)多孔質セラミック隔壁により形成される多数の貫
通孔を有するハニカム構造体の一端を端面より少なくと
も前記貫通孔の直径寸法だけ離れた位置に気孔のない封
止栓で閉塞する構成としているので、排気ガスがあたる
全面がフィルタ機能をもつので、再生時燃焼用空気が充
分拡散され前面端部まで燃焼するため再生率が向上し、
目詰まりもなく耐久性が向上する。
(3)端面より離れた位置に施す封止栓の端面よりの距
離をフィルタの中心部より外周部へ至るにしたがって長
くする構成であるので再生時に昇温しにくい外周部にお
いてより多くの燃焼用空気が拡散されるとともに当該部
のパティキュレート捕集量が増えるため昇温がよく再生
率,耐久性が更に向上する。
(4)多孔質セラミック形成されるハニカム構造体の一
端が流体通路方向に対して垂直でない構成であるので再
生されにくい端面部の有効表面積が拡大され目詰りしに
くく耐久性が向上する。As described above, according to the internal combustion engine filter and filter regeneration device of the present invention, the following effects can be obtained. (1) A configuration in which the output antenna of the microwave oscillator is located on the central axis of the filter in the fluid passage direction, and the connecting part between the insertion part of the output antenna into the cavity and the filter holding front part in the cavity is inclined. Therefore, even if the load (filter containing different particulates collected in different amounts) changes, matching between the microwave oscillator impedance and the load impedance is gradually performed at the connection part. Can be heated and regenerated. (2) One end of the honeycomb structure having a large number of through holes formed by porous ceramic partition walls is closed with a sealing plug without pores at a position separated from the end face by at least the diameter of the through holes. Since the entire surface that is exposed to exhaust gas has a filter function, the combustion air during regeneration is sufficiently diffused and burns up to the front end, improving the regeneration rate.
Improved durability with no clogging. (3) Since the distance from the end face of the sealing plug applied at a position far from the end face is increased from the center of the filter to the outer periphery, more combustion is possible in the outer periphery where the temperature is difficult to rise during regeneration. As the air is diffused, the amount of particulates collected in the relevant part increases, so the temperature can be raised easily and the regeneration rate and durability are further improved. (4) Since one end of the honeycomb structure formed of porous ceramic is not perpendicular to the direction of the fluid passage, the effective surface area of the end face portion, which is difficult to reproduce, is expanded, and the durability is improved with less clogging.
【図1】本発明の一実施例における内燃機関用フィルタ
再生装置のシステム及び要部断面図[Fig. 1] A system and a sectional view of essential parts of a filter regeneration device for an internal combustion engine in an embodiment of the present invention.
【図2】本発明の一実施例における内燃機関用フィルタ
の平面図及び断面図[Fig. 2] A plan view and a sectional view of an internal combustion engine filter according to an embodiment of the present invention.
【図3】本発明の他の実施例における内燃機関用フィル
タの正面図及び側面図[Fig. 3] Front view and side view of an internal combustion engine filter according to another embodiment of the present invention.
【図4】本発明の他の実施例における内燃機関用フィル
タの正面図及び側面図[Fig. 4] Front view and side view of an internal combustion engine filter according to another embodiment of the present invention.
【図5】従来の内燃機関用フィルタ再生装置の構成を示
す断面図[Fig. 5] A cross-sectional view showing the configuration of a conventional internal combustion engine filter regeneration device.
【符号の説明】 11 エンジン 13 キャビティ 14 フィルタ 16 マグネトロン 18 出力アンテナ 20 連結部 22 エアーポンプ[Explanation of symbols] 11 Engine 13 Cavity 14 Filter 16 Magnetron 18 Output antenna 20 Connecting part 22 Air pump
Claims (5)
中に含まれるパティキュレートを捕集するフィルタと、
前記フィルタを収納保持するキャビティと、前記フィル
タに蓄積されたパティキュレートを誘電加熱し燃焼させ
るマイクロ波発振器とを有し、前記マイクロ波発振器の
出力アンテナを前記フィルタの流体通路方向の中心軸上
に位置させるとともに、前記出力アンテナの前記キャビ
ティへの挿入部と前記キャビティ内の前記フィルタ保持
前面部との連結部を傾斜させる構成とした内燃機関用フ
ィルタ再生装置。1. A filter for collecting particulates contained in exhaust gas, which is provided in an exhaust passage of an internal combustion engine;
It has a cavity that houses and holds the filter, and a microwave oscillator that dielectrically heats and burns particulates accumulated in the filter, and the output antenna of the microwave oscillator is positioned on the central axis of the filter in the fluid passage direction. The filter regeneration device for an internal combustion engine is configured to tilt a connecting portion between an insertion portion of the output antenna into the cavity and the filter holding front portion in the cavity.
数の貫通孔を有するハニカム構造体の前記貫通孔の一端
を隣接する隔個毎に気孔のない第一の封止栓で閉塞し、
他端は前記第一の封止栓の施されていない前記貫通孔の
端面より少なくとも前記貫通孔の直径寸法だけ離れた位
置に気孔のない第二の封止栓で閉塞し、前記隔壁と前記
封止栓により流体通路を形成する構成とした内燃機関用
フィルタ。2. A honeycomb structure having a large number of through holes formed by porous ceramic partition walls, and closing one end of each of the through holes with a first sealing plug having no pores for each adjacent partition;
The other end is closed with a second sealing plug having no pores at a position spaced apart from the end surface of the through-hole where the first sealing plug is not provided by at least the diameter of the through-hole, and the partition wall and the A filter for an internal combustion engine that has a structure in which a fluid passage is formed by a sealing plug.
端面よりの距離をフィルタの中心部より外周部へ至るに
したがって長くする構成とした請求項2に記載の内燃機
関用フィルタ。3. The filter for an internal combustion engine according to claim 2, wherein the distance from the end surface of the second sealing plug provided at a position remote from the end surface increases from the center of the filter toward the outer periphery. .
数の貫通孔を有するハニカム構造体の前記貫通孔の一端
を隣接する隔個毎に気孔のない第一の封止栓で閉塞し、
他端は前記第一の封止栓の施されていない前記貫通孔の
端面を気孔のない第二の封止栓で閉塞して前記隔壁と前
記封止栓により流体通路を形成するとともに、少なくと
も前記ハニカム構造体の一端が流体通路方向に対して垂
直でない構成とした内燃機関用フィルタ。4. A honeycomb structure having a large number of through holes formed by porous ceramic partition walls, and closing one end of each of the through holes with a first sealing plug having no pores for each adjacent partition;
The other end closes the end surface of the through hole where the first sealing plug is not provided with a second sealing plug without air holes to form a fluid passage by the partition wall and the sealing plug, and at least A filter for an internal combustion engine, wherein one end of the honeycomb structure is not perpendicular to the fluid passage direction.
前記貫通孔の直径寸法だけ離れた位置に設ける構成とし
た請求項4に記載の内燃機関用フィルタ。5. The filter for an internal combustion engine according to claim 4, wherein the sealing plug is provided at a position separated from the end surface of the through hole by at least the diameter of the through hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3061576A JPH04295121A (en) | 1991-03-26 | 1991-03-26 | Filter for internal combustion engine and filter regeneration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3061576A JPH04295121A (en) | 1991-03-26 | 1991-03-26 | Filter for internal combustion engine and filter regeneration device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04295121A true JPH04295121A (en) | 1992-10-20 |
Family
ID=13175091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3061576A Pending JPH04295121A (en) | 1991-03-26 | 1991-03-26 | Filter for internal combustion engine and filter regeneration device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04295121A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3301270A1 (en) * | 2016-09-28 | 2018-04-04 | Fujitsu Limited | Filter regeneration device, filter plugging detection device, and exhaust gas treatment apparatus |
-
1991
- 1991-03-26 JP JP3061576A patent/JPH04295121A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3301270A1 (en) * | 2016-09-28 | 2018-04-04 | Fujitsu Limited | Filter regeneration device, filter plugging detection device, and exhaust gas treatment apparatus |
US10526944B2 (en) | 2016-09-28 | 2020-01-07 | Fujitsu Limited | Filter regeneration device, filter plugging detection device, exhaust gas treatment apparatus, and filter plugging determination method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5144798A (en) | Regenerative particulate trap system for emission control | |
JP3355943B2 (en) | Exhaust gas purification method and exhaust gas filter and exhaust gas filter purification device using the same | |
US5397550A (en) | Catalytic converter and cleaning system | |
CA1316113C (en) | Apparatus for increasing regenerative filter heating element temperature | |
US5822977A (en) | Method of and apparatus for purifying exhaust gas utilizing a heated filter which is heated at a rate of no more than 10° C./minute | |
JP2590943Y2 (en) | Exhaust gas purification device | |
KR19980032928A (en) | Exhaust gas filter | |
JPH04295121A (en) | Filter for internal combustion engine and filter regeneration device | |
JPH0631133Y2 (en) | Exhaust gas purification filter | |
JPH0633739A (en) | Exhaust emission control device | |
JP2553735B2 (en) | Diesel exhaust gas purification equipment | |
KR100362211B1 (en) | Diesel vehicle particulate matter removal device | |
JPH04301114A (en) | Filter for cleaning exhaust gas of internal combustion engine | |
JP2924288B2 (en) | Filter regeneration device for internal combustion engine | |
JPH04298623A (en) | Filter regeneration device for internal combustion engine | |
JPH04298625A (en) | Filter regeneration device for internal combustion engine | |
JP2888160B2 (en) | High frequency exhaust gas purification equipment | |
JPH04298622A (en) | Filter for internal combustion engine and filter regeneration device | |
JPH03258911A (en) | Filter for diesel particulate | |
JP2689723B2 (en) | Filter regeneration device for internal combustion engine | |
JPH08260944A (en) | Dpf burner regenerating device | |
JPH087053Y2 (en) | Particulate filter | |
RU2075603C1 (en) | Exhaust gas regenerable soot filter | |
JP2715629B2 (en) | Diesel exhaust gas purification equipment | |
JPS58214316A (en) | Filter for purifying exhaust gas |